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AN ALTERNATIVE MATRIX TRANSFORMATION TO
THE F TEST STATISTIC FOR CLUSTERED DATA

Sukanya Intarapak1, Thidaporn Supapakorn 2

ABSTRACT

For the regression analysis of clustered data, the error of cluster data violates the
independence assumption. Consequently, the test statistic based on the ordinary
least square method leads to incorrect inferences. To overcome this issue, the trans-
formation is required to apply to the observations. In this paper we propose an al-
ternative matrix transformation that adjusts the intra-cluster correlation with House-
holder matrix and apply it to the F test statistic based on generalized least squares
procedures for the regression coefficients hypothesis. By Monte Carlo simulations
of the balanced and unbalanced data, it is found that the F test statistic based
on generalized least squares procedures with Adjusted Householder transformation
performs well in terms of the type I error rate and power of the test.

Key words: adjusted Householder, clustered data, F test statistic, generalized least
squares, intra-cluster correlation.

1. Introduction

Clustered data arise in many situations such as health research (multiple patients
within a hospital) (see Miall and Oldham (1955) and Ng et al. (2004)), education
study (multiple students within a school) (see McCulloch and Shayle (2001)) and
biological science (multiple children within a family) (see Agarwal et al. (2005)).
Clustered data are characterized as data that can be classified into a number of
distinct groups or clusters (see Galbraith et al. (2010)). Any two responses from
different clusters are independent, but pairs of responses within clusters are cor-
related, and the correlation is the same for all pairs of individuals from the same
cluster, which is called the intra-cluster correlation (see Eldridge et al. (2009)). In
general, the regression technique assumes that the errors in observations are in-
dependent, identically and normally distributed. This assumption will not be always
held for clustered data. Battese et al. (1988) proposed a regression method for
analysing clustered data, which is called the nested error regression model.

The nested error regression model is expressed as

yi j = xi jβ +ui + ei j, i = 1, . . . ,c; j = 1, . . . ,ni, (1)
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where yi j is the observed response for the jth sample unit in the ith cluster, xi j =

(xi j0,xi j1, . . . ,xi j,k−1) is the n× k matrix of explanatory variables and xi j0 is the n×
1 column vector where entries are all 1, β = (β0,β1, . . . ,βk−1)

′ is the k vector of
regression coefficients and ni is the number of sample units observed in the ith
cluster (∑c

i=1 ni = n). The random effect ui and random error ei j are assumed to be
independent of each other and distributed as N(0,σ2

u ) and N(0,σ2
e ), respectively.

The model (1) can be written as

y = Xβ + ε, (2)

where y=(y1, . . . ,yc)
′ with yi =(yi1, . . . ,yini), X=(X1, . . . ,Xc)

′ with Xi =(Xi10, . . . ,Xini,k−1)

and ε = (ε1, . . . ,εc)
′ with εi = (εi1, . . . ,εini). Further, εi j = ui + ei j,ε ∼ N(0,σ2V),σ2 =

σ2
u +σ2

e ,V has block-diagonal variance-covariance matrix with Vi = (1−ρ)Ini +ρJni

for the ith cluster where ρ = σ2
u /σ2 is the intra-cluster correlation, Ini is the ni× ni

identity matrix and Jni is the ni×ni matrix consisting of all 1s.

For testing the hypothesis about regression coefficients in the nested error re-
gression model, formerly, Wu et al. (1988), Rao et al. (1993) and Lahiri and Li
(2009) showed that the F test statistic based on ordinary least squares procedures
leads to highly inflated type I error rate. Wu et al. (1988) proposed a modification of
the F test statistic with known intra-cluster correlations, which is much better than
the F test statistic based on ordinary least squares procedures by type I error rate.
Rao et al. (1993) presented the F test statistic based on generalized least squares
procedures with the Fuller–Battese transformation (see Galbraith et al. (2010)) in
order to make observations independent and then applied the F test statistic to the
observations under valid assumption. The F test statistic with the Fuller–Battese
transformation performs similar to the modification of the F test statistic in con-
trolling the type I error rate. Furthermore, the power of F test statistic with the
Fuller–Battese transformation increases as the intra-cluster correlation increases,
whereas the power of the modification of F test statistic decreases. The power of
the F test statistic based on ordinary least squares procedures is not comparable
because of type I error rate inflation.

Recently, Lahiri and Li (2009) suggested the transformation for the F test statis-
tic based on generalized least squares procedures that is part of the Helmert ma-
trix (see Lancaster (1965)), unlike the Fuller–Battese transformation. Like previous
work, the F test statistic with part of Helmert matrix performs as well as in control-
ling the type I error rate, but the power of the test is not considered.

