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ON THE SMOOTHED PARAMETRIC ESTIMATION OF 
MIXING PROPORTION UNDER FIXED DESIGN 

REGRESSION MODEL 

Y. S. Ramakrishnaiah1, Manish Trivedi2, Konda Satish3 

ABSTRACT 

The present paper revisits an estimator proposed by Boes (1966) – James (1978), 
herein called BJ estimator, which was constructed for estimating mixing proportion 
in a mixed model based on independent and identically distributed (i.i.d.) random 
samples, and also proposes a completely new (smoothed) estimator for mixing 
proportion based on independent and not identically distributed (non-i.i.d.) random 
samples. The proposed estimator is nonparametric in true sense based on known 
“kernel function” as described in the introduction. We investigated the following 
results of the smoothed estimator under the non-i.i.d. set-up such as (a) its small 
sample behaviour is compared with the unsmoothed version (BJ estimator) based 
on their mean square errors by using Monte-Carlo simulation, and established the 
percentage gain in precision of smoothed estimator over its unsmoothed version 
measured in terms of their mean square error, (b) its large sample properties such 
as almost surely (a.s.) convergence and asymptotic normality of these estimators 
are established in the present work. These results are completely new in the 
literature not only under the case of i.i.d., but also generalises to non-i.i.d. set-up. 

Key words: mixture of distributions, mixing proportion, smoothed parametric  

estimation, fixed design regression model, mean square error, optimal band width, 
strong consistency, asymptotic normality. 

1. Introduction 

Let 𝑋1,𝑋2,…,𝑋𝑛 be a sequence of independent and not identically distributed 
(non-i.i.d.) random variables with continuous distribution functions (d.f.s) 
{Fi(x),1≤i≤n}. Let H(x) be a continuous cumulative distribution function (cdf) of 
mixture of component cdfs 𝐻1(x),...,𝐻𝑚(x), (m≥2) such that  H(x) = ∑ 𝑝𝑗𝐻𝑗

𝑚
𝑗=1 (x), 

where {𝑝𝑗; 1≤j≤m} is a set of mixing proportions satisfying (i) 0<𝑝𝑗<1, (ii) ∑ 𝑝𝑗
𝑚
𝑗=1  = 

1. Let �̅�𝑛(x) = 𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x)→ H(x) as n →∞ and 𝐻𝑗(x)= 𝑛𝑗

−1 ∑ 𝐹𝑗𝑖

𝑛𝑗

𝑖=1
(x) → 𝐻𝑗(x), 
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𝑛𝑗→∞,  j=1,2,…,m; H(x), 𝐻𝑗(x) are known d.f.s. The problem of estimation of 

mixing proportions 𝑝𝑗 in a mixture  

H(x) = 𝒑𝟏𝑯𝟏(x) + 𝒑𝟐𝑯𝟐(x) +…+ 𝒑𝒎𝑯𝒎(x)                         (1.1) 

of m known distributions 𝐻𝑗(x) is investigated based on independent random 

samples of sizes n, 𝑛𝑗 generated from the fixed design regression models 

𝑋𝑖 = β𝑡𝑖 + 𝜖𝑖 , 1≤ i ≤ n, 𝜖𝑖~i.i.d.F(x)                       (1.2) 

𝑋𝑗𝑖 = 𝛽𝑗𝑡𝑗𝑖 + 𝜖𝑗𝑖, 1≤ i ≤ 𝑛𝑗, j = 1, 2,…,m, 𝜖𝑖𝑗~i.i.d. 𝐹𝑗(x),         (1.3) 

β’s and t’s are known reals satisfying the model conditions 

𝛽𝑗 > 0, ∑ 𝑡𝑖
𝑛
𝑖=1  =0 and  

1

𝑛
∑ 𝑡𝑖

2 = o(𝑛−1).                      (1.4) 

Note that ti = ∓ 
𝑖

𝑛𝛿, i =∓1, ∓2,…, ∓n, δ ≥ 
3

2
 fulfill (1.4) and �̅�𝑛(x)=𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x) 

= F(x) +O(
1

𝑛
∑ 𝑡𝑖

2) + … = H(x) + o(𝑛−1) and 𝐻𝑛𝑗
(x)=n𝑗

−1 ∑ 𝐹𝑗𝑖

𝑛𝑗

𝑖=1
(x)→𝐻𝑗(x), j=1,2 as 

𝑛𝑗→∞. 

Mixture distributions have been used in a wide variety of numerous 
applications in such diversified fields as physics, chemistry, biology, social 
sciences and others. Many typical problems in which such mixtures occur have 
been well described in a series of research papers. Karl Pearson (1894) dealt 
with the application of normal mixtures to the theory of evolution, which 
considered the first paper in the mixtures of distributions. Acheson and McElwee 
(1951), who identified failures in an electronic tube in gaseous defects, 
mechanical defects and normal deterioration of the cathode. One can find the 
proportion of the population which will fail in each cause to redesign the system or 
to improve the methods of manufacturing process. Apart from this, it would be 
desirable to know the distribution of defectives for each cause. Mendenhall and 
Hader (1958) studied censored life testing as a mixed failure populations. They 
suggested an example that the engineer may identify the product as 
defective/failure and nondefective by two or more different types of causes. 
Hosmer (1973) studied characteristics such as sex, age, and length of halibut 
(fish). Odell and Basu (1976) applied them in the field of remote sensing to 
estimate the crop acreages from remote sensors on orbiting satellites. 

We shall show some of the typical problems which were described in Choi 
and Bulgren (1968): 
1.  In fishery biology, it is often desired to measure certain characteristics in 

a natural population of fish.  For this purpose samples of fish are taken and the 
desired trait is measured for each fish in the sample. However, many 
characteristics vary markedly with the age of the fish. Then, the trait has a 
distinct distribution for each age group so that the population has a mixture of 
distributions. 

