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EXTENDED EXPONENTIATED POWER LINDLEY DISTRIBUTION

V. Ranjbar1, M. Alizadeh2, G. G. Hamedani3

ABSTRACT

In this study, we introduce a new model called the Extended Exponentiated Power
Lindley distribution which extends the Lindley distribution and has increasing, bath-
tub and upside down shapes for the hazard rate function. It also includes the power
Lindley distribution as a special case. Several statistical properties of the distribu-
tion are explored, such as the density, hazard rate, survival, quantile functions, and
moments. Estimation using the maximum likelihood method and inference on a ran-
dom sample from this distribution are investigated. A simulation study is performed
to compare the performance of the different parameter estimates in terms of bias
and mean square error. We apply a real data set to illustrate the applicability of the
new model. Empirical findings show that proposed model provides better fits than
other well-known extensions of Lindley distributions.
Key words:Power Lindley distribution, Structural properties, Failure-time, Maximum
likelihood estimation.

1. Introduction

The statistical analysis and modeling of lifetime data are essential in almost all ap-
plied sciences such as, biomedical science, engineering, nance, and insurance,
amongst others. A number of one-parameter continuous distributions for modelling
lifetime data has been introduced in statistical literature including exponential, Lind-
ley, gamma, lognormal, and Weibull. The exponential, Lindley and Weibull dis-
tributions are more popular than the gamma and lognormal distributions because
the survival functions of the gamma and the lognormal distributions cannot be ex-
pressed in closed forms and both require numerical integration. The Lindley distri-
bution is a very well-known distribution that has been extensively used over the past
decades for modeling data in reliability, biology, insurance, and lifetime analysis. It
was introduced by Lindley (1985) to analyze failure time data, especially in appli-
cations of modeling stress-strength reliability. The motivation for introducing the
Lindley distribution arises from its ability to model failure time data with increasing,
decreasing, unimodal and bathtub shaped hazard rates. It may also be mentioned
that the Lindley distribution belongs to an exponential family and it can be written
as a mixture of an exponential and a gamma distributions. This distribution repre-
sents a good alternative to the exponential failure time distributions that suffer from
not exhibiting unimodal and bathtub shaped failure rates (Bakouch et al. (2012)).
The properties and inferential procedure for the Lindley distribution were studied by
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Ghitany et al. (2008, 2013). They show via a numerical example that the Lindley
distribution gives better modeling than the one based on the exponential distribu-
tion when hazard rate is unimodal or bathtub shaped. Furthermore, Mazucheli and
Achcar (2011) showed that many of the mathematical properties are more exible
than those of the exponential distribution and proposed the Lindley distribution as a
possible alternative to exponential or Weibull distributions. The need for extended
forms of the Lindley distribution arises in many applied areas. The emergence of
such distributions in the statistics literature is quite recent. For some extended forms
of the Lindley distribution and their applications, the interested reader is referred to
Kumaraswamy Lindley (Cakmakyapan and Ozel, (2014)), beta odd log-logistic Lind-
ley (Cordeiro et al., (2015)), generalized Lindley (Nadarajah et al., (2011)), quasi
Lindley distributions (Shanker and Mishra, (2013) ).

The probability density function (pdf) and cumulative distribution function (cdf )
of the power Lindley distribution are given respectively by

f (x) =
λ 2

1+λ
βxβ−1e−λxβ

,

F(x) = 1− (1+
λ xβ

1+λ
)e−λ xβ

. (1)

It can be seen that this distribution is a mixture of Exponential and gamma dis-
tributions. Having only one parameter, the Lindley distribution does not provide
enough exibility for analyzing different types of lifetime data. To increase the exi-
bility for modeling purposes it will be useful to consider further alternatives to this
distribution. Our purpose here is to provide a generalization that may be useful for
more complex situations. Once the proposed distribution is quite exible in terms of
pdf and hazard rate function (hrf), it may provide an interesting alternative for de-
scribing income distributions and can also be applied in actuarial science, nance,
bioscience, telecommunications and modeling lifetime data. Therefore, goal is to
introduce a new distribution using the Lindley distribution. Alizadeh et.al (2017),
introduced a new class of exponentiated distributions which called Extended Expo-
nentiated distribution (EE-G). The cdf and pdf of this family are given by

