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STATISTICAL INFERENCE OF EXPONENTIAL
RECORD DATA UNDER KULLBACK-LEIBLER

DIVERGENCE MEASURE

Raed R. Abu Awwad1, Ghassan K. Abufoudeh2, Omar M. Bdair3

ABSTRACT

Based on one parameter exponential record data, we conduct statistical inferences
(maximum likelihood estimator and Bayesian estimator) for the suggested model
parameter. Our second aim is to predict the future (unobserved) records and to con-
struct their corresponding prediction intervals based on observed set of records. In
the estimation and prediction processes, we consider the square error loss and the
Kullback-Leibler loss functions. Numerical simulations were conducted to evaluate
the Bayesian point predictor for the future records. Finally, data analyses involv-
ing the times (in minutes) to breakdown of an insulating fluid between electrodes at
voltage 34 kv have been performed to show the performance of the methods thus
developed on estimation and prediction.

Key words: Bayes estimation, Bayes prediction, record values, Kullback-Leibler
divergence measure, exponential distribution.

1. Introduction

Let X1,X2, ... be a sequence of independent and identically distributed (iid) random
variables from exponential distribution with probability density function (pdf)

f (x;θ) =

{
θe−θx i f x > 0,θ > 0

0 i f x≤0 ,
(1)

and cumulative distribution function (cdf)

F(x;θ) = 1− e−θx,x > 0,θ > 0. (2)

Based on the distribution function of exponential distribution, the distribution can be
used effectively in analyzing any lifetime data, especially when censoring is used or
if the data are grouped. The exponential distribution received considerable atten-
tion in the literature during the last three decades and was commonly used in many
situations of lifetime data analysis. The exponential distribution was typically used
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to model time intervals between random events, such as the length of time between
arrivals at a service station. In queuing theory, the service times of agents in a sys-
tem are often exponentially distributed. It is worth mentioning here that when times
between ”random events” follow the exponential distribution with rate θ , then the to-
tal number of events in a time period of length t follows the Poisson distribution with
parameter θ t. Reliability theory and reliability engineering also use the exponential
distribution extensively. Many authors have developed inference procedures for ex-
ponential distribution. Abufoudeh et al. (2017) have obtained the Bayes estimate
of the parameter of the exponential distribution under Kullback-Leibler divergence
measure. Nasiri et al. (2012) have used the upper record range statistic to draw in-
ferences from the parameter of the exponential distribution. Based on record data,
Janeen (2004) have discussed the empirical Bayes estimators for the parameter
of the exponential distribution. An interested reader may refer to Balakrishnan et
al. (2005). Balakrishnan et al. (1995) have established some recurrence relations
for single and product moments from exponential distribution based on record val-
ues. Ahsanullah and Kirmani (1991) have obtained some characterizations of the
exponential distribution based on lower record values.

In many real life situations, we may be interested in the largest value of data
such as stock exchange, weather and sports, because in some cases the decisions
may depend on the largest values. Chandler (1952) has introduced the study of
record values and has reported many of the basic properties for records. Bdair
and Raqab (2009) have studied the mean residual lifetime of records and Bdair
and Raqab (2012) have studied the upper bounds of the mean residual lifetime of
records. Properties of record values have been extensively studied in the literature
by Ahsanullah (1988, 1995), Arnold and Balakrishnan (1989), Arnold et al. (1998),
Nevzorov (2001), Kamps (1995) and Jaheen (2004).

Let X1,X2, ... be a sequence (X-sequence) of iid random variables from the ex-
ponential distribution given in Eq. (1). The random variable X j is called an upper
record if X j > Xi for all i = 1,2, ..., j− 1. To formalize this concept, let X1,X2, ...,Xn

be a sample of size n from X-sequence. By convention X1 is the first record where
U(1) = 1 is the first record time. For n ≥ 2, X j is an upper record if its value ex-
ceeds all of the previous observations. To obtain record data, the nth record time
U(n) is defined using the recursive formula U(n) = min

{
j : X j > XU(n−1)

}
, then the

nth record is XU(n).
In this research work, based on record values we estimate the parameter θ of

the exponential distribution using both classical and Bayesian methods of estima-
tion, as well as we predict the future record values depending on a sequence of
past records. In the Bayesian estimation method and in prediction of future values,
we use two types of loss functions; the first is the square error loss (SEL) function,
which is defined as