2.  A geneticist analyses the inheritance of qualitative characters. In general, such 
characters vary continuously over some intervals of real numbers so that 
a given genotype may be able to produce phenotypic values over an interval of 
real numbers. Then, the phenotypic value which the geneticist observes has 
a mixture of distributions, each of which is given by a genotype.  
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3.  In photographing the absorption spectrum of an ionized atom, we obtain 
a photograph of a constantly varying intensity distribution on the photographic 
plate, and not a series of discrete "lines". This phenomenon is caused by 
several effects (such as the Doppler effect) and it is accepted in spectroscopy 
that an intensity distribution whose graph can be approximated closely by that 
of a normal density function belongs to every theoretical "line". Then the graph 
of the whole spectrum section can be considered as a mixture of normal 
density functions. 
Other references to mixed failure populations are given in papers by Davis 

(1952), Epstein (1953), Herd (1953), Steen and Wilde (1952), Everitt and Hand  
(1981), Titterington et al. (1985), McLachlan and Basford (1988), Lindsay (1995) 
and McLachlan and Peel (2000), Fu (1968-Pattern Recognition), Varli et al. 
(1975-Pattern Recognition), Clark (1976-Geology), Macdonald and Pitcher (1979-
Fisheries), Bruni et al. (1985-Genetics), Merz (1980-Physics) and Christensen et 
al. (1980-Nuclear Physics). 

The applications of finite mixture distributions describing mixture populations 
for non- i.i.d. sequence of variables are given below: 

Area Characteristic Xi 
Distribution function 

Fi(x) 

Survival 
Analysis 

life time of components 
produced by ith machine 
operated by ith foreman. 

Life time distribution of various 
products 

Nutritional 
Studies 

weight for age/height for age/ 
weight for height of ith infant of 
ith origin or group. 

Distribution of weight for age/height 
of ith infant 

Fisheries 
Fish length or weight of  age of 
ith fish. 

Distribution of weight/length of ith 
fish 

The mixing model with two component populations becomes    

H(x) = p𝑯𝟏(x) + (1-p)𝑯𝟐(x). 

Here, 𝑋𝑖 is the characteristic with distribution function 𝐹𝑖(x) assuming  

F̅𝑛(x) = n-1∑ 𝐹𝑛
𝑖=1 i(x) = H̅𝑛(𝑥)→ H(x)  

F̅𝑗𝑛(x) = n-1∑ 𝐹𝑛
𝑖=1 ji(x) = H̅𝑗𝑛(𝑥)→ 𝐻𝑗(x)  as n→∞ 

and n, n1 and n2 are independent random sample sizes from mixed and 

component populations selected in such a way that n = n1 + n2 with n1 = [ρn], 

n2 = [(1-ρ)n], 0< ρ <1.  
More details on such examples can be found in Choi and Bulgreen (1968), 

Harris (1958), Blischke (1965), Fu (1968-Pattern Recognition), Varli et al.  
(1975-Pattern Recognition), Clark (1976-Geology), Macdonald and Pitcher  
(1979-Fisheries), Odell and Basu (1976-Remote sensing), Bruni et al. (1985-
Genetics), Merz (1980-Physics) and Christensen et al. (1980-Nuclear Physics), 
etc. 
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i.i.d case: The mixing model for i.i.d. case is 

F(x) = pG1(x)+(1-p)G2(x)                                      (1.5) 

where F(x), G𝑗(x); j=1,2 are cdfs of mixed and component populations 

respectively. The following estimator is studied in the literature. 

Boes (1966)-James (1978) (BJ) estimator: Let 𝐹𝑛(x)= 𝑛−1 ∑ 𝐼𝑛
𝑖=1 (𝑋𝑖≤x) be the 

empirical distribution function of a random sample X𝑖, 1≤i≤n from a mixture of two 

known component distribution functions G𝑗, j=1,2. Boes (1966) proposed an 

estimator of p given by 

  𝒑𝒏,𝟏(x) = 
�̃�𝒏(𝒙)−  𝑮𝟐(𝒙)

𝑮𝟏(𝒙)−𝑮𝟐(𝒙)
                                (1.6) 

and shown as a minimax unbiased estimator, and derived the Cramer-Rao lower 
bound.  James (1978) considered the problem of estimating the mixing proportion 
in a mixture of two known normal distributions. He studied the simple estimators 
based on (a) the number of observations lower than a fixed point r, (b) the 
numbers lower than s and greater than t, and (c) the sample mean. Van 
Houwelingen (1974) used Boes (1966) estimator to estimate the mixing 
proportion by using frequency densities and obtained the Cramer-Rao lower 
bound. Jayalakshmi (2002) used BJ estimator using kernel-based empirical 
distribution and established that smoothing improves efficiency when the 
component distributions are known. 

In the present work, we extend the idea of estimation of mixing proportion p in 
two directions: 

 The estimators based on kernel based empirical d.f. called smoothed 
estimations are proposed under regression models (1.2) - (1.3). 

 The proposed parametric estimators are based on independent, but not 
identically distributed (non-i.i.d.) samples generated by the fixed design 
regression models described by (1.2)-(1.3). 

The main object of the present paper is to confine attention to m=2 case in the 
model (1.1) and to construct parametric estimators when component distributions 
are known, based on the usual empirical and kernel-based distribution functions 
defined by 

𝐻𝑛(x) = 𝑛−1 ∑ 𝐼𝑛
𝑖=1 (Xi ≤ x), �̂�𝑛(x)= 𝑛−1 ∑ 𝐾𝑛

𝑖=1 (
x− Xi

an
),         (1.7) 

{𝑎𝑛} being the smoothing sequence satisfying 0< 𝑎𝑛 →0, n𝑎𝑛 →∞ defined by 

 𝑝𝑛,1(x) =  
H̃n(x)− H2(x)

H1(x)− H2(x)
 , 𝑝𝑛,2(x) =  

Ĥn(x)− H2(x)

H1(x)− H2(x)
 .          (1.8) 

We study the small and large sample behaviour of the proposed parametric 

estimators and establish the superiority of smoothed estimator 𝑝𝑛,2(x) over 

unsmoothed one 𝑝𝑛,1(x) in the sense of minimum mean square error. The results 

of the present investigations for the non-i.i.d. sequences are completely new in 
the literature. 

In section 2, we obtain the exact expressions for MSEs of the proposed 

estimators in order to establish the superiority of 𝑝𝑛,2(x) over 𝑝𝑛,1(x) for some fixed 

x. Furthermore, large sample behaviour, such as asymptotic normality and rates 



STATISTICS IN TRANSITION new series, March 2019 

 

91 

of a.s. convergence of the proposed estimators is also established. In section 3, 

the crucial choice of smoothing parameter ‘𝑎𝑛’ in kernel based estimator 𝑝𝑛,2(x) is 

discussed and its value is determined by employing minimum mean square 

criterion. Section 4 deals with establishing superiority of 𝑝𝑛,2(x) over 𝑝𝑛,1(x). 

