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ON THE SMOOTHED PARAMETRIC ESTIMATION OF
MIXING PROPORTION UNDER FIXED DESIGN
REGRESSION MODEL

Y. S. Ramakrishnaiah?, Manish Trivedi?, Konda Satish?

ABSTRACT

The present paper revisits an estimator proposed by Boes (1966) — James (1978),
herein called BJ estimator, which was constructed for estimating mixing proportion
in a mixed model based on independent and identically distributed (i.i.d.) random
samples, and also proposes a completely new (smoothed) estimator for mixing
proportion based on independent and not identically distributed (non-i.i.d.) random
samples. The proposed estimator is nonparametric in true sense based on known
“kernel function” as described in the introduction. We investigated the following
results of the smoothed estimator under the non-i.i.d. set-up such as (a) its small
sample behaviour is compared with the unsmoothed version (BJ estimator) based
on their mean square errors by using Monte-Carlo simulation, and established the
percentage gain in precision of smoothed estimator over its unsmoothed version
measured in terms of their mean square error, (b) its large sample properties such
as almost surely (a.s.) convergence and asymptotic normality of these estimators
are established in the present work. These results are completely new in the
literature not only under the case of i.i.d., but also generalises to non-i.i.d. set-up.

Key words: mixture of distributions, mixing proportion, smoothed parametric
estimation, fixed design regression model, mean square error, optimal band width,
strong consistency, asymptotic normality.

1. Introduction

Let X;,X,,...,X, be a sequence of independent and not identically distributed
(non-i.i.d.) random variables with continuous distribution functions (d.f.s)
{Fi(x),1<isn}. Let H(x) be a continuous cumulative distribution function (cdf) of
mixture of component cdfs H,(X),...,Hn(X), (m=2) such that H(x) = X7, p;H;(x),
where {p;; 1sjsm} is a set of mixing proportions satisfying (i) O<p;<1, (ii) XjL, p; =

1. Let Hy(x) = n™' XL, Fi(x)— H(x) as n —« and H;(x)= nj_lZ:lil Fji(x) — H;(X),
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nj—, j=1,2,...,m; H(x), H;(x) are known d.f.s. The problem of estimation of
mixing proportions p; in a mixture
H(X) = p1H1(X) + p2H(X) +...+ P Hp(X) (1.1)

of m known distributions H;(x) is investigated based on independent random
samples of sizes n, n; generated from the fixed design regression models

X, =Bt; +¢ ,1<i<n, g~i.i.d.F(x) (1.2)
X =Bty + €, 1Sisny, j=1,2,...m, e;~i.id. F(X), (1.3)
B’s and t's are known reals satisfying the model conditions
B;>0,3%,t;=0and ~Xt? = o(n™Y). (1.4)
Note that ti = F F i =F1, ¥2,..., Fn, 5 2 ; fulfill (1.4) and H,(x)=n"1 3™, F.(X)
= F(x) +OCXt2) + ... = H(x) + o(n™1) and H,(x)=nj L7, Fji(x)—>H;(x), j=1,2 as
n;—o.

)
Mixture distributions have been used in a wide variety of numerous

applications in such diversified fields as physics, chemistry, biology, social

sciences and others. Many typical problems in which such mixtures occur have

been well described in a series of research papers. Karl Pearson (1894) dealt
with the application of normal mixtures to the theory of evolution, which
considered the first paper in the mixtures of distributions. Acheson and McElwee

(1951), who identified failures in an electronic tube in gaseous defects,

mechanical defects and normal deterioration of the cathode. One can find the

proportion of the population which will fail in each cause to redesign the system or
to improve the methods of manufacturing process. Apart from this, it would be
desirable to know the distribution of defectives for each cause. Mendenhall and

Hader (1958) studied censored life testing as a mixed failure populations. They

suggested an example that the engineer may identify the product as

defective/failure and nondefective by two or more different types of causes.

Hosmer (1973) studied characteristics such as sex, age, and length of halibut

(fish). Odell and Basu (1976) applied them in the field of remote sensing to

estimate the crop acreages from remote sensors on orbiting satellites.