L(θ , θ̂) = (θ − θ̂)2. (3)

The second is the Kullback-Leibler divergence measure (KL) as an alternative loss
function. The Kullback-Leibler divergence measure (also called relative entropy
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measure) has been introduced by Kullback and Leibler (1951). Unlike the square
error loss function, KL does not measure the discrepancy between an unknown
parameter and its estimate, but between the actual distribution f (x|θ) of the record
sample x

∼
of size n from X-sequence and the approximate distribution f̂ (x|θ̂). As

a consequence, it is invariant with one-to-one reparametrization of the parameters
and, hence, becomes a serious competitor to square error loss function. An in-
teresting property of the KL divergence is KL( f , f̂ ) > 0 with equality if and only if
f (x|θ) = f̂ (x|θ̂) ∀x ∈ x

∼
. For more details, one may refer to Abufoudeh et al. (2018)

and Singh et al. (2014). The Kullback-Leibler divergence measure of the true dis-
tribution f (x|θ) from the approximate distribution f̂ (x|θ̂) is defined as

KL( f , f̂ ) = E f

[
log

f (x|θ)
f̂ (x|θ̂)

]
= E f

[
log

θe−θx

θ̂e−θ̂x

]
= log

θ

θ̂
− (θ − θ̂) E f (X)

=
θ̂

θ
− log

θ̂

θ
−1. (4)

This measure is called Kullback-Leibler error loss (KEL) function and it is denoted
by KL(θ , θ̂).

The rest of the article is organized as follows. In Section 2, based on record
data from the exponential distribution of parameter θ , we find the maximum like-
lihood estimate and the Bayes estimate of θ , under both SEL and KEL functions.
In Section 3, we find the point and credible interval of the future records based on
previously known records generated from the exponential distribution. A simulation
study based on different sizes of record samples from the exponential distribution
and real life example is presented in Section 4. Simulation studies that compare
all classical and Bayes estimates along with a real life example are presented and
discussed in Section 5. Finally, we conclude the results thus obtained in Section 6.

2. Classical method

The most common classical technique in estimating the unknown parameters of a
distribution is the maximum likelihood (ML) estimation method. The ML estimation
method chooses, as an estimate of θ , the value θ̂ , which maximizes the likelihood
function. Suppose we observe n upper record values x

∼
= (xU(1),xU(2), ...,xU(n)) from

X-sequence of iid random variables following the exponential distribution with pdf
and cdf given in (1) and (2), respectively. According to Arnold et al. (1998), the
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likelihood function of records based on exponential distribution is given as

L(θ |x
∼
) =

n−1

∏
i=1

f (xU(i)|θ)
1−F(xU(i)|θ)

f (xU(n)|θ)

= θ
n e−θxU(n) . (5)

Applying ln(.) for both sides, we obtain the log-likelihood function

lnL(θ |x
∼
) = n lnθ −θxU(n).

Differentiating the above equation with respect to θ and equating the resulting term
to zero, we obtain the ML estimator of θ as follows

θ̂ =
n

xU(n)
.

3. Bayesian method

In this section, we introduce the Bayesian point estimation and credible interval
for the unknown parameter of the exponential distribution based on upper record
values. The KEL and SEL functions are used to approximate the point estimation
of the unknown parameter θ .

3.1. Bayesian estimation

The inference problem concerning the unknown parameter θ can easily be dealt
with using the Bayesian method, since the posterior distribution supposedly con-
tains all available information about θ (both sample and prior information). The
posterior distribution of θ given x

∼
is defined as

π(θ |x
∼
) =

L(θ |x
∼
)π1(θ)∫

∞

0 L(θ |x
∼
)π1(θ) dθ

. (6)

Assume that θ has the conjugate gamma prior with pdf

π1(θ |a,b) =

{
ba

Γ(a)θ a−1e−bθ if θ > 0,

0 if θ ≤ 0,
(7)

where a > 0, b > 0 are the hyper-parameters. By substituting Eq. (5) and Eq. (7),
we immediately obtain

π(θ |x
∼
) =

(b+ xU(n))
a+n

Γ(a+n)
θ

a+n−1 e−θ(b+xU(n)). (8)
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That is, the posterior distribution of θ given x
∼

, is Gamma(a+n,b+ xU(n)).