Section 5 explains the small sample comparisons by Monte Carlo method based 
on the samples generated by regression models. 

2. Asymptotics of 𝒑𝒏,𝟏(x) and 𝒑𝒏,𝟐(x) 

We now present the properties of both estimators 𝑝𝑛,1(x) and 𝑝𝑛,2(x) under the 

fixed design regression model (1.3). The properties such as mean square errors 

(MSEs), rates of a.s. convergence, and asymptotic normality of 𝑝𝑛,1(x) and 𝑝𝑛,2(x) 

are established. We first consider the representations of the proposed estimators: 
from the mixing model, 

  H(x) = p𝐻1(x) + (1-p)𝐻2(x)                     (2.1) 

H(x) – 𝐻2(x) = 𝑑12(x)p for each x, where 𝑑12(x)= 𝐻1(x) - 𝐻2(x) 

A.S. Representations to 𝒑𝒏,𝟏(x), 𝒑𝒏,𝟐(x): from (1.8) and (2.1), 

d12(x)[𝑝𝑛,1(x)-p] = H̃n(x) - H(x) = 𝑛−1 ∑ (𝑛
𝑖=1 I(𝑋𝑖≤x) - 𝐹𝑖(x) + 𝐹𝑖(x) – H(x)) 

    =: 𝑛−1 ∑ 𝑍1𝑖
𝑛
𝑖=1 (x) + 𝜏𝑛1(x)                                  (2.2) 

where by (1.4) and by the assumption on regression model 

 𝜏𝑛1(x) = 𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x) – H(x)= o(n-1∑ 𝑡𝑖

2𝑛
1 ) = o(n-1)              (2.3) 

Similarly, from (1.8) and (2.1) 

 d12(x)[pn,2(x)-p] = Ĥn(x) – H(x) = Ĥn(x) – E Ĥn(x) + E Ĥn(x) – H(x) 

   =: n-1 ∑ [𝐾𝑛
𝑖=1 (

x− Xi

an
) – E K(

x− Xi

an
)] + 𝜏𝑛2(x) 

   = 𝑛−1 ∑ 𝑍2𝑖
𝑛
𝑖=1 (x) + 𝜏𝑛2(x)                                 (2.4) 

with 𝜏𝑛2(x) = o(n-1) as in (2.3). 

2.1.  Mean Square Error of 𝒑𝒏,𝟏(x) and 𝒑𝒏,𝟐(x) 

We first consider the small sample property, i.e. MSEs of both estimators 
𝑝𝑛,𝑗(x), j=1,2 for each x in the following, which will help in establishing the 
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superiority of smoothed estimator over unsmoothed version based on a random 
sample of exact size n under the regression model. 

Theorem 2.1. Let {𝑋𝑖: 1≤i≤n} be a sequence of non-i.i.d. random variables with 
corresponding sequence of uniformly continuous distribution functions {𝐹𝑖(x): 

1≤i≤n}. If {𝐹𝑖}, the kernel density function k and {𝑎𝑛} in (1.7) satisfy 

AI:    i) 𝐹𝑖(x) is uniformly continuous distribution function with finite qth 

derivatives 𝐹𝑖
(𝑞)

(x) < ∞, 1 ≤ i ≤ n and  

 𝐻𝑛
(𝑞)

(x) = 
1

n
  ∑ 𝐹𝑖

(𝑞)
(x), q = 2,4,6 

      ii) 𝐻𝑛(x) = n-1∑ 𝐹𝑛
𝑖=1 i(x) → H(x) as n→∞ 

     AII:         i) The kernel function satisfies 𝜇2𝑗(K) = ∫  𝑡
∞

−∞
2j dK(t) ≠ 0 and  

𝜇𝑗(K) = ∫  𝑡
∞

−∞
j dK(t) = 0 for  j=1,3,… 

ii) 𝜓𝑗(K) = 2 ∫ 𝑡
∞

−∞
j K(t) dK(t) < ∞ , j = 0, 1, 2, 3, 4 

     AIII:   {an} is a sequence of bandwidths such that 

i) 0 < an ↓ 0 ; nan → ∞ as n → ∞ 

ii) nan 
4 → 0 as n → ∞ 

then  

MSE [𝒑𝒏,𝟐(x)] = MSE(𝒑𝒏,𝟏(x)) - 𝒅𝟏𝟐
−𝟐(x)[ 

𝒂𝒏

𝒏
�̅�𝒏

(𝟏)
(x)𝝍𝟏(K) - 

𝒂𝒏
𝟒

𝟒
 �̅�𝒏

(𝟐)𝟐
(x)𝝁𝟐

𝟐(K)] 

+ O(
𝒂𝒏
𝟐

𝒏
) + o(𝒂𝒏

𝟒) 

Proof: From (2.4), 

 𝑑12
2 (x)nMSE[pn,2(x)] = Var(𝑛−1/2 ∑ 𝑍2𝑖

𝑛
𝑖=1 (x)) + n𝜏𝑛2

2            (2.5) 

where 𝜎𝑛2
2   = Var(𝑛−1/2 ∑ 𝑍2𝑖

𝑛
𝑖=1 (x)) 

     = 𝑛−1 ∑ 𝐸𝑛
𝑖=1 𝑍2𝑖

2 (x) 

              =  𝑛−1 ∑ 𝜎2𝑖
2𝑛

𝑖=1  

𝜎2𝑖
2  = E K2 ( 

x−Xi

an
) - E2 K( 

x−Xi

an
) 

            = 𝐼1𝑖 - 𝐼2𝑖
2  (say) 

where 𝐼1𝑖 = E K2 ( 
x−Xi

an
) = ∫ K2 ( 

x−u

an
) dFi(u) = ∫ Fi(x-ant) dK2(t) 

   = Fi(x)∫dK2(t) – Fi
(1)(x)an∫tdK2(t) + 

𝑎𝑛
2

2!
Fi

(2)(x)∫t2dK2(t) - 
𝑎𝑛

3

3!
Fi

(3)(x)∫t3dK2(t)  