F(x;α,γ,ξ ) =
∫ G(x;ξ )α

1−G(x;ξ )γ

0

dt
(1+ t)2 dt =

G(x;ξ )α

G(x;ξ )α +1−G(x;ξ )γ
(2)

f (x;α,γ,ξ ) =
g(x;ξ )G(x;ξ )α−1 [α +(γ−α)G(x;ξ )γ ]

[G(x;ξ )α +1−G(x;ξ )γ ]2
, (3)

where α,γ > 0 are two shape parameters and ξ is the vector of parameters for
baseline cdf G. For α = γ, it contains exp-G family of distributions. Taking G(x;ξ )

as power Lindley distribution with parameters λ ,β , we introduce a new extension of
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Exponentiated power Lindley distribution.
The article is outlined as follows: In Section 2, we introduce the EE-PL distribu-

tion and provide plots of the density and hazard rate functions. Shapes, quantile
function, moments, and moment generating function are also obtained. Moreover,
mean deviation, Lorenz and Bonferroni curves, order statistics and finally a simula-
tion study are presented in this section. In section 3, the asymptotic properties and
extreme values are obtained. Estimation by the method of maximum likelihood and
an explicit expression for the observed information matrix are presented in Section
4. The characterizations of EE-PL distribution are presented in Section 5. The Ap-
plications to real data sets are considered in Section 6. Finally, Section 7 offers
some concluding remarks.

2. Main properties

2.1. Probability Density and Cumulative Distribution Functions

Inserting (1) in (2), the cdf of the EE-PL with four parameters (α,β ,γ,λ > 0) is
defined by

F(x;α,β ,γ,λ ) =

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

+1−
[
1− (1+ λ xβ

1+λ
)e−λ xβ

]γ , x≥ 0 (4)

The corresponding pdf for x > 0 is given by

f (x;α,β ,γ,λ ) = λ
2

β xβ−1(1+ xβ )e−λ xβ

[
1− (1+

λ xβ

1+λ
)e−λ xβ

]α−1

×

{
α +(γ−α)

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]γ}
(1+λ )

{[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

+1−
[
1− (1+ λ xβ

1+λ
)e−λ xβ

]γ}2 , (5)

where λ is a scale parameter α,β and γ are the shape parameters. Here, α and β govern the
skewness of (5). A random variable X with the pdf (5) is denoted by X ∼ EE−PL(α,β ,γ,λ ).
It is easy to see that:

• For β = 1, we obtain Extended Generalized Lindley by Ranjbar et al. (2018).

• For α = γ, we obtain Exponentiated power Lindley.

• For α = γ and β = 1, we obtain Generalized Lindley.

• For α = γ = 1, we obtain Power Lindley.

• For α = γ = β = 1, we obtain Lindley.

Some of the possible shapes of the density function (5) for the selected parameter val-
ues are illustrated in Figure 1. As seen in Figure 1, the density function can take various
forms depending on the parameter values. It is evident that the EE-LP distribution is much
more flexible than the power Lindley distribution, i.e. the additional shape parameter allows
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Figure 1: Plots of Pdf of the EE-PL model for selected λ ,α,γ and β .

for a high degree of flexibility of the EE-PL distribution. Both unimodal and monotonically
decreasing and increasing shapes appear to be possible.