In this paper, we propose an alternative transformation for the generalized least
squares procedures by applying Householder matrix (see Householder (1958)). In
Section 2 we review several F test statistics for testing linear hypothesis regarding
the regression coefficients under the nested error regression model. Monte Carlo
study concerning the type I error rate and the power of the F test statistic is con-
ducted in Section 3 as well as the real application. The results of the simulation are
presented in Section 4.
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2. The F test statistics

2.1. Prior F test statistics

Under model (1), suppose that the hypothesis of interest is H0 : Cβ = q, where C is
a known m× k matrix of rank m(< k), and q is a known m× 1 constant vector. The
F-statistic based on ordinary least squares procedures is

FOLS =
(Cβ̂ −q)′{C(X′X)−1C′}−1(Cβ̂ −q)/m

( y−Xβ̂ )′(y−Xβ̂ )/(n− k)

where β̂ = (X′X)−1X′y.
FOLS leads to highly inflated type I error rate when the intra-cluster correlation

increases. When the intra-cluster correlation is known, Wu et al. (1988) proposed
a modification of the F test statistic by multiplying the numerator and the denom-
inator of FOLS by a chi-squared distribution with n− k and m degrees of freedom,
respectively.

The modification of the F test statistic is

FWU = FOLS×
{n− tr(PV)}/(n− k)

tr(PCV)/m
,

where P = X(X′X)−1X′,PC = XC(X′CXC)
−1X′C,XC = X(X′X)−1C′ and tr is the trace

operator.
Afterwards Rao et al. (1993) presented the F test statistic based on generalized

least squares procedures with the Fuller–Battese transformation under model (1).
Define Ti = Ini−n−1

i (1− [{1−ρ}/{1+(ni−1)ρ}]1/2)Jni ,y
∗
i = Tiyi,X∗i = TiXi, and

ε∗i = Tiεi. Then the transformed model can be written as y∗ = X∗β + ε∗, where
ε ∼ N(0,σ2

e In) and σ2
e = σ2(1−ρ). Thus, the F test statistic based on generalized

least squares procedures with the Fuller–Battese transformation is

FRAO =
(Cβ ∗−q)′(X∗′C X∗C)

−1(Cβ ∗−q)/m
(y∗−X∗β ∗)′(y∗−X∗β ∗)/(n− k)

,

where β ∗ = (X∗′X∗)−1X∗′y∗ and X∗C = X∗(X∗′X∗)−1C′.
Recently, unlike the Fuller–Battese transformation, Lahiri and Li (2009) pro-

posed the transformation for the F test statistic based on generalized least squares
procedures, which is part of the Helmert matrix. Generally, the Helmert matrix is
orthogonal (see Farhadian and Asadian (2017)), but Lahiri and Li (2009) used the
Helmert matrix by ignoring the first row. Thus, the part of the Helmert matrix is not
orthogonal.

Let Gi be an (ni− 1)× ni matrix which is part of the Helmert matrix by ignoring
the first row, i.e. 1′ni

/
√

ni. Multiplying both sides of the model (2) by Gi then the
transformed model is written as y? = X?β + ε?, where ε? ∼ N(0,σ2

e In−c) and σ2
e =

σ2(1−ρ). The F test statistic based on generalized least squares procedures with
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part of the Helmert transformation is

FLAH =
(Cβ ?−q)′(X?′

C X?
C)
−(Cβ ?−q)/m

(y?−X?β ?)′(y?−X?β ?)/(n− c− k)
,

where β ? = (X?′X?)−1X?′y? and X?
C = X?(X?′X?)−1C′.

2.2. F test statistic with an alternative transformation

For the F test statistic based on generalized least squares procedures, the transfor-
mation matrix is the necessary part to make the observations independent. Unlike
the previous transformations, we propose an alternative transformation that adjusts
the Householder matrix.

The Householder matrix (see Appendix) is taken into account because of its or-
thogonal, symmetry and idempotent properties, which are necessary for the trans-
formation matrix. The Householder matrix for the ith cluster, denoted by Hi, can be
written in a simple form as

Hi =



1 0 0 · · · 0
0 −1√

ni−1
−1√
ni−1 · · · −1√

ni−1

0 −1√
ni−1

(ni−1)(ni−3)+
√

ni−1
(ni−1)(ni−2) · · · −1

(ni−1)+
√

ni−1
...

...
...

. . .
...

0 −1√
ni−1

−1
(ni−1)+

√
ni−1 · · · (ni−1)(ni−3)+

√
ni−1

(ni−1)(ni−2)


.

Even if Hi is orthogonal, the error term of the transformed model is still fallacious,
that is the error term is not independent. Therefore, Hi is required to be adjusted.
Let Di be an ni×ni matrix, which is defined as

Di =


1 0 0 · · · 0

−ρ
√

ni−1
√

1+(ni−2)ρ− (ni−1)ρ2 0 · · · 0
0 0

√
1−ρ · · · 0

...
...

...
. . .