We shall show some of the typical problems which were described in Choi

and Bulgren (1968):

1. In fishery biology, it is often desired to measure certain characteristics in
a natural population of fish. For this purpose samples of fish are taken and the
desired trait is measured for each fish in the sample. However, many
characteristics vary markedly with the age of the fish. Then, the trait has a
distinct distribution for each age group so that the population has a mixture of
distributions.

2. A geneticist analyses the inheritance of qualitative characters. In general, such
characters vary continuously over some intervals of real numbers so that
a given genotype may be able to produce phenotypic values over an interval of
real numbers. Then, the phenotypic value which the geneticist observes has
a mixture of distributions, each of which is given by a genotype.
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3. In photographing the absorption spectrum of an ionized atom, we obtain
a photograph of a constantly varying intensity distribution on the photographic
plate, and not a series of discrete "lines". This phenomenon is caused by
several effects (such as the Doppler effect) and it is accepted in spectroscopy
that an intensity distribution whose graph can be approximated closely by that
of a normal density function belongs to every theoretical "line". Then the graph
of the whole spectrum section can be considered as a mixture of normal
density functions.

Other references to mixed failure populations are given in papers by Davis
(1952), Epstein (1953), Herd (1953), Steen and Wilde (1952), Everitt and Hand
(1981), Titterington et al. (1985), McLachlan and Basford (1988), Lindsay (1995)
and McLachlan and Peel (2000), Fu (1968-Pattern Recognition), Varli et al.
(1975-Pattern Recognition), Clark (1976-Geology), Macdonald and Pitcher (1979-
Fisheries), Bruni et al. (1985-Genetics), Merz (1980-Physics) and Christensen et
al. (1980-Nuclear Physics).

The applications of finite mixture distributions describing mixture populations
for non- i.i.d. sequence of variables are given below:

Distribution function
Fi(x)

Area Characteristic Xi

life time of components

Survival produced by " machine Life time distribution of various
Analysis operated by i foreman. products
L weight for age/height for age/ o . .
Nutritional . ) i Distribution of weight for age/height
Studies X\,ﬁe'g.ht. for height of i infant of of i infant
i'" origin or group.
Fisheries Fish length or weight of age of Distribution of weight/length of it

ith fish. fish

The mixing model with two component populations becomes
H(x) = pH1(x) + (1-p)H(X).
Here, X; is the characteristic with distribution function F;(x) assuming
Fa(x) = n1EL Fi(x) = Hy () — H(x)
Fin(¥) = DRI, FiX) = By () Hy(X) @s noe

and n, n; and n, are independent random sample sizes from mixed and
component populations selected in such a way that n = n; + n, with n; = [pn],
n, = [(1-p)n], 0<p <1.

More details on such examples can be found in Choi and Bulgreen (1968),
Harris (1958), Blischke (1965), Fu (1968-Pattern Recognition), Varli et al.
(1975-Pattern Recognition), Clark (1976-Geology), Macdonald and Pitcher
(1979-Fisheries), Odell and Basu (1976-Remote sensing), Bruni et al. (1985-
Genetics), Merz (1980-Physics) and Christensen et al. (1980-Nuclear Physics),
etc.
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i.i.d case: The mixing model for i.i.d. case is

F(X) = pG;(X)+(1-p)G2(X) (1.5)
where F(x), G;(x); j=1,2 are cdfs of mixed and component populations
respectively. The following estimator is studied in the literature.

Boes (1966)-James (1978) (BJ) estimator: Let F,(x)= n™* Y, I(X;<x) be the
empirical distribution function of a random sample X;, 1<i<n from a mixture of two
known component distribution functions G;, j=1,2. Boes (1966) proposed an
estimator of p given by

Fp(®)= G2()

G1(x)=G2(x) (1.6)

pn,l(x) =
and shown as a minimax unbiased estimator, and derived the Cramer-Rao lower
bound. James (1978) considered the problem of estimating the mixing proportion
in a mixture of two known normal distributions. He studied the simple estimators
based on (a) the number of observations lower than a fixed point r, (b) the
numbers lower than s and greater than t, and (c) the sample mean. Van

Houwelingen (1974) used Boes (1966) estimator to estimate the mixing

proportion by using frequency densities and obtained the Cramer-Rao lower

bound. Jayalakshmi (2002) used BJ estimator using kernel-based empirical
distribution and established that smoothing improves efficiency when the
component distributions are known.