+ 
𝑎𝑛

4

4!
Fi

(4)(x)∫t4dK2(t) + o(𝑎𝑛
4)  
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= Fi(x) 𝜓0(K) – an Fi
 (1) (x) 𝜓1(K) + 

𝑎𝑛
2

2!
  Fi

 (2)(x) 𝜓2(K) - 
𝑎𝑛

3

3!
Fi

(3)(x) 𝜓3(K) 

+ 
𝑎𝑛

4

4!
 Fi

(4)(x) 𝜓4(K) + o(𝑎𝑛
4)                                       (2.6) 

where 𝜓0(K) = 2∫ 𝐾
∞

−∞
(t)dK(t)= 2∫ 𝑦

1

0
dy = 1, while 

𝐼2𝑖 = E K( 
x−Xi

an
) = ∫𝐹i (x - ant)dK(t) 

     = Fi (x) +  
an 
2

2!
 Fi 

(2) (x) ∫  𝑡
∞

−∞
2dK(t) +  

an 
4

4!
 Fi 

(4) (x)∫  𝑡
∞

−∞
4dK(t) + o(an

4)                

     =: 𝐹𝑖(x) + 
𝑎𝑛

2

2
 𝐹𝑖

(2)
(x)𝜇2(K)+ 

𝑎𝑛
4

4!
 𝐹𝑖

(4)
(x) 𝜇4(K) + o(𝑎𝑛

4)                   (2.7) 

From (2.5) and (2.7), 

𝜎𝑛2
2  = 𝑛−1 ∑ {[𝐹𝑖

𝑛
𝑖=1 (x) - 𝑎𝑛𝐹𝑖

(1)
(x)𝜓1(K) + 

𝑎𝑛
2

2
 𝐹𝑖

(2)
(x)𝜓2(K) - 

𝑎𝑛
3

3!
 𝐹𝑖

(3)
(x)𝜓3(K) 

+ 
𝑎𝑛

4

4!
 𝐹𝑖

(4)
(x)𝜓4(K) + o(𝑎𝑛

4)]  

– (𝐹𝑖(x) + 
𝑎𝑛

2

2
 𝐹𝑖

(2)
(x)𝜇2(K)+ 

𝑎𝑛
4

4!
 𝐹𝑖

(4)
(x) 𝜇4(K) + o(𝑎𝑛

4))2} 

        = 𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x)(1- 𝐹𝑖(x)) -𝑎𝑛𝐻𝑛

(1)
(x)𝜓1(K)+ 

𝑎𝑛
2

2
�̅�𝑛

(2)
(x)𝜓2(K)  

- 
𝑎𝑛

3

6
𝐻𝑛

(3)
(x) 𝜓3(K) - 𝑎𝑛

2  𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x)𝐹𝑖

(2)
(x)𝜇2(K)  

- 
𝑎𝑛

4

12
 𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x)𝐹𝑖

(4)
(x)𝜇4(K) + o(

𝑎𝑛
4

𝑛
) 

         = 𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x)(1- 𝐹𝑖(x)) - 𝑎𝑛𝐻𝑛

(1)
(x)𝜓1(K)  

 +𝑎𝑛
2  (

1

2
𝐻𝑛

(2)
(x)𝜓2(K) - 𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x)𝐹𝑖

(2)
(x)𝜇2(K))+O(𝑎𝑛

3)         (2.8) 

and from (2.7), 

𝜏𝑛2
2  = (𝑛−1 ∑ 𝐸𝑛

𝑖=1  K( 
x−Xi

an
)– H(x))2 

      = [𝐻𝑛(x) – H(x)+ 
𝑎𝑛

2

2
 𝐻𝑛

(2)
(x)𝜇2(K)+ 

𝑎𝑛
4

4!
�̅�𝑛

(4)
(x)𝜇4(K)+o(𝑎𝑛

4)]2 

      =: [𝜉𝑛,0(x) + 𝑎𝑛
2  𝜉𝑛,2(x) + 𝑎𝑛

4𝜉𝑛,4(x) + o(𝑎𝑛
4)]2 

      = 𝜉𝑛,0(x)[𝜉𝑛,0(x)+ 2𝑎𝑛
2𝜉𝑛,2(x)+ 2𝑎𝑛

4𝜉𝑛,4(x)+ o(𝑎𝑛
4)]+ 𝑎𝑛

4𝜉𝑛,2
2 (x) + o(𝑎𝑛

4)  (2.9) 

      = 𝑎𝑛
4𝜉𝑛,2

2 (x) + O (
𝑎𝑛

2

𝑛
) 

in view of 𝜉𝑛,0(x) = o(𝑛−1), where 𝜉𝑛,2(x) = 
1

2
𝐻𝑛

(2)
(x)𝜇2(K). 

Thus, from (2.5), (2.8) and (2.9), 

MSE(𝑝𝑛,2(x)) = 𝑑12
−2(x)𝑛−1[𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x)(1- 𝐹𝑖(x))-𝑎𝑛𝐻𝑛

(1)
(x)𝜓1(K) 

          + 𝑎𝑛
2(

1

2
𝐻𝑛

(2)
(x)𝜓2(K) - 𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x)𝐹𝑖

(2)
(x)𝜇2(K))] 
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+ 𝑑12
−2(x)𝜉𝑛,0(x)[𝜉𝑛,0(x) + 2𝑎𝑛

2𝜉𝑛,2(x) + 2𝑎𝑛
4𝜉𝑛,4(x)]  

+ 𝑎𝑛
4  𝜉𝑛,2

2 (x) + o(
𝑎𝑛

4

𝑛
) 

           = 𝑑12
−2(x)[𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x)(1- 𝐹𝑖(x))/n - 

𝑎𝑛

𝑛
𝐻𝑛

(1)
(x)𝜓1(K) + 𝑎𝑛

4  𝜉𝑛,2
2 (x)]  

+ O(
𝑎𝑛

2

𝑛
) 

as 𝜉𝑛,0(x) = 𝐻𝑛(x) – H(x) = o(𝑛−1) as n → ∞ 

𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x)(1-𝐹𝑖(x)) = 𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x) - 𝑛−1 ∑ 𝐹𝑖

2𝑛
𝑖=1 (x) 