...
0 0 0 · · ·

√
1−ρ


such that (HiDi)(HiDi)

′ = Vi. Now, we have the alternative matrix transformation,
Pi, which is the inverse of matrix (HiDi), also, yAH

i = Piyi,XAH
i = PiXi and εAH

i = Piεi.
Then, the transformed model can be written as yAH = XAHβ + εAH , where

yAH = (yAH
1 , . . . ,yAH

c )′ with yAH
i = (yAH

i1 , . . . ,yAH
ini

),

XAH = (XAH
1 , . . . ,XAH

c )′ with XAH
i = (XAH

i10 , . . . ,X
AH
ini,k−1)

and ε
AH = (εAH

1 , . . . ,εAH
c )′ with ε

AH
i = (εAH

i1 , . . . ,εAH
ini

).

Currently, the assumption of the error is valid, i.e. var(εAH
i )= var(Piεi)= var{(HiDi)

−1εi}=
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σ2(HiDi)
−1Vi (HiDi)

−1′ =σ2Ini , and cov(εAH
i ,εAH

j )= 0 for i 6= j, that is cov(yAH
i ,yAH

j )=

0 for i 6= j.
Ultimately, the F test statistic based on generalized least squares procedures

with Adjusted Householder transformation is

FAH =
(Cβ AH −q)′(XAH ′

C XAH
C )−1(Cβ AH −q)/m

(yAH −XAHβ AH)′(yAH −XAHβ AH)/(n− k)
,

where β̂ AH = (XAH ′XAH)−1XAH ′yAH and XAH
C = XAH(XAH ′XAH)−1C′.

3. Simulation study

3.1. A Monte Carlo simulation

In this section the data sets are randomly generated to illustrate how various meth-
ods of statistical inference perform for analysing the clustered data. Following Wu
et al. (1988), Rao et al. (1993) and Lahiri and Li (2009), the nested error regression
model with two covariates (i.e. x1 and x2) is considered:

yi j = β0 +β1xi j1 +β2xi j2 +ui + ei j, i = 1, . . . ,c; j = 1, . . . ,ni. (3)

The data sets of (xi j1,xi j2) are generated from the bivariate normal distribution
with additional random effects components to allow for the intra-cluster correlations
ρx1 and ρx2 on both x1 and x2, respectively:

xi j1 = µx1 +ux1i + ex1i j, xi j2 = µx2 +ux2i + ex2i j,

where ux1i∼N(0,σ2
ux1

), ex1i∼N(0,σ2
ex1

), ux2i∼N(0,σ2
ux2

), ex2i∼N(0,σ2
ex2

), ρx1 =σ2
ux1

/σ2
x1
,

ρx2 = σ2
ux2

/σ2
x2
, σ2

x1
= σ2

ux1
+σ2

ex1
,σ2

x2
= σ2

ux2
+σ2

ex2
,σ2 = σ2

u +σ2
e ,σ

2
u = σ2

ux1
+σ2

ux2
,σ2

e =

σ2
ex1

+σ2
ex2

. ux1 ,ux2 and ei j are independent. Moreover, ux1i and ux2i are correlated
with covariance σux1x2 , and ex1i and ex2i are correlated with covariance σex1x2 .

Let ρx1x2 = σux1x2/σx1 σx2 and corr(x1,x2) = σx1x2/σx1σx2 , where σx1x2 = σux1x2 +

σex1x2 and corr(x1,x2) denote the correlation between xi j1 and xi j2. For the nested
error regression model with two covariates, the parameters are set accordingly to
the previous researchers (see Wu et al. (1988), Rao et al. (1993) and Lahiri and
Li (2009)). Then, without loss of generality, σ2

x1
= σ2

x2
= 20, ρx1 = 0.1,ρx2 = 0.5,

ρx1x2 = 0,corr(x1,x2) =−0.33, µx1 = 100,µx2 = 200,β0 = 10,β1 = β2 = 0 and σ2 = 10.
Given (xi j1,xi j2), yi j is generated by model (3) with five different values for intra-

cluster correlation (ρ = 0, 0.05, 0.1, 0.3 and 0.5) and five different numbers of
clusters (c = 3, 4, 5, 10 and 15) for the balanced data. When the data is unbalanced,
there are three clusters (c = 3) and the sets of the sample size are varied. The
simulated data (yi j,xi j1,xi j2) are repeated 10,000 replications for all conditions and
the F test statistics are computed for each replication to obtain the type I error rate
and the power of the test.
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3.2. Type I error rate

Type I error rate is obtained by the proportion of times that the p-value for the F
test statistic is smaller than the nominal level. The measurements are the binary
variables corresponding to the rejection regions of the null hypothesis H0 : β1 = β2 =

0. We then test the null hypothesis of no effect of the regression coefficients at 5%
and 10% nominal levels and the confidence interval of the type I error rate (α̂) is
calculated from α̂ +Zα/2

√
α̂(1− α̂)/10000 (see Lahiri and Li (2009)). If the nominal

level is 5% and 10%, the type I error rate should not exceed 5.43% and 10.49%,
respectively.