In the present work, we extend the idea of estimation of mixing proportion p in
two directions:

e The estimators based on kernel based empirical d.f. called smoothed
estimations are proposed under regression models (1.2) - (1.3).

e The proposed parametric estimators are based on independent, but not
identically distributed (non-i.i.d.) samples generated by the fixed design
regression models described by (1.2)-(1.3).

The main object of the present paper is to confine attention to m=2 case in the
model (1.1) and to construct parametric estimators when component distributions
are known, based on the usual empirical and kernel-based distribution functions
defined by

x— X

Hy() =071 B, I(Xi < x), By (x)= "t 2L, K, 1.7)

{a,} being the smoothing sequence satisfying 0< a,, —0, na,, — defined by

an

Hp(x)— Ha(x)
Hy(x)- Hz(x) ’

Hp(x)— Ha (%)

Hi(x)- Hp(x) ’ (1.8)

pn,l(X) = pn,Z (X) =

We study the small and large sample behaviour of the proposed parametric
estimators and establish the superiority of smoothed estimator p,,(x) over
unsmoothed one p, ,(x) in the sense of minimum mean square error. The results
of the present investigations for the non-i.i.d. sequences are completely new in
the literature.

In section 2, we obtain the exact expressions for MSEs of the proposed
estimators in order to establish the superiority of p,, ,(x) over p,, ;(X) for some fixed
X. Furthermore, large sample behaviour, such as asymptotic normality and rates
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of a.s. convergence of the proposed estimators is also established. In section 3,
the crucial choice of smoothing parameter ‘a,’ in kernel based estimator p,, ,(X) is
discussed and its value is determined by employing minimum mean square
criterion. Section 4 deals with establishing superiority of p,,(x) over p,1(X).
Section 5 explains the small sample comparisons by Monte Carlo method based
on the samples generated by regression models.

2. Asymptotics of p, 1(X) and p, 2(X)

We now present the properties of both estimators p,, ;(x) and p, ,(X) under the
fixed design regression model (1.3). The properties such as mean square errors
(MSEs), rates of a.s. convergence, and asymptotic normality of p, ,(X) and p, »(x)
are established. We first consider the representations of the proposed estimators:
from the mixing model,

H(x) = pH;(x) + (1-p)Hz(X) (2.1)
H(x) — H,(x) = d1,(X)p for each x, where d,,(x)= H,(X) - Hy(X)
A.S. Representations to p,, 1(X), py2(X): from (1.8) and (2.1),
d12(X)[Pn,1(¥)-p] = Hp(X) - H(X) = n™" B, (I(X=X) - Fy(x) + Fi(X) = H(X))

=07t T Z3i(X) + T (X) (22)
where by (1.4) and by the assumption on regression model
Tp1(X) = 071 B Fi(X) = HX)= o(n?X7 ¢7) = o(n?) (2.3)

Similarly, from (1.8) and (2.1)

d12(x)[pn.2(x)-p] = Hp (%) = H(X) = Ha(X) = E Hp(x) + E Hy(x) = H(X)

X—

] + 7p(X)

— -l VT X—
= nt YL [K( A

™) — EK(
=17t XLy Zi(X) + Tha(X) (2.4)
with 7,,,(x) = o(n!) as in (2.3).

2.1. Mean Square Error of p,, 1(X) and p;,»(x)

We first consider the small sample property, i.e. MSEs of both estimators
Pnj(X), j=1,2 for each x in the following, which will help in establishing the
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superiority of smoothed estimator over unsmoothed version based on a random
sample of exact size n under the regression model.