     = H̅𝑛(x) - 𝐻𝑛
2(x) - 𝑛−1(∑ 𝐹𝑖

2𝑛
𝑖=1 (x)- n𝐻𝑛

2(x)) 

     = H̅𝑛(x)(1-H̅𝑛(𝑥))–(𝑛−1 ∑ (𝐹𝑖
𝑛
𝑖=1 (x)- 𝐻𝑛(x))2 

    = H̅𝑛(x)(1 - H̅𝑛(x)) – 𝑉𝑛𝐹(x)                      (2.10) 

where 𝑉𝑛𝐹(x) = n-1 ∑(𝐹 i(x) - H̅n(x))2 > 0 and by considering the terms containing 
𝑎𝑛

2

𝑛
 

as of higher order, 

MSE(𝑝𝑛,2(x)) = 𝑑12
−2(x)[

 �̅�𝑛(𝑥)[1−�̅�𝑛(𝑥)]

𝑛
 - 

VnF(𝑥)

n
] – 𝑑12

−2(x)[
𝑎𝑛

𝑛
�̅�𝑛

(1)
(x)𝜓1(K) 

+ 
𝑎𝑛

4

4
 𝐻𝑛

(2)2
(x)𝜇2

2(K)] + O(𝜉𝑛,0(x) 𝑎𝑛
2) + o(𝑎𝑛

4) 

Corollary 2.1: Under the conditions of Theorem 2.1 on {Fi(x)}, 

MSE(𝑝𝑛,1(x)) = 𝑑12
−2(𝑥)[

 �̅�𝑛(𝑥)[1−�̅�𝑛(𝑥)]

𝑛
 - 

VnF(𝑥)

n
] + O(𝑛−2) 

where 𝑉𝑛𝐹(x) = n-1 ∑(𝐹 i(x) - H̅n(x))2 > 0 

Proof: This proof follows exactly the similar line of argument as for the proof of 
Theorem 2.1.  

2.2.  Asymptotic Normality of 𝒑𝒏,𝟏(x) and 𝒑𝒏,𝟐(x) 

We now consider the limiting distribution of BJ estimators 𝑝𝑛,𝑗(x), j=1,2 of p 

using Lyapunov CLT to the sequence {𝑍2𝑖(x)} of independent random variables in 
the following Theorem. 

Theorem 2.2: Under the conditions AI – AIII on {Fi}, the kernel function k, and the 
sequence {an} for each fixed x, 

√𝒏 (pn,2(x) – p)     𝑳    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ N(0, 
𝝉𝟐

𝒅𝟏𝟐
𝟐 (𝒙)

) as n → ∞ 

where 𝜏2 = lim
𝑛→∞

[ F̅𝑛(x)(1 - F̅𝑛(x))  - 𝑉𝑛𝐹(𝑥)], 𝑉𝑛𝐹(𝑥)=n-1 ∑(𝐹i(x) - F̅n(x))2 >0 

Proof: Note from (2.4) 

d12(x)[pn,2(x)-p] = 𝑛−1 ∑ 𝑍2𝑖
𝑛
𝑖=1 (x) + 𝜏𝑛2(x) 
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with 𝜏𝑛2(x) = 𝑛−1 ∑  [𝑛
1 E K( 

𝑥−𝑋𝑖

𝑎𝑛
 ) – H(x)] 

      = 𝐻𝑛(x) – H(x) + 
𝑎𝑛

2

2
 𝐻𝑛

(2)
(x) 𝜇2(K) + o(𝑎𝑛

2) → 0 as n→∞ 

  𝑍2𝑖(x) = K( 
𝑥−𝑋𝑖

𝑎𝑛
 ) – E K( 

𝑥−𝑋𝑖

𝑎𝑛
 ), |𝑍2𝑖(𝑥)| ≤ 2 ‖𝐾‖ = M < ∞ 

  𝜎2𝑖
2  = Var 𝑍2𝑖(x) 

  
𝑠𝑛2
2

𝑛
 = ∑

𝜎2𝑖
2

𝑛
 = 𝑛−1 ∑[𝐹𝑖(x)(1-𝐹𝑖(x)) - 𝑎𝑛𝐹𝑖

(1)
(x)𝜓1(K) + O(𝑎𝑛

2)] 

  = H̅𝑛(x)(1-𝐻𝑛(x)) - 𝑉𝑛𝐹(x) - 𝑎𝑛𝐻𝑛
(1)

(x)𝜓1(K) + O(𝑎𝑛
2 /n) 

 𝑠𝑛2
2  = O(n) 

In order to apply Lyapunov CLT to the sequence {𝑍2𝑖(x)}, consider the 
Lyapunov condition 

1

𝑠𝑛2
3  ∑ 𝐸𝑛

1 |𝑍𝑖|
3 = 

𝑛

𝑠𝑛2
3  [𝑛−1 ∑ 𝐸𝑛

1 |𝑍2𝑖(𝑥)|3] 

= O( 
𝑛

𝑛3/2 ) →0 as n→∞. 

Now, Lyapunov condition is satisfied, and Lyapunov CLT to the sequence 
{𝑍2𝑖(x)} holds.  As 𝜏𝑛2(x)→0 as n → ∞ 

𝑛−1/2 ∑  𝑍2𝑖
𝑛
1 (x)     𝐿    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   N(0,1) 

𝑠𝑛2

𝑛1/2 → [H(x)(1-H(x)) – V(x)]1/2 = τ 

where V(x) = lim
𝑛→∞

𝑉𝐹(x) = lim
𝑛→∞

𝑛−1 ∑(𝐹𝑖(x) - �̅�𝑛(x))2 

i.e. 𝑑12(x) √𝑛 (𝑝𝑛,2(x) – p)     𝐿    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   N(0, 𝜏2) 

√𝑛 (𝑝𝑛,2(x) – p)     𝐿    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   N(0, (𝜏/𝑑12(𝑥))2) 

Thus, the Theorem is proved.  