In Table 1, for the balanced data with the sample sizes (n) of 20, 30, 100 and
150, the results show that FAH ,FLAH ,FRAO and FWU perform as well as in controlling
the type I error rate. Under the F test statistic based on generalized least squares
procedures, FAH performs as well as FRAO in terms of the type I error rate. The F
test statistic with the Fuller–Battese transformation and the F test statistic with the
Adjusted Householder transformation are slightly different but they come up with
the same hypothesis testing conclusion, consequently, the type I error rate of FRAO

is disregarded. Furthermore, the type I error rates of FWU exceed the limit for large
intra-cluster correlation (ρ = 0.5) and FOLS leads to highly inflated the type I error
rate for almost situations.

When the sample sizes of each cluster are unbalanced, the results show that
FAH ,FLAH and FWU perform well in controlling the type I error rate for a small sam-
ple size (n=15) and small intra-cluster correlations (ρ ≤0.1) as shown in Table 2.
Under the unbalanced data and large sample sizes (n=30 and 90), FAH ,FLAH and
FWU maintain the nominal level for small intra-cluster correlations (ρ ≤0.1) when
the sample sizes of each cluster are slightly different, such as (n1,n2,n3)=(9,10,11),
(29,30,31). While the sample sizes of each cluster are widely varied, such as
(n1,n2,n3)=(5,10,15), (3,3,24), (10,20,60), (3,3,84), all F test statistics lead to highly
inflated type I error rate for all intra-cluster correlations, except for ρ = 0.

3.3. Power of the test

Power of the test is obtained by the proportion of times that rejects the null hypoth-
esis when the alternative hypothesis is true at the nominal level. Table 3 reports
the power of the F test statistic of the null hypothesis H0 : β1 = β2 = 0 against the
specified alternative at nominal 5% and 10% levels for the balanced data. For large
intra-cluster correlations, the power of FAH gains over the others. For very small
intra-cluster correlations (≤0.05), the power of FAH performs as well as FWU , on the
contrary, the power of FLAH is the lowest as shown in Figures 1 - 4. For example,
when ci× ni = 10× 10 and ρ =0.05, the power of FLAH is approximately 53% com-
pared to the power of FAH , which is 74%. Note that a slight decrease of the power
of FAH occurs when ρ increases from 0 to 0.1.

For a small sample size, the powers of FAH and FWU are similar when ρ ≤ 0.1 as
shown clearly in Figure 1 and 2, whereas the power of FAH is higher than that of FWU

when ρ ≥ 0.3. For a large sample size, Figure 3 and 4 confirm that the power of FAH
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is higher than that of FWU and the powers of FAH and FLAH increase as ρ increases,
while the power of FWU decreases as ρ increases, theoretically corresponding to
the power of test established by Rao and Wang (1995). The illustration is shown in
Figure 4(b). That is, when the nominal level is 10% and the alternative hypothesis
is H1 : β1 = β2 = 0.2, the power of FAH increases from 87.07% to 90.42%, but the
power of FWU decreases from 87.07% to 54.14% as ρ increases for ci×ni = 10×10.

Similar to the balanced data, when the sample sizes of each cluster are unbal-
anced, the powers of FAH and FWU are higher than the power of FLAH for almost all
situations as shown in Table 4.

Table 1. Type I error rates (%) of the test H0 : β1 = β2 = 0 at nominal 5% and 10%
levels for the balanced data

Nominal level 5% Nominal level 10%
c×ni ρ FOLS FWU FLAH FAH FOLS FWU FLAH FAH

4×5 0 5.05 5.05 4.28 5.05 10.15 10.15 8.73 10.15
0.05 5.57* 4.83 3.69 4.88 11.23* 10.11 8.23 9.95
0.1 6.29* 4.73 3.55 4.69 12.14* 9.75 7.70 9.72
0.3 9.84* 4.76 4.19 4.83 16.54* 9.44 8.37 9.77
0.5 14.74* 4.82 3.88 5.03 23.22* 9.52 8.43 9.89

3×10 0 5.20 5.20 4.42 5.20 9.84 9.84 9.24 9.84
0.05 6.44* 4.85 4.29 4.97 12.24* 10.10 9.17 9.86
0.1 8.15* 4.74 4.29 4.99 14.59* 9.99 9.17 9.91
0.3 15.30* 4.37 4.29 4.96 23.04* 9.21 9.17 10.04
0.5 22.74* 4.04 4.29 5.11 31.83* 8.72 9.17 9.97

5×20 0 4.88 4.88 4.68 4.88 9.97 9.97 9.46 9.97
0.05 8.99* 4.75 4.82 4.73 15.71* 9.80 9.86 9.94
0.1 13.38* 5.13 5.05 4.86 21.22* 10.00 9.86 10.06
0.3 28.99* 5.02 4.75 4.68 38.41* 9.47 9.45 9.54
0.5 43.21* 5.72* 5.04 5.38 51.83* 10.89* 10.20 10.27