Theorem 2.1. Let {X;: 1<isn} be a sequence of non-i.i.d. random variables with
corresponding sequence of uniformly continuous distribution functions {F;(x):
1<isn}. If {F;}, the kernel density function k and {a,,} in (1.7) satisfy

Al: i) F;(x) is uniformly continuous distribution function with finite gt
derivatives F”(x) < ~, 1<i<nand

00 == ¥ F(x),q=246
i)  Hp(X)=n1Y", Fi(x) — H(x) as n—e
All: i) The kernel function satisfies u,;(K) = /. t3 dK(t) # 0 and
1K) = [= t1dK(t) = 0 for j=1,3,...
i) (=2 [ 0Kt dK(t)<=,j=0,1,2,3,4
Alll:  {an} is a sequence of bandwidths such that
) O<an|O;nan—~asn—
i) nat—0asn—
then
_ —20y\1 9 (D an G @2y, 2
MSE [py2(X)] = MSE(py,1(X)) - diz () - Hy, " (X)1(K) - = Hy,” (X)uz(K)]
a2
+0(%) + o(af)
Proof: From (2.4),
d?,(X)NMSE[pn2(X)] = Var(n=Y/2 ¥, Z,;(X)) + nt2, (2.5)

where g2, =Var(n~12 Y™, Z,,(x))
=n 1 ¥ EZ3(X)
=nt ? 1 0%;
0% = EK? )

= Iy; - I; (say)

where I;; = E K2 () = [ K2 (=) dFi(u) = [ Fi(x-ant) dK2(t)
= Fi(x)JdKz(t) ~ FO()antdK2() + SF@x)IedK2(t) - SRE()fEdKA)

+ S @()tedK2(t) + o(al)
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= Fi(x) Yo(K) — anFi ® () P (K) + 2 F@(x) 1,(K) - LRO(x) hs(K)
+ S EO(x) 14(K) + 0(at) (2.6)

where 1, (K) = 2 K(®)dK()= 2, ydy = 1, while

xX—Xj

an

IZL' :EK(

) = [ Fi(x - ant)dK(t)
=)+ SRR [7 K + B F @ 07, tdK(D) + ofar)
= Fi(x) + 2 EP (0 (K)+ 2 FD(x) () + o(a) (27)
From (2.5) and (2.7),
0% = 1 TR - anFE P01 (€) + 2 ED (0, (K) - S ED (x)ps (K)
+ 4 £ 0, (K) + o(a)]
— (F() + 2 EP (0ua(K)+ 2 EP(x) ua(K) + 0(ai))?)
=L SI, RO Fi(x) -an A 0 (K)1+ 2 AP (x5 (K)
S AP ) s (K) - a2 n7 Ty R ()
B 1 FROORP (0ua(K) + o(2)
=T F()(L- Fy(x) - an D (091 (K)
+ak GCHY 0P (K) - n7 By FOOF® 00uo(K)+0(a3)  (2.8)
and from (2.7),

— —Xj
2, = (7 B E () HOP

= [Fn(0) — HO)*+ 2 AP (0 (0+ 2 F, P (x)pty (K) +0(a) 2
= [Eno() + a2 £,5(9) + aéna(x) + 0(@h)P
= £ 0 Eno(X)* 2028, 200+ 2a£ 8,00+ O(@i)]+ ahé2,(x) + o(ah) (2.9)
= atg2,(0) + O ()
in view of &,0(x) = o(n™1), where &, ,(X) = %ﬁ,(f)(x)uz(K).
Thus, from (2.5), (2.8) and (2.9),
MSE(p,,2(x)) = diZ()n 1 n~1 Bk, Fi(x)(1- Fy(x))-a, ALY (), (K)

+ @G HP 0P (K) - n7 B F(OE (0p(K))]
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+ dTF (08000 [En,0(0) + 2a36,2(X) + 204E,,4(X)]
+af £2,(x) + o(h)
= 720~ Ty F0(L- F(0)n - 2 B (e (K) + af £2,(0)]
+ 0
as &,0(X) = Hy(X) —H(X) =o(n"*)asn — =
n7 N F()A-Fi(0) = nt T, Fi() - 07t T FE(X)
= Ha(x) - H3(x) - n71 (T, F2(X)- nH2(x))