Corollary 2.2: Under the conditions of Theorem 2.1 on {Fi(x)}, 

√𝒏 (pn,1(x) – p)     𝑳    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ N(0, 
𝝉𝟐

𝒅𝟏𝟐
𝟐 (𝒙)

) as n → ∞ 

Proof: This proof follows exactly the similar line of argument as for the proof of 

Theorem 2.2.    ∎ 

2.3. Rates of strong convergence of 𝒑𝒏,𝟏(x) and 𝒑𝒏,𝟐(x) 

We now establish a.s. convergence of the BJ type estimators 𝑝𝑛,1(x) and 

𝑝𝑛,2(x)  defined in (1.8) under non-i.i.d. set-up in the following result: 

Theorem 2.3: Under the conditions of Theorem 2.1, 

I. 𝒑𝒏,𝟐(𝐱) − 𝐩 = O( 
𝐥𝐨𝐠𝒏 

𝒏
)
𝟏

𝟐 a.s. 
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II. �̂�𝒏(x) = �̂�𝒏(x) – H(x) = O( 
𝐥𝐨𝐠 𝒏 

𝒏
)
𝟏

𝟐 a.s. as n → ∞  

Proof: Note that from (2.4) and (2.8) 

 E (𝑍2𝑖
2 (x)) = 𝜎2𝑖

2  = 𝐹𝑖(x)(1-𝐹𝑖(x)) - 𝑎𝑛𝐹𝑖
(1)

(x)𝜓1(K) + O(𝑎𝑛
2)  

      ≤ 
1

4
 + |𝜓1(𝐾)| = C < ∞ 

 𝜎𝑛2
2  = 

1

𝑛
 ∑𝐸 [𝑍2𝑖

2 (𝑥)] = 
∑𝐹𝑖(x)(1−𝐹𝑖(x))

𝑛
 - 

𝑎𝑛𝜓1(K)∑𝐹𝑖
(1)

(x)

𝑛
 + O(𝑎𝑛

2) 

        = H̅𝑛(x)(1- �̅�𝑛(x)) - 𝑉𝑛𝐹(𝑥) - 𝑎𝑛𝐻𝑛
(1)

(x)𝜓1(K) + O(𝑎𝑛
2) < ∞ 

By applying Bernstein (1946) inequality to {𝑍2𝑖(x)} with M=2, 

 P(𝑛−1 ∑𝑍𝑛2(x) > t) ≤ exp ( - 
𝑛𝑡2

2  

C + 
2

3
 𝑡
 ) 

setting t = ( 
4𝐶 log 𝑛 

𝑛
)
1

2  

P(𝑛−1 ∑𝑍𝑛2(x) > t) ≤ exp [ - 
𝑛4𝐶 log𝑛

2𝑛  

𝐶+ 
2

3
 ( 

4𝐶 log𝑛 

𝑛
)
1
2

 ] 

    = exp [ - 
𝑛4𝐶 log𝑛

2𝑛  

C(1+ 
2

3𝐶
 ( 

4 log𝑛 

𝑛
)
1
2 )

 ] 

    = exp [  
−2 log𝑛 

1+ 
2

3𝐶
 ( 

4 log𝑛 

𝑛
)
1
2 )

 ] 

    ≤ 𝑛−2 for sufficiently large. 

     ⇒ ∑ 𝑃∞
𝑛≥1 (�̅�𝑛2 > t ) ≤ ∑ 𝑛−2∞

𝑛≥1  < ∞ 

By Borel–Cantelli lemma, we conclude that �̅�𝑛2 = O(
𝑙𝑜𝑔𝑛

𝑛
)1/2 as n→∞. 

Therefore, as 𝜏𝑛2(x)→0 as n → ∞,  

(pn,2(x) – p) 𝑑12(x) = �̅�𝑛2 + 𝜏𝑛2 𝑎. 𝑠.̿̿ ̿̿ ̿ O(
𝑙𝑜𝑔𝑛

𝑛
)1/2 

i.e. pn,2(x) – p = O(
𝑙𝑜𝑔𝑛

𝑛
)1/2 a.s. for each x as n→∞.  

(II) is an immediate consequence of part(I).  Hence the result follows.  

Corollary 2.3: Under the conditions of Theorem 2.1 on {Fi(x)}, 

I. 𝒑𝒏,𝟏(𝐱) − 𝐩 = O( 
𝐥𝐨𝐠𝒏 

𝒏
)
𝟏

𝟐 a.s. 

II. �̃�𝒏(x) = �̃�𝒏(x) – H(x) = O( 
𝐥𝐨𝐠 𝒏 

𝒏
)
𝟏

𝟐 a.s. as n → ∞ 

Proof: The proof follows exactly the similar line of argument as for the proof of 
Theorem 2.3.     
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3. Optimal bandwidth 𝒂𝒏,𝒐𝒑𝒕 

We select the optimal 𝑎𝑛,𝑜𝑝𝑡 as that 𝑎𝑛 for which MSE (𝑝𝑛,2(x)) is the minimum. 

Solving the equation 
𝜕MSE (𝑝𝑛,2(x))

𝜕𝑥
 = 0 for 𝑎𝑛; 

i.e. M = MSE(𝑝𝑛,2(x))= 
 (�̅�𝑛(𝑥)[1−�̅�𝑛(𝑥)]−𝑣𝑛𝐹(𝑥))

𝑛
 - 

𝑎𝑛

𝑛
 𝜉𝑛,1(x) + 𝑎𝑛

4  𝜉𝑛,2
2 (x) 

𝜕M

𝜕𝑎𝑛
 = 0 = - 

1

𝑛
 𝜉𝑛,1(x) + 4𝑎𝑛

3  𝜉𝑛,2
2 (x) 

so that  

𝑎𝑛,𝑜𝑝𝑡 = [ 
𝝃𝒏,𝟏(𝒙)

𝟒𝜉𝑛,2
2 (x)

 ]𝟏/𝟑 ∙ 𝒏−𝟏/𝟑                             (3.1) 

where 𝜉𝑛,1(x) = 𝐻𝑛
(1)

(x)𝜓1(K), 𝜉𝑛,2
2 (x)= 

1

4
 𝐻𝑛

(2)2
(x)𝜇2

2(K), 𝜓1(K) = 2∫ 𝑡K(t)dK(t)  

4. Comparisons between the estimators 

We first compare the performance of the proposed smoothed estimator 𝑝𝑛,2(x) 

with Boes-James type estimator pn,1(x), when H1(x), H2(x) are known based on 
the minimum mean square error (MSE) criterion under non-i.i.d. set-up. Note that 
from Theorem 2.1 and Corollary 2.1, 