10×10 0 5.18 5.18 4.76 5.18 10.42 10.42 10.15 10.42
0.05 7.28* 5.43 4.53 5.12 12.74* 9.90 9.32 9.97
0.1 9.14* 4.76 4.92 4.82 16.06* 9.67 9.93 9.86
0.3 19.11* 5.11 4.54 4.85 27.73* 10.18 9.40 9.62
0.5 28.47* 5.49* 4.99 5.21 37.31* 10.11 9.86 9.86

15×10 0 5.01 5.01 4.87 5.01 9.93 9.93 9.78 9.93
0.05 7.09* 4.91 5.17 4.94 13.17* 9.93 10.07 9.79
0.1 10.17* 5.26 5.20 5.40 16.69* 10.29 9.93 10.49
0.3 19.15* 5.04 4.71 4.85 27.92* 9.99 9.35 9.59
0.5 28.05* 5.50* 5.20 5.28 37.03* 10.10 10.18 10.01

*indicates that the type I error rate exceeded the limit
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Table 2. Type I error rates (%) of the test H0 : β1 = β2 = 0 at nominal 5% and 10%
levels for the unbalanced data
Nominal level 5% Nominal level 10%

c×ni ρ FOLS FWU FLAH FAH FOLS FWU FLAH FAH

4,5,6 0.0 5.41 5.41 3.73 5.41 10.33 10.33 7.76 10.33
0.05 5.50* 5.09 3.60 5.19 10.84* 10.26 7.65 10.32
0.1 5.74* 5.00 3.27 4.91 11.10* 10.03 7.52 10.30
0.3 8.85* 6.05* 4.47 6.90* 15.75* 11.73* 9.09 13.14*
0.5 13.05* 7.15* 5.11 8.95* 21.18* 12.98* 10.21 15.71*

3,3,9 0.0 4.76 4.76 3.43 4.76 10.04 10.04 7.54 10.04
0.05 5.46* 5.23 3.71 5.28 10.53* 10.19 7.93 10.13
0.1 6.62* 6.13* 4.23 6.19* 11.87* 11.27* 8.65 11.66*
0.3 8.85* 7.35* 5.76* 8.76* 15.75* 13.26* 11.13* 15.27*
0.5 12.90* 9.53* 7.48* 12.09* 20.90* 16.33* 13.82* 19.90*

9,10,11 0.0 4.64 4.64 4.36 4.64 9.77 9.77 8.87 9.77
0.05 5.90* 4.79 4.05 4.97 11.58* 9.70 9.13 9.63
0.1 8.53* 5.79* 4.38 5.88* 14.82* 11.19* 9.49 10.93*
0.3 15.52* 5.81* 5.32 6.89* 24.06* 11.53* 10.29 12.97*
0.5 23.11* 6.05* 5.80* 7.79* 32.43* 11.88* 11.18* 14.09*

5,10,15 0.0 4.83 4.83 4.25 4.83 9.60 9.60 8.47 9.60
0.05 6.32* 5.68* 5.22 6.01* 11.87* 11.11* 10.16 11.36*
0.1 7.81* 6.54* 5.88* 7.03* 14.29* 12.42* 10.98* 13.17*
0.3 16.03* 10.98* 10.16* 12.50* 23.78* 17.84* 16.76* 20.06*
0.5 23.94* 13.89* 14.91* 17.97* 33.20* 22.08* 22.66* 26.56*

3,3,24 0.0 4.69 4.69 4.02 4.69 9.60 9.60 8.59 9.60
0.05 6.19* 5.82* 5.08 5.85* 11.79* 11.55* 10.07 11.39*
0.1 7.76* 7.19* 6.37* 7.38* 14.60* 13.77* 12.36* 13.99*
0.3 15.66* 12.99* 11.96* 14.40* 24.21* 20.94* 19.41* 22.28*
0.5 23.63* 17.91* 17.59* 20.93* 32.39* 26.32* 26.12* 29.77*

29,30,31 0.0 4.86 4.86 4.87 4.86 10.19 10.19 10.07 10.19
0.05 10.22* 5.12 5.06 5.34 17.59* 10.37 9.97 10.49
0.1 15.97* 6.02* 5.04 5.85* 24.07* 11.13* 10.29 11.27*
0.3 32.75* 6.06* 5.68* 6.53* 41.29* 10.71* 10.80* 12.14*
0.5 45.53* 4.89 6.15* 7.11* 53.74* 9.93 11.60* 12.68*