= Hn(0)(1-Hn (0))~(n™" By (Fi(X)- Hn(X))?
= Ha()(1 - Hn (X)) = Var (%) (2.10)

where V,z(x) = n't ¥(Fi(x) - Hn(x))2 > 0 and by considering the terms containing %
as of higher order,

- Hp —Hp Vnr(x - an 17
MSE(pn,5(x)) = dif ([ L2 Yl g2 6122 B (x)up, (K)

n n
4 2
+ % A" ()3 (K)] + O(&n,0(x) a2) + 0(at)
Corollary 2.1: Under the conditions of Theorem 2.1 on {Fi(x)},

- H, -H, Vn -
MSE(py,1(x)) = dif (x) P22 ®L . Yok o o2

where V,z(x) = n't ¥ (Fi(x) - Hn(x))2 >0

Proof: This proof follows exactly the similar line of argument as for the proof of
Theorem 2.1.

2.2. Asymptotic Normality of p, 1(x) and p;,»(X)

We now consider the limiting distribution of BJ estimators p, ;(x), j=1,2 of p
using Lyapunov CLT to the sequence {Z,;(x)} of independent random variables in
the following Theorem.

Theorem 2.2: Under the conditions Al — Alll on {Fi}, the kernel function k, and the
sequence {an} for each fixed X,

v (pn2(x) = p) L N(O,

1,2
Z0 (x)) asn—
where 72 =lim [F,(X)(1 - F, (X)) - Vo,r (2], Viur ()=0"2 Y (Fi(X) - Fn(X))2 >0

n—-oo
Proof: Note from (2.4)

d12()[n2(X)-p] = 071 By Z5i(X) + T (¥)
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With 7,5(x) = 271 1 [E K(Z2) = H(x)]

= ()~ HO) + % B2 () () + 0(a3) — 0 a5 e

X

a

Zy(0 = K —E KT, 1250l S 2 [IK[ = M <

a% = Var Z,;(X)

2 = 3 %= 7 IR (L-F)) - anF P 0 (K) + O(ad)]

= H, (X)(L-Hp (X)) - V(%) - an AP (0% (K) + O(aZ/n)
51212 =0(n)

In order to apply Lyapunov CLT to the sequence {Z,;(x)}, consider the
Lyapunov condition

T SIEIZ = 07 B1E 12 (0]
=0( =7 ) —0 as n—w.
Now, Lyapunov condition is satisfied, and Lyapunov CLT to the sequence
{Z5;(¥)} holds. As 7,,(x)»0asn — «

V23 Z,(x) T L N(0,1)
37 = HX)(1-HG) = VP2 = 7

ni/z

where V(x) = lim V;(x) = lim n™" B(F;(x) - F(x))?
i.e. dip(X) Vi (n () —p) L N(O, 73)
VI (pn2(¥) =) L N(O, (t/dy5(x))?)

Thus, the Theorem is proved.

Corollary 2.2: Under the conditions of Theorem 2.1 on {Fi(x)},

2

Vi (pna(x)=p) L N(O, yas n — o

T
di2(%)
Proof: This proof follows exactly the similar line of argument as for the proof of
Theorem2.2. m

2.3. Rates of strong convergence of p,, 1(x) and p,,»(x)

We now establish a.s. convergence of the BJ type estimators p, 1(x) and
Pn2(X) defined in (1.8) under non-i.i.d. set-up in the following result:

Theorem 2.3: Under the conditions of Theorem 2.1,

logn

1
)z a.s.

[ Pr2(X) —p = O(

n
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I An(x) = Ha() ~HX) = O('%%)2 as. as n — w
Proof: Note that from (2.4) and (2.8)
E (22,(x)) = 62 = F;()A-F,(¥)) - @, 5 (), (K) + O(a2)

ST+ =C <

(1)
— LFi0A-Fi(x) an¥1(K)XF (X
2 =Ly E[23(0] = 00) 2t (2T

Of = - +0(az)

= Ha()(1- Hn(X)) = Vip () - an P ()11 (K) + O(a2) < o
By applying Bernstein (1946) inequality to {Z,;(x)} with M=2,

nt?