The Bayesian estimator of θ under the SEL function is then given by

θ̂B1 = Eposterior(θ |x∼) =
a+n

b+ xU(n)
.

The Bayesian estimator of θ under the KEL function θ̂B2 is obtained by minimizing
the risk function

Eposterior(KL(θ , θ̂)) =
∫

∞

0

(
θ̂

θ
− log

θ̂

θ
−1

)
π(θ |x

∼
) dθ .

By differentiating Eposterior(KL(θ , θ̂)) with respect to θ̂ and setting its derivative to
zero, we get the equation ∫

∞

0

(
1
θ
− 1

θ̂

)
π(θ |x

∼
) dθ = 0.

Solving for θ̂ we conclude

θ̂B2 =
1

Eposterior(
1
θ
|x
∼
)

(9)

Using Eq. (8) and Eq. (9), the Bayes estimator under the KEL function is then

θ̂B2 =
Γ(a+n)

(b+ xU(n))Γ(a+n−1)
.

3.2. Credible interval

Since the posterior distribution of θ follows gamma distribution, a credible interval
of θ can be obtained as follows:
The (1−β )100% credible interval of θ , (CL,CU ), satisfies the following two conditions

P(CL < θ < ∞) = 1− β

2
, (10)

P(CU < θ < ∞) =
β

2
. (11)

Now, from Eq. (10), we have

∞∫
CL

(
b+ xU(n)

)a+n

Γ(a+n)
θ

a+n−1 e−θ(b+xU(n)) dθ = 1− β

2
.
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Using the transformation u = θ(b+ xU(n)), we immediately obtain

∞∫
(b+xU(n))CL

ua+n−1 e−u du =

(
1− β

2

)
Γ(a+n).

Based on the incomplete gamma function, which is defined as

Γ(c,d) =
∞∫

d

xc−1e−x dx, c > 0, d > 0, (12)

we immediately obtain

Γ
(
a+n, (b+ xU(n))CL

)
=

(
1− β

2

)
Γ(a+n). (13)

Similarly from Eq. (11), we obtain

Γ
(
a+n, (b+ xU(n))CU

)
=

β

2
Γ(a+n). (14)

Consequently, we conclude the lower and upper credible interval CL and CU by
solving Eqs. (13) and (14) using a suitable numerical method, with respect to CL

and CU , respectively.
In particular, if a is a positive integer, then the chi-square table values can be used
to construct the credible interval for θ as follows:
Since θ has Gamma(a+ n, b+ xU(n)), then a pivotal statistic Q = 2θ(b+ xU(n)) has
χ2

2(a+n). Hence, the (1−β )100% credible interval for θ is given by

χ2
(1− β

2 , 2(a+n))

2(b+ xU(n))
< θ <

χ2
( β

2 , 2(a+n))

2(b+ xU(n))
,

where χ2
(β ,r) is the 100β th upper percentile of chi-square with r degrees of freedom.

4. Bayesian prediction

In this section, we consider the problem of one sample prediction. The idea of this
problem is to find the Bayes predictors and bounds of future record values based on
observed records which have been taken from X-sequence. We consider the two
loss functions SEL and KEL to find the predictors and bounds. One sample predic-
tion problem has been studied by many authors, see Ahsanullah (1980), Dunsmore
(1983), Berred (1998) and Bdair and Raqab (2016).
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4.1. Predictors of future records

Let x
∼
= (xU(1),xU(2), ...,xU(m)) be the m observed upper records. To find the Bayes

predictor of the nth future upper record XU(n), 1≤ m < n, we need to derive the pos-
terior predictive density at any point y > xU(m), as follows:
The conditional probability density function of y = xU(n) given that the observed up-
per record data x

∼
is indicated by fXU(n)|x∼

(y|θ). Since the upper record values satisfy

the Markovian property, then fXU(n)|x∼
(y|θ) = fXU(n)|xU(m)

(y|θ). The conditional proba-

bility density function of y = xU(n) given that xU(m) is given (see Ahsanullah (1995))
by

fXU(n)|xU(m)
(y|θ) =

[H(y)−H(xU(m))]
n−m−1

(n−m−1)!
f (y|θ)

1−F(xU(m)|θ )

=
θ n−m eθxU(m)

(n−m−1)!
(y− xU(m))

n−m−1 e−θy,

where H(.) =− ln(1−F(.)). Using the well-known Binomial expansion, we immedi-
ately obtain

fXU(n)|xU(m)
(y|θ) = θ n−m eθxU(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i(xU(m))

i yn−m−1−i e−θy.