10,20,60 0.0 5.19 5.19 4.88 5.19 10.12 10.12 9.60 10.12
0.05 10.50* 7.50* 7.95* 8.03* 17.17* 13.40* 13.90* 13.91*
0.1 15.18* 9.15* 10.97* 11.04* 22.81* 15.27* 18.26* 18.30*
0.3 32.84* 14.70* 23.37* 23.80* 41.13* 22.05* 31.27* 31.56*
0.5 46.12* 17.70* 34.42* 35.03* 54.39* 24.33* 42.84* 43.77*

3,3,84 0.0 5.16 5.16 5.04 5.16 10.23 10.23 10.01 10.26
0.05 10.80* 10.65* 10.00* 10.71* 17.95* 17.78* 16.86* 17.67*
0.1 15.88* 15.61* 14.47* 15.57* 23.78* 23.32* 22.29* 23.51*
0.3 33.25* 32.08* 30.92* 31.96* 41.91* 40.65* 39.75* 40.85*
0.5 45.95* 43.53* 43.56* 44.61* 54.28* 52.10* 51.78* 52.87*

*indicates that the type I error rate exceeded the limit
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Table 3. Power estimates (%) of the test H0 : β1 = β2 = 0 versus specified
alternatives at nominal 5% and 10% levels for the balanced data

Nominal level 5% Nominal level 10%
c×ni β1 β2 ρ FWU FLAH FAH FWU FLAH FAH

4×5 0.1 0.1 0 8.18 5.41 8.18 14.63 10.50 14.63
0.05 7.90 5.00 7.91 14.88 10.52 14.78
0.1 7.61 4.89 7.39 13.93 10.02 13.88
0.3 7.40 5.95 7.78 13.67 11.34 14.50
0.5 7.25 6.41 8.63 13.43 12.20 15.44

0.2 0.2 0 18.30 9.28 18.30 28.02 16.51 28.02
0.05 18.19 9.39 17.91 28.21 17.27 28.04
0.1 16.93 9.83 16.80 26.63 17.73 27.16
0.3 15.38 12.02 17.29 25.32 20.24 27.62
0.5 15.20 15.18 21.13 24.13 25.37 32.14

3×10 0.1 0.1 0 9.38 6.80 9.38 17.02 12.93 17.02
0.05 9.55 7.37 9.48 16.50 14.02 16.52
0.1 9.34 7.09 9.11 15.79 13.46 16.25
0.3 8.17 8.07 9.53 14.71 14.52 17.03
0.5 - 10.02 11.31 - 17.26 18.75

0.2 0.2 0 26.02 15.71 26.02 37.86 25.40 37.86
0.05 24.55 16.92 24.19 36.20 27.36 36.01
0.1 23.21 16.94 23.93 34.16 27.42 35.42
0.3 19.32 21.36 25.76 29.40 32.44 37.35
0.5 - 29.28 32.19 - 41.92 45.22

5×20 0.1 0.1 0 25.94 16.45 25.94 37.39 25.86 37.39
0.05 20.84 16.40 21.48 31.47 26.33 32.06
0.1 18.13 17.29 20.97 28.02 27.34 31.13
0.3 14.13 22.11 23.83 21.23 32.29 34.65
0.5 - 28.62 30.15 - 40.66 41.95

0.2 0.2 0 76.63 53.93 76.63 84.63 66.49 84.63
0.05 65.53 55.20 68.96 75.89 67.79 79.17
0.1 58.24 58.35 67.68 69.56 70.21 77.99
0.3 39.62 69.27 72.96 50.81 79.21 82.22
0.5 - 83.74 85.32 - 90.69 91.72

10×10 0.1 0.1 0 26.73 15.21 26.73 38.15 24.72 38.15
0.05 23.88 16.43 23.91 34.81 25.35 35.13
0.1 22.65 17.44 23.71 33.89 27.58 35.35
0.3 17.86 21.33 25.23 26.34 31.74 36.14
0.5 - 26.76 29.42 22.16 38.90 41.54

0.2 0.2 0 79.46 51.02 79.46 87.07 63.60 87.07
0.05 73.96 52.92 74.30 82.52 65.02 83.35
0.1 69.77 56.65 73.14 80.17 68.67 82.64
0.3 53.22 66.54 74.73 64.90 77.44 83.65
0.5 - 80.28 84.00 54.14 87.68 90.42

-indicates that power of the test cannot be compared
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Table 3. Power estimates (%) of the test H0 : β1 = β2 = 0 versus specified
alternatives at nominal 5% and 10% levels for the balanced data (cont.)