2.2. Survival and Hazard Rate Functions

Central role is played in the reliability theory by the quotient of the pdf and survival function.
We obtain the survival function corresponding to (4) as

S(x;λ ,α,γ,β ) =
1−
[
1− (1+ λ xβ

1+λ
)e−λ xβ

]γ

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

+1−
[
1− (1+ λ xβ

1+λ
)e−λ xβ

]γ . (6)

In reliability studies, the hrf is an important characteristic and fundamental to the design
of safe systems in a wide variety of applications. Therefore, we discuss these properties of
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Figure 2: Hazard rate functions of the EE-PL model for selected λ ,α,γ and β .

the EE-LP distribution. The hrf of X takes the form

h(x;λ ,α,γ,β ) = λ
2

β xβ−1(1+ xβ )e−λ xβ

[
1− (1+

λ xβ

1+λ
)e−λ xβ

]α−1

×

{
α +(γ−α)

[
1− (1+

λ xβ

1+λ
)e−λ xβ

]γ}
/[{(

1− (1+
λ xβ

1+λ
)e−λ xβ

)α

+1−

(
1− (1+

λ xβ

1+λ
)e−λ xβ

)γ}

×

{
1−

[
1− (1+

λ xβ

1+λ
)e−λ xβ

]γ}]
, x > 0. (7)

Plots of the hrf of the EE-PL distribution for several parameter values are displayed
in Figure 2. Figure 2 shows that the hrf of the EE-PL distribution can have very flexible
shapes, such as increasing, decreasing, bathtub followed by upside down bathtub, and bath-
tub shapes for the selected values of the model parameters. This attractive flexibility makes
the hrf of the EE-PL distribution useful and suitable for non-monotone empirical hazard be-
haviors which are more likely to be encountered or observed in real life situations.

2.3. Mixture representations for the pdf and cdf

In this subsection, we provide alternative mixture representations for the pdf and cdf of X .
Some useful expansions for (4) can be derived by using the concept of power series. We
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have

[1− (1+
λ

1+λ
xβ )e−λxβ

]α =
∞

∑
i=1

(−1)i
(

α

i

)
[1+

λ

1+λ
xβ )e−λxβ

]i

=
∞

∑
i=1

i

∑
k=0

(−1)i+k
(

α

i

)(
i
k

)
[1− (1+

λ

1+λ
xβ )e−λxβ

]k

=
∞

∑
k=0

∞

∑
i=k

(−1)i+k
(

α

i

)(
i
k

)
[1− (1+

λ

1+λ
xβ )e−λxβ

]k

=
∞

∑
k=0

ak[1− (1+
λ

1+λ
xβ )e−λxβ

]k,

where ak = ak(α) = ∑
∞
i=k(−1)i+k(α

i
)( i

k
)
. Also

[1− (1+
λ

1+λ
xβ )e−λxβ

]α +1− [1− (1+
λ

1+λ
xβ )e−λxβ

]γ =
∞

∑
k=0

bk[1− (1+
λ

1+λ
xβ )e−λxβ

]k,

where b0 = a0(α)+ 1− a0(γ) and bk = ak(α)− ak(γ) for k ≥ 1. Then using the ratio of two
power series, we can write

F(x) =
∑

∞
k=0 ak[1− (1+ λ

1+λ
xβ )e−λxβ

]k

∑
∞
k=0 bk[1− (1+ λ

1+λ
xβ )e−λxβ

]k

=
∞

∑
k=0

ck[1− (1+
λ

1+λ
xβ )e−λxβ

]k, (8)

where c0 =
a0
b0

and for k ≥ 1,

ck =
1
b0

[ak−
1
b0

k

∑
r=1

brck−r]. (9)

Equation (8) shows that we can write the cdf of EE-PL as a Linear combination of generalized
lindly distribution. Then we can write

f (x) =
∞

∑
k=0

ck+1
(k+1)λ 2β xβ−1(1+ xβ )

1+λ
e−λxβ

[1− (1+
λ

1+λ
xβ )e−λxβ

]k.

2.4. Moments and Moment Generating Function

Some of the most important features and characteristics of a distribution can be studied
through moments (e.g. tendency, dispersion, skewness and kurtosis). Now we obtain or-
dinary moments and the moment generating function (mgf) of the EE-PL distribution. We
define and compute

A(a1,a2,a3,a4;λ ,β ) =
∫

∞

0
xa1 (1+ xβ )a2 e−a3 xβ

[
1− (1+

λ

1+λ
xβ )e−λxβ

]a4

dx. (10)
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Using generalized binomial expansion, one can obtain

A(a1,a2,a3,a4;λ ,β ) =
∞

∑
l,r=0

l

∑
k=0

(−1)l
(

a4

l

)(
l
k

)(
a2

r

)
(

λ

1+λ
)l ×

Γ( a1+1
β

+ k+ r)

β (λ l +a3)
a1+1

β
+k+r

.