The posterior predictive density at any point y > xU(m), is then

f P
XU(n)|x∼

(y|θ) = Eposterior

[
fXU(n)|xU(m)(y|θ)

]
=

∞∫
0

θ n−m eθxU(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i(xU(m))

i yn−m−1−i e−θy
π(θ |x

∼
)dθ .

The Bayes estimator of future records under the SEL function, is given by

XBP1
U(n) = E f P(Y |x

∼
)

=

∞∫
xU(m)

 ∞∫
0

θ n−m eθxU(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i(xU(m))

i yn−m−1−i e−θy
π(θ |x

∼
)dθ

 dy

=

∞∫
0

θ n−m eθxU(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i(xU(m))

i

 ∞∫
xU(m)

yn−m−1−i e−θy dy

 π(θ |x
∼
)dθ .
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Using the transformation u = θy and Eq. (12), we obtain

XBP1
U(n) =

∞∫
0

eθxU(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i(xU(m))

i Γ(n−m− i+1,θxU(m))

θ 1−i π(θ |x
∼
)dθ .

Based on the MCMC samples {θ j ; j = 1,2, ...,M} generated from Eq. (8), the Bayes
predictor of future records becomes

X̂BP1
U(n) =

1
M

M

∑
j=1

eθ jxU(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i(xU(m))

i Γ(n−m− i+1,θ jxU(m))

θ
1−i
j

.

The Bayes predictor of future records under the KEL function, is given by

XBP2
U(n) =

1
E f P( 1

Y |x∼)

Using a similar argument, the Bayes predictor of future records will be

X̂BP2
U(n) =

M

∑
M
j=1

e
θ j xU(m)

(n−m−1)!

n−m−1
∑

i=0

(n−m−1
i

)
(−1)i(xU(m))i Γ(n−m−i−1,θ jxU(m))

θ
−1−i
j

.

4.2. Bounds of future records

Under SEL function, we present the Bayesian predicted bounds of the (1−β )100%
interval of the future record value, Y = XU(n), (YL,YU ).
The lower bound YL can be obtained by solving the following equation for YL

∞∫
YL

f P
XU(n)|x∼

(y|θ)dy = 1− β

2
,

or equivalently

∞∫
YL

f P
XU(n)|XU(m)

(y|θ)dy = 1− β

2
.

This is equivalent to solve the equation

∞∫
YL

 ∞∫
0

θ n−m eθxU(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i(xU(m))

i yn−m−1−i e−θy
π(θ |x

∼
)dθ

 dy = 1− β

2
,
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which yields to

∞∫
0

[
eθxU(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i(xU(m))

i Γ(n−m− i,θYL)

θ−i

]
π(θ |x

∼
)dθ = 1− β

2
.

Based on the MCMC samples {θ j ; j = 1,2, ...,M}, the lower bound YL can be found
by solving the equation

1
M

M

∑
j=1

[
eθ jxU(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i(xU(m))

i Γ(n−m− i,θ jYL)

θ
−i
j

]
= 1− β

2
.

Following the same approach, the upper bound YU can be found by solving the
equation

∞∫
YU

f P
XU(n)|XU(m)

(y|θ)dy =
β

2
.

Under the KEL function, the lower and upper bounds can be obtained by solving
the following two equations for YL and YU , respectively. 1

M

M

∑
j=1

[
eθ jxU(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i(xU(m))

i Γ(n−m− i,θ jYL)

θ
−i
j

]−1
−1

= 1− β

2
,

and 1
M

M

∑
j=1

[
eθ jxU(m)

(n−m−1)!

n−m−1

∑
i=0

(
n−m−1

i

)
(−1)i(xU(m))

i Γ(n−m− i,θ jYU )

θ
−i
j

]−1
−1

=
β

2
.