P(n™' % Zpa(x) > 1) S exp (- —5-)
3
setting t = ( 4610”)
n4Clogn
-1 < —_2n
P(n™! 3 Zyy(x) > t) < exp [ mgnﬁ]
n4Clogn
=exp [~ ——F ]
C(1+3i(410gn)2)
—2logn
=ex EE——
p [ 32C (4logn)2)
<n~? for sufficiently large.

= Y1 Py >t)S ¥R n 2 <

By Borel-Cantelli lemma, we conclude that Z,, = O(l"%)l/2 as n—ow.
Therefore, as 7,,(x)—0 as n — =,

1
(Pn2(X) = P) d12(X) = Znz + Tnz @.5. O(—— Ogn)l/z
i.e.pn2(X)—p= O(l"%)l/2 a.s. for each x as n—.
(I) is an immediate consequence of part(l). Hence the result follows.

Corollary 2.3: Under the conditions of Theorem 2.1 on {Fi(x)},

logn

L. Pr1(x) —p =O( )2 a.s.
I Z(x) = Ho() - HX) = O('%™)2 as. as n — =

Proof: The proof follows exactly the similar line of argument as for the proof of
Theorem 2.3.
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3. Optimal bandwidth a,, o

We select the optimal a,, ,,,; as that a,, for which MSE (p,, ,(x)) is the minimum.

OMSE (pn,2 (%))

Solving the equation =0 for ay;

. Hp () [1-Hp ()] -vp, n
ie. M = MSE(p,,,(x))= Lo@L-mnOIvnr) an ¢ () + at £2,(x)

n n

2L 20=-26,,(0) +4a) &2,()

dan
so that

_r $n1(®) -
An,opt = [m]”3 -n13 (3.1)

where &,,(x) = AP (91 (K), €2,(0= 2 B (3 (K), () = 2 ek OdK (1)

4. Comparisons between the estimators

We first compare the performance of the proposed smoothed estimator p;, ,(X)
with Boes-James type estimator pn1(X), when Hi(x), Hz2(x) are known based on
the minimum mean square error (MSE) criterion under non-i.i.d. set-up. Note that
from Theorem 2.1 and Corollary 2.1,

MSE (py2(x)) < MSE (pn1(x))
1F 42 A () > % A" ()2 (<)
If @, AP (0 1 (<) > naf B A (3 (<)] (4.1)

for finite values of n. Since both terms on the left side of the above inequality are
always positive and in view of nat — 0 for moderate n, (4.1) holds. The gain in
precision of p, ,(X) over pn,1(x) is defined as

MSE (pn,l(x))_ MSE (pn,Z (X)) X 1 00
MSE (pn,1 (X)) '

5. Monte Carlo Simulation

A simulation study is carried out in the estimation of p by p, ;(x); j=1,2 when
two component distributions are known and are estimated by using empirical
distribution function and kernel distribution function for Normal and Exponential
populations. The procedure is given in appendix A.
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Table 5.1. Simulation results of p, ;(x,) and p, ;(x,) for different sets N of
sample size n with p=0.5 and Xo = -2, -1, -0.5, 0.5, 1, 2 and Xo =
0.2, 0.3,0.33, 0.4, 0.5, 0.6 for Exponential population

H(x)=N(Bt1;,0.5%), Hy(x)= N(Bt;;,3?),

H(X)=N(Bt;,(2.151)?)