Nominal level 5% Nominal level 10%
c×ni β1 β2 ρ FWU FLAH FAH FWU FLAH FAH

15×10 0.1 0.1 0 39.85 21.93 39.85 52.53 33.09 52.53
0.05 35.06 22.85 35.22 47.41 33.09 47.74
0.1 31.40 23.75 33.93 43.96 35.84 46.54
0.3 23.01 29.53 34.22 32.92 41.73 47.22
0.5 - 39.55 43.25 28.74 52.81 56.39

0.2 0.2 0 93.48 69.79 93.48 96.56 80.00 96.56
0.05 90.04 72.15 90.59 94.54 82.09 95.01
0.1 86.16 74.57 89.01 91.89 83.93 93.76
0.3 70.50 85.17 90.52 79.78 91.41 94.76
0.5 - 94.34 96.12 70.21 97.13 98.12

-indicates that power of the test cannot be compared

Table 4. Power estimates (%) of the test H0 : β1 = β2 = 0 versus specified
alternatives at nominal 5% and 10% levels for the unbalanced data

Nominal level 5% Nominal level 10%
n1,n2,n3 β1 β2 ρ FWU FLAH FAH FWU FLAH FAH

4,5,6 0.1 0.1 0 7.11 4.49 7.11 13.59 7.38 13.59
0.05 6.56 4.11 6.51 12.56 7.01 12.64
0.1 7.21 4.52 7.10 13.90 7.96 14.02
0.3 - 5.59 - - 9.96 -
0.5 - 7.21 - - 13.35 -

0.2 0.2 0 13.27 9.22 13.27 22.12 14.38 22.12
0.05 12.42 8.77 12.50 21.59 14.16 21.73
0.1 13.70 9.73 13.78 22.98 15.23 23.28
0.3 - 11.07 - - 18.28 -
0.5 - 13.73 - - 22.43 -

3,3,9a 0.1 0.1 0 6.63 4.33 6.63 13.53 7.82 13.53
0.05 6.83 4.59 6.82 14.08 8.53 13.90
0.1 - 5.55 - - 9.93 -

0.2 0.2 0 13.13 9.26 13.13 22.40 15.60 22.40
0.05 15.81 12.76 16.00 35.21 27.59 35.43
0.1 - 11.04 - - 17.28 -

9,10,11b 0.1 0.1 0 9.47 6.93 9.47 26.05 17.06 26.05
0.05 9.06 6.58 8.91 23.75 16.79 23.87
0.1 - 7.95 - - 18.73 -
0.3 - 9.57 - - 23.76 -

0.2 0.2 0 17.08 13.21 17.08 37.99 26.94 37.99
0.05 17.03 13.73 16.97 36.61 28.11 36.86
0.1 - 14.19 - - 29.18 -
0.3 - 16.11 - - 34.60 -

-indicates that power of the test cannot be compared
For H1 : β1 = β2 = 0.1 and H1 : β1 = β2 = 0.2,

a when ρ = 0.3 and 0.5, all F-statistics cannot control the type I error rate,
b when ρ = 0.5, all F-statistics cannot control the type I error rate
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Table 4. Power estimates (%) of the test H0 : β1 = β2 = 0 versus specified
alternatives at nominal 5% and 10% levels for the unbalanced data (cont.)

Nominal level 5% Nominal level 10%
n1,n2,n3 β1 β2 ρ FWU FLAH FAH FWU FLAH FAH

5,10,15c 0.1 0.1 0 9.38 7.73 9.38 25.64 19.10 25.64
0.05 - 9.20 - - 21.60 -

0.2 0.2 0 16.58 13.93 16.58 37.61 30.03 37.61
0.05 - 16.14 - - 32.97 -

3,3,24c 0.1 0.1 0 9.35 7.92 9.35 25.36 20.95 25.36
0.05 - 8.95 - - 22.23 -

0.2 0.2 0 16.30 14.33 16.30 37.15 31.68 37.15
0.05 - 15.76 - - 33.09 -

29,30,31 0.1 0.1 0 22.06 15.51 22.06 66.77 50.09 66.77
0.05 18.79 16.52 19.84 56.97 52.79 61.31
0.1 - 16.58 - - 54.96 -
0.3 - - - - - -
0.5 10.33 - - 28.31 - -

0.2 0.2 0 32.76 24.81 32.76 77.10 63.12 77.10
0.05 28.29 25.82 30.38 68.79 65.08 72.92
0.1 - 26.16 - - 67.57 -
0.3 - - - - - -
0.5 17.41 - - 38.58 - -

10,20,60d 0.1 0.1 0 22.26 18.53 22.26 68.03 58.74 68.03
0.2 0.2 0 33.35 28.68 33.35 77.79 70.11 77.79

3,3,84d 0.1 0.1 0 22.00 21.31 22.00 66.90 64.93 66.91
0.2 0.2 0 32.80 31.34 32.79 77.35 75.29 77.35

-indicates that power of the test cannot be compared
For H1 : β1 = β2 = 0.1 and H1 : β1 = β2 = 0.2,

c when ρ = 0.1, 0.3 and 0.5, all F-statistics cannot control the type I error rate,
d when ρ = 0.05, 0.1, 0.3 and 0.5, all F-statistics cannot control the type I error rate
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Figure 1: Power estimates (%) of F test statistic versus intra-cluster correlation at
nominal 5% level and c× ni = 3× 10 corresponding to the alternatives hypothesis
(a) H1 : β1 = β2 = 0.1 and (b) H1 : β1 = β2 = 0.2