MSE (𝑝𝑛,2(x)) < MSE (pn,1(x)) 

If 
𝑎𝑛

𝑛
 𝐻𝑛

(1)
(x)𝜓1(K) > 

𝑎𝑛
4

4
 𝐻𝑛

(2)2
(x)𝜇2

2(K) 

If 𝑎𝑛𝐻𝑛
(1)

(x) 𝜓1(K) > n𝑎𝑛
4  [

1

4
 𝐻𝑛

(2)2
(x)𝜇2

2(K)]               (4.1) 

for finite values of n. Since both terms on the left side of the above inequality are 
always positive and in view of n𝑎𝑛

4  → 0 for moderate n, (4.1) holds. The gain in 

precision of 𝑝𝑛,2(x) over pn,1(x) is defined as 

MSE (pn,1(𝑥))− MSE ( 𝑝𝑛,2(x))

MSE(𝑝𝑛,1(x)) 
  × 100. 

5. Monte Carlo Simulation 

A simulation study is carried out in the estimation of p by 𝑝𝑛,𝑗(x); j=1,2 when 

two component distributions are known and are estimated by using empirical 
distribution function and kernel distribution function for Normal and Exponential 
populations. The procedure is given in appendix A. 
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Table 5.1.  Simulation results of 𝑝𝑛,𝑗(𝑥0) and 𝑝𝑛,𝑗(𝑥0) for different sets N of 

 sample size n with p=0.5 and X0 = -2, -1, -0.5, 0.5, 1, 2 and X0 = 
 0.2, 0.3, 0.33, 0.4, 0.5, 0.6 for Exponential population  

p=0.5 N 

𝑯𝟏(x)=N(𝛃𝒕𝟏𝒊,𝟎. 𝟓𝟐), 𝑯𝟐(x)= N(𝛃𝒕𝟐𝒊,𝟑
𝟐), 

H(x)=N(𝛃𝒕𝒊,(𝟐. 𝟏𝟓𝟏)𝟐) 

p=0.5 

𝑯𝟏(x)=Exp(2), 𝑯𝟐(x)=Exp(3), 
H(x)=Weibull(1.25,k=0.5) 

𝐩n,1(𝒙𝟎) 𝐩n,2(𝒙𝟎) 

𝑴𝑺�̂� 

Efficiency 𝐩n,1(𝒙𝟎) 𝐩n,2(𝒙𝟎) 

𝑴𝑺�̂� 

Efficiency 

𝐩n,1(𝒙𝟎) 𝐩n,2(𝒙𝟎) 𝐩n,1(𝒙𝟎) 𝐩n,2(𝒙𝟎) 

X0=-2 
n =12 

10 0.538 0.119 0.026 0.006 78.03 

X0=0.2 
n=12 

0.69 0.76 0.11 0.02 80.11 

25 0.525 0.140 0.035 0.011 70.04 0.67 0.76 0.12 0.03 70.94 

50 0.525 0.144 0.039 0.013 66.12 0.58 0.74 0.12 0.04 61.31 

75 0.516 0.148 0.044 0.014 67.36 0.54 0.76 0.11 0.04 59.82 

100 0.531 0.154 0.039 0.014 64.12 0.50 0.75 0.10 0.05 48.81 

X0=-1 
n=12 

10 0.369 0.228 0.051 0.017 67.21 

X0=0.3 
n=12 

0.1889 0.865 0.055 0.011 79.59 

25 0.431 0.248 0.059 0.015 74.57 0.211 0.874 0.062 0.010 83.34 

50 0.383 0.249 0.054 0.024 55.66 0.211 0.868 0.062 0.012 80.19 

75 0.377 0.252 0.047 0.025 47.14 0.211 0.869 0.062 0.012 81.22 

100 0.376 0.249 0.048 0.024 49.31 0.211 0.867 0.062 0.012 80.19 

X0= 
-0.5 
n=12 

10 0.460 0.300 0.106 0.038 64.14 

X0=0.33 
n=12 

0.57 0.86 0.1810 0.0614 66.09 

25 0.362 0.265 0.081 0.032 60.68 0.32 0.87 0.0680 0.0127 81.37 

50 0.405 0.257 0.078 0.039 49.74 0.34 0.89 0.0734 0.0104 85.83 

75 0.402 0.255 0.074 0.039 45.84 0.33 0.89 0.0717 0.0082 88.62 

100 0.396 0.248 0.077 0.038 49.66 0.35 0.88 0.0757 0.0115 84.84 

X0=0.5 
n=12 

10 0.463 0.388 0.041 0.033 19.42 

X0=0.4 
n=12 

0.50 0.85 0.08 0.02 73.61 

25 0.446 0.360 0.042 0.028 32.43 0.40 0.89 0.07 0.01 83.50 

50 0.438 0.342 0.051 0.031 38.39 0.34 0.90 0.05 0.01 85.67 

75 0.475 0.335 0.066 0.032 51.79 0.30 0.90 0.04 0.01 75.67 

100 0.461 0.325 0.068 0.033 50.95 0.28 0.90 0.03 0.01 65.91 

X0=1 
n=12 

10 0.58 0.16 0.081 0.021 73.55 

X0=0.5 
n=12 

0.47 0.35 0.08 0.05 42.27 

25 0.52 0.16 0.067 0.017 74.28 0.49 0.47 0.09 0.07 19.86 

50 0.51 0.19 0.061 0.021 65.92 0.39 0.40 0.08 0.06 26.23 

75 0.47 0.17 0.061 0.022 64.30 0.44 0.43 0.08 0.07 21.28 

100 0.47 0.18 0.056 0.024 57.39 0.40 0.41 0.08 0.06 24.23 

X0=2 
n=12 

10 0.439 0.127 0.045 0.012 73.97 

X0=0.6 
n=12 

0.071 0.879 0.034 0.011 67.70 

25 0.512 0.135 0.036 0.012 67.50 0.083 0.836 0.039 0.025 36.48 

50 0.525 0.169 0.039 0.022 43.46 0.071 0.822 0.034 0.028 17.11 

75 0.494 0.163 0.053 0.024 53.91 0.075 0.827 0.036 0.027 24.21 

100 0.518 0.153 0.047 0.021 55.75 0.071 0.822 0.034 0.028 17.16 
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6. Comments 