(11)

Next, the nth moment of the EE-PL distribution is given by

E [Xn] =
λ 2 β

1+λ

∞

∑
k=0

k ck A(n+β −1,1,λ ,k;λ ,β ). (12)

For integer values of k, let µ ′k = E(Xk) and µ = µ ′1 = E(X), then one can also find the kth
central moment of the EE-PL distribution through the following well-known equation

µk = E(X−µ)k =
k

∑
r=0

(
k
r

)
µ
′
r(−µ)k−r. (13)

The moment generating function of a random variable provides the basis of an alternative
route to analytical results compared with working directly with its pdf and cdf. Using (12) and
(13), we obtain

MX (t) = E
[
etX
]
=

λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 A(k+1,λ ,0,λ − t).

Using (13), the variance, skewness and kurtosis measures can be obtained. Skewness
measures the degree of the long tail and kurtosis is a measure of the degree of tail heaviness.
For the EE-PL distribution, The skewness can be computed as

S =
µ3

µ
3/2
2

=
µ ′3−3µ ′2µ ′1 +2µ ′31

(µ ′2−µ ′21 )3/2

and the kurtosis is based on octiles as

K =
µ4

µ2
2
=

µ ′4−4µ ′1µ ′3 +6µ ′21 µ ′2−3µ ′41
µ ′2−µ ′21

.

When the distribution is symmetric S = 0, and when the distribution is right (or left) skewed
S > 0(or S < 0). As K increases, the tail of the distribution becomes heavier. These measures
are less sensitive to outliers and they exist even for distributions without moments.
We present first four ordinary moments, skewness and kurtosis of the EE-PL distribution for
various values of the parameters in Table 1. Plots for skewness and kurtosis, when λ = 2,
are presented in Figure 3.

Next, we define and compute

B(a1,a2,a3,a4;y,λ ,β ) =
∫ y

0
xa1 (1+ xβ )a2 e−a3 xβ

[
1− (1+

λ

1+λ
xβ )e−λxβ

]a4

dx. (14)
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Table 1: Moments, skewness, and kurtosis of the EE-PL dist. for the some parameter
values.

λ α β γ µ ′1 µ ′2 µ ′3 µ ′4 Skewness Kurtosis
2.0 0.5 0.5 0.5 0.457 1.788 16.97 289.197 7.4082 164.75
2.0 0.5 0.5 1.0 0.413 0.457 0.783 1.7888 2.3382 3.052
2.0 0.5 0.5 3.0 0.608 0.468 0.413 0.4004 0.2704 0.243
2.0 0.5 1.0 0.5 0.752 3.384 33.41 575.819 5.6285 172.40
2.0 0.5 1.0 1.0 0.571 0.752 1.413 3.3844 1.7824 3.070
2.0 0.5 1.0 3.0 0.688 0.592 0.571 0.5947 0.0234 0.261
2.0 0.5 2.0 0.5 1.176 6.223 65.03 1142.245 4.3521 182.28
2.0 0.5 2.0 1.0 0.750 1.176 2.445 6.2232 1.3397 3.107
2.0 0.5 2.0 3.0 0.757 0.716 0.750 0.8367 -0.1566 0.288
2.0 2.0 0.5 0.5 0.655 2.028 17.57 291.944 7.0008 156.70
2.0 2.0 0.5 1.0 0.646 0.655 0.981 2.0282 2.1655 2.572
2.0 2.0 0.5 3.0 0.818 0.708 0.646 0.619 0.4272 0.134
2.0 2.0 1.0 0.5 0.985 3.744 34.46 580.961 5.4788 167.33
2.0 2.0 1.0 1.0 0.806 0.985 1.678 3.7447 1.7687 2.701
2.0 2.0 1.0 3.0 0.882 0.822 0.806 0.8272 0.2475 0.140
2.0 2.0 2.0 0.5 1.437 6.729 66.76 1151.513 4.3391 179.76
2.0 2.0 2.0 1.0 0.986 1.437 2.781 6.7291 1.4076 2.814
2.0 2.0 2.0 3.0 0.943 0.941 0.986 1.0779 0.0508 0.150