Figure 2: Power estimates (%) of F test statistic versus intra-cluster correlation at
nominal 10% level and c×ni = 3×10 corresponding to the alternatives hypothesis
(a) H1 : β1 = β2 = 0.1 and (b) H1 : β1 = β2 = 0.2
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Figure 3: Power estimates (%) of F test statistic versus intra-cluster correlation at
nominal 5% level and c×ni = 10×10 corresponding to the alternatives hypothesis
(a) H1 : β1 = β2 = 0.1 and (b) H1 : β1 = β2 = 0.2

Figure 4: Power estimates (%) of F test statistic versus intra-cluster correlation at
nominal 10% level and c×ni = 10×10 corresponding to the alternatives hypothesis
(a) H1 : β1 = β2 = 0.1 and (b) H1 : β1 = β2 = 0.2
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3.4. An application

In this section, we consider the data from Smith (1980). This data set covers the val-
ues of pattern intensity on soles of 14 families chosen from Polish family data (see
Table 5). The families consist of siblings, together with their mothers and fathers.
Here, y is the 49×1 vector of values of pattern intensity on soles of feet of siblings
and X is the 49×3 matrix of ones in the first column and values of pattern intensity
on soles of feet of mother and father. In the real data, the intra-cluster correlation
is usually unknown and it must be estimated for the F test statistic. The Srivas-
tava estimator of the intra-cluster correlation, 0.4922, (see Srivastava and Katapa
(1986)) is applied in this section. In order to test the regression coefficients for the
nested error regression model, the p-value of FAH , FWU , FLAH and FOLS are less than
0.05, then we reject the null hypothesis (H0) at the significance level of 5%. This in-
dicates that at least one regression coefficient is significant to the model. Note that
the intra-cluster correlation estimator, the important characteristic of the clustered
data, is not used to compute FOLS and FLAH . In addition, the errors in observations
of FOLS do not correspond to the assumption of regression analysis even the power
of the test is quite high. Therefore, the FAH and FWU using Srivastava estimator of
the intra-cluster correlation are suggested and the power of FAH is higher than FWU

for applying to this application.

Table 5. Values of pattern intensity on soles of feet in 14 families

Family no. Mother Father Siblings
1 2 3 2,2
2 2 3 2,3
3 2 3 2,2,2
4 2 4 2,2,2,2,2
5 6 7 6,6
6 4 3 4,3,3
7 4 3 2,2,3,6,3,5,4
8 3 7 2,4,7,4,4,7,8
9 5 5 5,6
10 5 4 4,5,4
11 5 6 5,3,4,4
12 2 4 2,4
13 6 3 4,3,3,3
14 2 3 2,2,2

Table 6. The F test statistics, p-values and powers for data set in Table 5

Method F p-value power
FOLS 21.2343 0.0000003 0.9999997
FWU 4.7388 0.0135 0.9865
FLAH 7.4865 0.0021 0.9979
FAH 6.4756 0.0033 0.9967
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4. Conclusion

For clustered data analysis with compound symmetry correlation structure of known
intra-cluster correlation, the proposed transformation by Adjusted Householder ma-
trix can be used to adjust the correlation of the error term and then allowed to be
applied to the F test statistic based on generalized least squares procedures. The
simulation study shows that the F test statistic with Adjusted Householder trans-
formation performs as well as the other methods for the balanced and unbalanced
data, except for the F test statistic based on standard ordinary least squares proce-
dures, in controlling the type I error rate regarding regression coefficients hypothe-
sis testing for small and large sample sizes. The power of the F test statistic with
Adjusted Householder transformation is always higher than that with part of the
Helmert transformation for the balanced and unbalanced data. Also, the power of
the F test statistic with Adjusted Householder (FAH ) and part of the Helmert (FLAH )
transformations are the increasing functions of the intra-cluster correlation whereas
the power of the modification of the F test statistic (FWU ) is the decreasing function.
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APPENDIX

Householder matrix

For any n×n symmetric matrix, in this paper we consider the variance-covariance
matrix V = [vi j]; i = 1,2, . . . ,n and j = 1,2, . . . ,n, which is the compound symmetry
correlation structure. The corresponding Householder matrix, H, is a symmetry
and orthogonal matrix in the form

H = In−2ww′.

Let w = (w1, . . . ,wn)
′ be a column vector which is a unit vector of Euclidean norm

where
w1 = 0,w2 =

v21−α

2γ
and wl =

vl1

2γ
; l = 3, . . . ,n.

α and γ are determined by

α =−sgn(v21)
√

Σn
i=2v2

i1 where sgn(v21) =

{
−1 for v21 < 0

+1 for v21 > 0

and γ =
√

1
2 (α

2− v21α).