5. Simulation study and illustrative example

Here, we perform a simulation study based on the exponential distribution with θ = 2
(E(2)). From (E(2)) we generate different sample size cases of records n = 5,7,10.
A sample of size n upper record can be generated using the transformation

XU(k) =
∑

k
i=1 e(i)

θ
,k = 1,2, ...,n,

where {e(i), i≥ 0} is a sequence of iid E(1) [see Arnold et al. (1998), p.20].
Using the mean square error (MSE), we investigate the performance of the max-
imum likelihood estimator (MLE) and the Bayesian estimator of the parameter θ ,
based on 1000 replications. In Bayesian method, we use an informative prior π1(θ)

of gamma distribution with hyper parameters a = 2 and b = 1, based on the two
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suggested types of error loss functions SEL and KEL, to estimate the unknown pa-
rameter. The MCMC samples, which are used in computing the Bayes estimates,
are generated from gamma distribution with hyper parameters a = 2 and b = 1. We
compare the performance of the Bayes estimates of θ under two different priors for
θ ; the noninformative prior (a = b = 0) (Prior 0), where the prior density becomes
improper and not specifically related to the gamma density, and the informative
prior (a = 2,b = 1) (Prior 1). In the prediction process, we consider only the one
sample prediction problem to find the predictors of the future records as well as the
predicted intervals of the predictors based on the informative prior under the sug-
gested loss functions SEL and KEL for all cases of records n = 5,7,10.

In Tables 1 and 2, we present the MLEs and the Bayes estimators of θ under
SEL and KEL functions when Prior 0 and 1 are used.

Table 1. MLEs and Bayes estimators when θ = 1, MSEs are reported in
parentheses.

Prior 0 Prior 1
Cases MLE SEL KEL SEL KEL
n = 5 1.2268 1.2268 0.9814 1.3337 1.1432

(0.6233) (0.6233) (0.3664) (0.3801) (0.2180)
n = 7 1.1530 1.1530 0.9883 1.2439 1.1057

(0.2605) (0.2605) (0.1743) (0.2397) (0.1535)
n = 10 1.1067 1.1067 0.9960 1.1731 1.0754

(0.1795) (0.1795) (0.1362) (0.1692) (0.1227)

Table 2. MLEs and Bayes estimators when θ = 2, MSEs are reported in
parentheses.

Prior 0 Prior 1
Cases MLE SEL KEL SEL KEL
n = 5 2.3990 2.3990 1.9192 2.1909 1.8779

(1.7493) (1.7493) (1.0242) (0.5327) (0.3795)
n = 7 2.3899 2.3899 2.0484 2.2062 1.9611

(1.2336) (1.2336) (0.7970) (0.4922) (0.3568)
n = 10 2.2073 2.2073 1.9866 2.1596 1.9796

(0.5432) (0.5432) (0.4054) (0.4094) (0.3230)

It can be observed from Tables 1 and 2 that the Bayes estimators show superior
behaviour over the MLEs of θ as these estimates provide smaller MSEs. Further-
more, it is evident that the Bayes estimators obtained under Prior 1 compete quite
well with those obtained under Prior 0 in terms of the MSE criterion. It can be also
noted, as expected, that the MSEs tend to be smaller as the number of observed
records increases.

In Table 3, we present the average credible interval length (AL) and coverage
probability (CP) for the 95% confidence interval when θ = 2 under SEL and KEL for
n = 5,7,10. Table 4 contains different percentiles of the generated value of θ , which
are basically generated when θ = 2 as an initial value.
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Table 3. AL and CP for the 95% confidence intervals when θ = 2.
Prior 0 Prior 1

Cases AL CP AL CP
n = 5 θ 6.1430 0.93 4.1050 0.96
n = 7 θ 4.7036 0.95 3.6353 0.96
n = 10 θ 3.8140 0.94 3.1574 0.95

Table 4. Percentiles for the generated values of θ .
0.005 0.025 0.05 0.5 0.95 0.975 0.995

Percentiles 0.3685 0.6226 0.7772 1.9565 3.7570 4.1501 5.046

It can be noticed from Table 3 that the ALs of the 95% confidence intervals are
better when using Prior 1 than that when using Prior 0, and that the ALs decrease
as the number of observed records increases.

Table 5 contains the predicted values and the corresponding 95% predicted in-
tervals for the future record XU(n), 1≤m < n based on observed records under SEL
and KEL functions when Prior 1 is used.