From the generalized binomial expansion, we have

B(a1,a2,a3,a4;a,λ ,β )

=
∞

∑
l,r=0

l

∑
k=0

(−1)l
(

a4

l

)(
l
k

)(
a2

r

)
(

λ

1+λ
)l ×

γ( a1+1
β

+ k+ r, y
1
β

λ l+a3
)

β (λ l +a3)
a1+1

β
+k+r

,

(15)

where γ(λ ,z) =
∫ z

0 tλ−1 e−t dt denotes the incomplete gamma function. Now, the nth incom-
plete moment of the EE-PL distribution is found to be

mn(y) = E [Xn |X < y] =
λ 2 β

1+λ

∞

∑
k=0

(k+1)ck+1 B(n+β −1,1,λ ,k,y;λ ,β ). (16)

2.5. Mean Deviations, Lorenz and Bonferroni Curves

Mean deviation about the mean and mean deviation about the median as well as Lorenz and
Bonferroni curves for the EE-PL distribution are presented in this section. Bonferroni and
Lorenz curves are widely used tool for analyzing and visualizing income inequality. Lorenz
curve, L(p) can be regarded as the proportion of total income volume accumulated by those
units with income lower than or equal to the volume y, and Bonferroni curve, B(p) is the
scaled conditional mean curve, that is, ratio of group mean income of the population.
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Figure 3: Values of skewness and kurtosis of EE-PL for some values of α,β and γ.

2.5.1 Mean deviations

The amount of scatter in a population may be measured to some extent by deviations from
the mean and median. These are known as the mean deviation about the mean and the
mean deviation about the median, defined by

δ1 (X) =
∫

∞

0
|x−µ| f (x)dx,

and

δ2 (X) =
∫

∞

0
|x−M| f (x)dx.

respectively, where µ = E(X) and M = Median(X) = Q(0.5) denotes the median and Q(p) is
the quantile function. The measures δ1 (X) and δ2 (X) can be calculated using the relation-
ships

δ1 (X) = 2µ F(µ)−2
∫

µ

0
x f (x)dx

and

δ2 (X) = µ−2
∫ M

0
x f (x)dx

Finally have

δ1 (X) = 2µ F(µ)− β λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 A(β ,1,λ ,k;λ ,β ),

and

δ2 (X) = µ− 2β λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 B(β ,1,λ ,k;M,λ ,β ).
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2.5.2 Bonferroni and Lorenz curves

The Bonferroni and Lorenz curves have applications in economics as well as other fields like
reliability, medicine and insurance. Let X ∼ EE−PL(λ ,β ,α,γ) and F(x) be the cdf of X , then
the Bonferroni curve of the EE-PL distribution is given by

B(F(x)) =
1

µ F(x)

∫ x

0
t f (t)dt,

where µ = E(X). Therefore, from (15), we have

B(F(x)) =
1

µ F(x)
× β λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 B(β ,1,λ ,k;x,λ ,β ).

The Lorenz curve of the EE-PL distribution can be obtained using the relation

L(F(x)) = F(x)B(F(x)) =
1
µ
× β λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 B(β ,1,λ ,k;x,λ ,β ).