H,(x)=Exp(2), H,(x)=Exp(3),
H(x)=Weibull(1.25,k=0.5)

p=0.5 N WSE p=0.5 WSE

Pn.1(%0) | Pn.2(xo) Efficiency Pn.1(%0)| Pn.2(x0) Efficiency
Pn.1(%o)| Pn.2(%0) Pn.1(%o)| Pn.2(%0)

10| 0.538 | 0.119| 0.026 | 0.006 | 78.03 069 | 0.76 | 0.11 | 0.02 | 8011
vopl 25| 0525 | 0100] 0035 | 00n1| 7004 | 067 [ 076 012] 003 [ 704
n12|50] 0.525 | 0.144| 0039 | 0.013| 66.12 | ne15| 0.58 | 0.74 | 012 | 004 | 6131
75| 0.516 | 0.148 | 0.044| 0.014| 67.36 054 | 076 | 011 | 0.04 | 59.82
10{ 0531 | 0.154 0.039 | 0.014| 64.12 050 | 0.75 | 0.10 | 0.05 | 4881
10] 0.369 | 0.228| 0.051| 0.017| 67.21 0.1889| 0.865 | 0.055| 0.011| 79.59
25| 0.431 | 0.248] 0.059 | 0.015| 7457 0211 0874 0.062| 0.010| 8334
X 250 0.383 | 0249 0.054] 0.024| 55.66 |*Z0% 0211 0.868 [ 0.062| 0.012| 80.19
75| 0.377 | 0.252| 0.047 0.025| 47.14 0.211] 0.869 | 0.062| 0.012| 81.22
10 0376 | 0.249| 0.048 | 0.024| 49.31 0.211| 0.867| 0.062| 0.012| 80.19
10{ 0.460 | 0.300| 0.106 | 0.038| 64.14 057 | 0.86 |0.1810/0.0614| 66.09
xo= |25 0362 | 0265 ] 0081 ] 0032 | eose | [ 032 | oe7 |ooseofo0rzr] e
0.5 |50 0.405 | 0.257] 0.078| 0039 | 49.74 X939 034 [ 0.8 |0.0734[0.0104 8583
"=12(75| 0.402 | 0.255 | 0.074| 0.089 | 45.84 0.33 | 0.89 |0.0717]0.0082 88.62
100 0396 | 0.248 | 0.077| 0.038| 49.66 0.35 | 088 |0.0757|0.0115 84.84
10| 0.463 | 0.388 | 0.041] 0.033| 19.42 050 | 0.85 | 0.08 | 0.02 | 7361
25| 0.446 | 0.360 | 0.042 | 0.028| 32.43 0.40 | 0.89 | 0.07 | 0.01 | 8350
Xo~0%50] 0438 | 0.342] 0051 0.031] 38.39 [*"D4 034 | 0.90 | 005 | 0.01 | 8567
75| 0.475 | 0.335| 0.066 | 0.032| 51.79 030 | 090 | 004 | 0.01 | 75.67
100 0.461 | 0.325 | 0.068 | 0.033| 50.95 0.28 | 0.90 | 0.03 | 0.01| 6591
10 058 | 016 | 0.081] 0.021| 7355 0.47 | 0.35 | 0.08 | 0.05 | 4227
25 052 | 0.16 | 0.067| 0.017| 74.28 049 | 047 | 009 | 0.07 | 19.86
X 1ls0| 051 | 019 | 0.061] 0.021[ e5.02 | %70 0.30 | 0.40 | 0.08 | 0.06 | 26.23
75| 0.47 | 0.17 | 0.061| 0.022| 6430 0.44 | 043 | 0.08 | 007 | 2128
10{ 047 | 0.18 | 0.056| 0.024| 57.39 040 | 0.41 | 0.08 | 0.06 | 2423
10] 0.439 | 0.127] 0.045] 0.012| 73.97 0.071| 0.879| 0.034| 0.011| 67.70
25| 0.512 | 0.135] 0.036 | 0.012| 67.50 0.083 | 0.836 | 0.039| 0.025| 36.48
X 2150 0525 | 0.169 | 0,030 [ 0.022| 4346 |*0P 0.071[ 0822] 0.034] 0.028] 17.11
75| 0.494 | 0.163| 0.053| 0.024| 5391 0.075 | 0.827| 0.036 | 0.027| 24.21
10{ 0518 | 0.153 | 0.047| 0.021| 55.75 0.071| 0.822| 0.034] 0.028| 17.16
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6. Comments