Table 5. Predicted values and the corresponding 95% predicted intervals for
XU(n), 1≤ m < n under SEL and KEL functions when Prior 1 is used.

SEL KEL
Cases XU(n) Predicted 95% predicted Predicted 95% predicted

value interval value interval
n = 5 XU(6) 0.5595 (0.3363,1.2840) 0.4883 (0.3362,0.8862)

XU(7) 0.7878 (0.3761,1.8599) 0.6587 (0.3757,1.1092)
XU(8) 1.0160 (0.4413,2.3957) 0.8371 (0.4402,1.2898)

n = 7 XU(8) 2.7196 (2.3172,3.9666) 2.6615 (2.3171,3.4318)
XU(9) 3.1313 (2.3937,4.9242) 3.0183 (2.3933,3.9143)
XU(10) 3.5431 (2.5208,5.8033) 3.3774 (2.5191,4.3131)

n = 10 XU(11) 2.6875 (2.3913,3.5917) 2.6546 (2.3912,3.2473)
XU(12) 2.9908 (2.4490,4.2793) 2.9258 (2.4487,3.6192)
XU(13) 3.2940 (2.5454,4.9082) 3.1978 (2.5444,3.9231)

We can observe from Table 5 that all predicted values are located within the
predicted intervals and it is worth to note that the predicted intervals get to be wider
as the values n increases, i.e. when we try to predict future values that are much
wider than the observed data.

Example (real data):
To illustrate the results of this work thus obtained, we analyse the real data of

times (in minutes) to breakdown of an insulating fluid between electrodes at voltage
34 kv. These data are originally reported in Lawless (1982, Table 1.1, p.3). The
complete data set consists of 19 times to breakdown: 0.96, 4.15, 0.19, 0.78, 8.01,
31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06, 36.71,
72.89 and this involves a substantial extrapolation from the exponential data. From
these data, we extract n = 7 upper record values which are: 0.96, 4.15, 8.01, 31.75,
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33.91, 36.71, 72.89. Table 6 contains the ML estimator, the Bayes estimator of θ

under the SEL and KEL functions when Prior 0 and 1 are used, and the correspond-
ing 95% credible interval of the unknown parameter θ .

Table 6. MLE and Bayes estimates of θ using SEL and KEL functions under Prior
0 and 1.

Prior 0 Prior 1
Cases MLE SEL KEL SEL KEL 95% credible interval
n = 7 0.9604 0.9604 0.8232 1.0858 0.9651 (0.4274,2.0254)

Table 7 contains the 8th, 9th and 10th future records, and also their 95% pre-
dicted intervals based on the n = 7 observed upper records.

Table 7. 8th, 9th, 10th future records and their 95% predicted intervals using SEL
and KEL functions.

SEL KEL
Cases XU(n) Predicted 95% predicted Predicted 95% predicted

value interval value interval
n = 7 XU(8) 85.136 (73.185,119.869) 83.616 (73.185,111.765)

XU(9) 97.382 (75.653,145.063) 94.522 (75.645,130.039)
XU(10) 109.628 (79.830,167.541) 105.563 (79.803,145.677)

Based on the previously known records, we find that the MLE of θ to be 0.9604
while the Bayes estimators under Prior 1 are 1.0858, 0.9651 using SEL and KEL,
respectively. The 8th, 9th and 10th future records are computed to be 85.136,
97.382, 109.628 under SEL function and 83.616, 94.522, 105.563 under KEL func-
tion. The predicted intervals are also computed for all cases and it is found that
they include the predicted values.

6. Conclusion

In this work, we have considered the problem of estimating the parameter of ex-
ponential distribution and predicting the future (unobserved) records based on an
observed set of exponential record data. We have computed the maximum likeli-
hood estimator of the parameter of the exponential distribution and also the Bayes
estimator under both SEL and KEL functions. We have computed the MSEs to
make a comparison between the MLEs and Bayes estimators. The MCMC sam-
ples are used to compute the predictors and the predicted intervals of the future
records. Simulation and data analyses are performed to study the behaviour of the
proposed methods on estimation and prediction, as well as real data example is
presented for illustrative purposes. Based on our study, we recommend the use of
KEL function over the well-known SEL function in both estimation and prediction
problems depending on the values of the MSEs, which are reported in the previous
tables, used in making our comparisons.
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