In the paper it is shown that when the component normal populations with 
parameters are N(βt1i,0.25), N(βt2i,9) and the mean value of estimate pn,1(x0) and 

pn,2(x0) is close to its actual value p. The simulation results show that 𝑀𝑆�̂� for 
smoothed parametric estimator is less than that of unsmoothed estimator for 
different values of x, uniformly for all samples. Thus, the smoothed estimator is a 
better estimator in terms of minimum MSE when compared to BJ estimator. The 
average gain in efficiency due to smoothing lies between 19% to 88% for different 
sets N of size n. 
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APPENDIX A 

Random samples of sizes n1=6 and n2=6 are generated from the two 
component mixtures of the normal populations with parameters (𝜇1,𝜇2)=(βt1i,βt2i) 

and (𝜎1
2,𝜎2

2)=(0.52,32) and with parameters (𝜃1,𝜃2) = (2,3) for Exponential 
populations. The mixed sample of size n = n1+n2 = 12 is generated from the 

normal population with parameters (μ = p𝜇1+q𝜇2) = (βti=pβt1i+qβt2i) and 𝜎2 = 

(p𝜎1
2+q𝜎2

2), and in the case of Exponential population, the mixed sample is drawn 
from Weibull population with shape parameter k less than 1. Since Weibull 
distribution with shape parameter k<1 arises as a mixture of Exponential 
distributions (Jewel 1982), the samples of sizes n, n1, n2 are independent. Taking 

p=q= 0.5, β=0.1 and ti = ∓ 
𝑖

𝑛𝛿 ; j = 1, 2, 𝛿 =1.5 are selected in such a way that ∑ 𝑡𝑖 

= 0 and ∑𝑡𝑖
2 → 0. The present simulation study is to estimate parametric 

estimators such as pn,1(x) and pn,2(x) for x=x0 defined as follows. 

𝐩n,1(𝒙𝟎) =  
�̃�𝐧(𝒙𝟎)− 𝐇𝟐(𝒙𝟎)

𝐇𝟏(𝒙𝟎)− 𝐇𝟐(𝒙𝟎)
  and  𝐩n,2(𝒙𝟎) =  

�̂�𝐧(𝒙𝟎)− 𝐇𝟐(𝒙𝟎)

𝐇𝟏(𝒙𝟎)− 𝐇𝟐(𝒙𝟎)
 

where H̃n(𝑥0), Ĥn(𝑥0) are estimated by the usual empirical and kernel-based 

distribution functions and 𝐻𝑗(x), j=1,2 such as 

H̃n(x) = 
1

n
 ∑ 𝐼𝑛

𝑖=1 (Xi ≤ x) , if I(Xi ≤ x), assign 1 otherwise 0. 

�̂�n(𝑥0) = n-1 ∑ 𝐾𝑛
𝑖=1 (

𝑥0− Xi

an
); 𝐻𝑗(x) = 

1

nj
 ∑ 𝐹𝑗𝑖(

𝑛𝑗

𝑖=1
𝑥0).   

Here, we used the Epanechnikov kernel function as k(u) = 
3

4
 (1 - u2); |𝑢|≤1 for 

Normal distribution, and for Exponential distribution we used Gaussian kernel 

function as k(u) = 
1

√2𝜋
 𝑒−𝑢2

2 . The distribution function of the Epanechnikov kernel 

function is 

K( 
𝑥0− Xi

an
 ) = 

3

4
 [

𝑥0− Xi

an
 - 

1

3
 (

𝑥0− Xi

an
 )3 + 

2

3
] 

Thus, the estimators becomes 

    pn,1(𝑥0) = 

1

n
 ∑ 𝐼𝑛

𝑖=1 (X𝑖 ≤ 𝑥0)− 
1

n2
 ∑ 𝐹2𝑖(

𝑛2
𝑖=1 𝑥0)

1

n1
 ∑ 𝐹1𝑖(

𝑛1
𝑖=1

𝑥0)− 
1

n2
 ∑ 𝐹2𝑖(

𝑛2
𝑖=1

𝑥0)
 

pn,2(𝑥0) = 
n−1  ∑ 𝐾𝑛

𝑖=1 (
𝑥0− Xi

an
)− 

1

n2
 ∑ 𝐹2𝑖(

𝑛2
𝑖=1 𝑥0)

1

n1
 ∑ 𝐹1𝑖(

𝑛1
𝑖=1

𝑥0)− 
1

n2
 ∑ 𝐹2𝑖(

𝑛2
𝑖=1

𝑥0)
                                           (5.1) 

where 𝐹𝑗𝑖(x) are the cumulative distribution functions of Normal distribution and 

Exponential distribution. 
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All computations are done by using MS Excel, and the procedure is as 
follows. 

1. Generate n uniform random numbers between (0,1). 

2. Generate the cumulative distribution function of Normal and Exponential 

distribution  by taking different means βtji and variances 𝜎𝑗
2; j=1,2 at x = 𝑥0 

3. Generate the mixed normal and Weibull observations by taking different 

means βti = pβt1i + qβt2i and variance 𝜎2 = p𝜎1
2 + q𝜎2

2 and θ = p𝜃1 + q𝜃2 
respectively with k<1. 

4. Calculate (5.1) by taking X0 = -2, -1, -0.5, 0.5, 1, 2 related to Normal 
distribution and X0= 0.2, 0.3, 0.33, 0.4, 0.5, 0.6 related to Exponential 
distribution. 

Generate N=100 mixed and component independent sample sets with sample 
sizes n=12 and n1= 6 and n2=6, so that n = n1+n2 and calculate pn,1(x0) and 

pn,2(x0), their mean values �̅�𝑛,𝑗(𝑥0) = 
1

𝑁
 ∑𝑝𝑛,𝑗 (𝑥0) and their mean square errors 

𝑀𝑆�̂� (𝑝𝑛,𝑗(𝑥0)) = 
1

𝑁
 ∑ (𝑝𝑛,𝑗(

𝑁
𝑖=1 𝑥0) - �̅�𝑛,𝑗(𝑥0))2 ; j=1,2. Sets are ignored when p ≥1. 

The results are presented in table 5.1. 
 

 