In the paper it is shown that when the component normal populations with
parameters are N(Bt1,0.25), N(Bt2,9) and the mean value of estimate pn,1(Xo) and
pn2(Xo) is close to its actual value p. The simulation results show that MSE for
smoothed parametric estimator is less than that of unsmoothed estimator for
different values of x, uniformly for all samples. Thus, the smoothed estimator is a
better estimator in terms of minimum MSE when compared to BJ estimator. The
average gain in efficiency due to smoothing lies between 19% to 88% for different
sets N of size n.
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APPENDIX A

Random samples of sizes ni=6 and n:=6 are generated from the two
component mixtures of the normal populations with parameters (u,,u,)=(Bt1i,pt2i)
and (0f,0%)=(0.52,32) and with parameters (6,,0,) = (2,3) for Exponential
populations. The mixed sample of size n = ni+nz2 = 12 is generated from the
normal population with parameters (u = pu;+qu,) = (Bt=pBti+qPtz) and o2 =
(po?+go?), and in the case of Exponential population, the mixed sample is drawn
from Weibull population with shape parameter k less than 1. Since Weibull
distribution with shape parameter k<1 arises as a mixture of Exponential
distributions (Jewel 1982), the samples of sizes n, n1, n2 are independent. Taking

p=qg= 0.5, B=0.1 and ti= ¥ j ;j=1,2,6 =1.5 are selected in such a way that ) t;

=0 and Yt? — 0. The present simulation study is to estimate parametric
estimators such as pn,1(x) and pn2(x) for x=xo defined as follows.

Hp (x0)— Hz (x0)
Hj (x0)— Hz(x0)

Hy (x0)— Ha (x0)

and - pna(xo) = Hy (x9)— Hz(x0)

Pni(xo) =

where H,(x,), H,(x,) are estimated by the usual empirical and kernel-based
distribution functions and H;(x), j=1,2 such as

Hn(x) == ™, I(Xi < x) , if I(Xi < x), assign 1 otherwise 0.

An(xo) = 0t BIL, K2, H(x)——zl L Fiu(xo)-

Here, we used the Epanechnikov kernel function as k(u) = % (1 - u?); |lul<1 for

Normal distribution, and for Exponential distribution we used Gaussian kernel
u2
function as k(u) = e z. The distribution function of the Epanechnikov kernel

function is

\/—_

Xo— Xj :E XO—Xi_l Xo— Xj 3+E
e ] R

Thus, the estimators becomes

n ZL 11X <x0)—— Zl 1F21(X0)

1(X
Pri(%o) = o T FriCxo)— oz E12, Fai(xo)
nt 5, k(L X‘)——z F2i(x0)
pn2(%) = — ot o 2 (5.1)

n1 Tt i=1 F1i(x0)— E ZL=1 F2i(x0)

where Fj;(x) are the cumulative distribution functions of Normal distribution and
Exponential distribution.
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All computations are done by using MS Excel, and the procedure is as

follows.

1.
2.

Generate n uniform random numbers between (0,1).

Generate the cumulative distribution function of Normal and Exponential
distribution by taking different means ftj and variances sz; j=1,2 at x = x,
Generate the mixed normal and Weibull observations by taking different
means Bt = pPtui + Btz and variance ¢? = po? + qof and 6 = po, + g6,
respectively with k<1.

Calculate (5.1) by taking Xo = -2, -1, -0.5, 0.5, 1, 2 related to Normal
distribution and Xo= 0.2, 0.3, 0.33, 0.4, 0.5, 0.6 related to Exponential
distribution.

Generate N=100 mixed and component independent sample sets with sample

sizes n=12 and ni= 6 and nz=6, so that n = ni+n2 and calculate pn1(xo) and
pn2(Xo), their mean values p,, j(x,) = % 2. pn,j (o) and their mean square errors

MSE (py j(x0)) = % 1(Pnj(x0) - Pnj(%0))? ; j=1,2. Sets are ignored when p 21.
The results are presented in table 5.1.