2.6. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Sup-
pose X1, . . . ,Xn is a random sample from any EE-PL distribution. Let Xi:n denote the ith order
statistic. The pdf of Xi:n can be expressed as

fi:n(x) = K f (x)F i−1(x) {1−F(x)}n−i = K
n−i

∑
j=0

(−1) j
(

n− i
j

)
f (x)F(x) j+i−1,

where K = 1/B(i,n− i+ 1). We use the result of Gradshteyn and Ryzhik for a power series
raised to a positive integer n (for n≥ 1)(

∞

∑
i=0

ai ui

)n

=
∞

∑
i=0

dn,i ui, (17)

where the coefficients dn,i (for i = 1,2, . . .) are determined from the recurrence equation (with
dn,0 = an

0)

dn,i = (ia0)
−1

i

∑
m=1

[m(n+1)− i]am dn,i−m. (18)

We can show that the density function of the ith order statistic of any EGL distribution can be
expressed as

fi:n(x) =
∞

∑
r,k=0

mr,k fEPL(x;λ ,β ,r+ k+1), (19)

where fEPL(x;λ ,β ,r + k + 1) denotes the density function of exponentiated power Lindley
distribution with parameters λ ,β and r+ k+1,

mr,k =
n!(r+1)(i−1)!cr+1

(r+ k+1)

n−i

∑
j=0

(−1) j f j+i−1,k

(n− i− j)! j!
.
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Here, cr is given by (9) and the quantities f j+i−1,k can be determined given that f j+i−1,0 =

c j+i−1
0 and recursively we have:

f j+i−1,k = (k c0)
−1

k

∑
m=1

[m( j+ i)− k]cm f j+i−1,k−m,k ≥ 1.

Equation (19) is the main result of this section. It reveals that the pdf of the ith order
statistic is a triple linear combination of exponentiated power Lindley distributions. There-
fore, several mathematical quantities of these order statistics like ordinary and incomplete
moments, factorial moments, mgf, mean deviations and others can be derived using this
result.

2.7. Simulation study

In this section, we propose Inverse cdf method for generating random data from the EE-PL
distribution. If U ∼U(0,1), the solution of non-linear equation

u =

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

+1−
[
1− (1+ λ ,xβ

1+λ
)e−λ xβ

]γ (20)

has cdf (4).

3. Asymptotic Properties and Extreme Value

One of the main usage of the idea of an asymptotic distribution is in providing approximations
to the cumulative distribution functions of the statistical estimators. Moreover, the extreme
value theory is a branch of statistics dealing with the extreme deviations from the median
of probability distributions. It seeks to assess, from a given ordered sample of a given ran-
dom variable, the probability of events that are more extreme than any previously observed.
Extreme value analysis is widely used in many disciplines,

3.1. Asymptotic properties

The asymptotic of cdf, pdf and hrf of the EE-PL distribution as x→ 0 are, respectively, given
by

F(x)∼ (λxβ )α as x→ 0,

f (x)∼ αβλ
α xαβ−1 as x→ 0,

h(x)∼ αβλ
α xαβ−1 as x→ 0.
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The asymptotic of cdf, pdf and hrf of the EE-PL distribution as x→ ∞ are, respectively, given
by

1−F(x)∼ γλ

1+λ
xβ e−λxβ

as x→ ∞,

f (x)∼ βγλ 2

1+λ
x2β−1e−λxβ

as x→ ∞,

h(x)∼ βλxβ−1 as x→ ∞.

These equations show the effect of parameters on the tails of the EE-PL distribution.

3.2. Extreme Value

Let X1, ...,Xn be a random sample from (5) and X̄ = (X1 + ...+ Xn)/n denote the sample
mean, then by the usual central limit theorem, the distribution of

√
n(X̄ −E(X))/

√
Var(X)

approaches the standard normal distribution as n→ ∞. Sometimes one would be interested
in the asymptotic of the extreme values Mn = max(X1, ...,Xn) and mn = min(X1, ...,Xn). For 4,
it can be seen that

lim
t→0

F(t x)
F(t)

= xαβ ,

and

lim
t→∞

1−F(t x)
1−F(t)

= e−αλ xβ

.

Thus, it follows from Theorem 1.6.2 in Leadbetter et al. (1983) that there must be norming
constants an > 0,bn,cn > 0 and dn such that

Pr [an(Mn−bn)≤ x]→ e−e−λα xβ

,

and
Pr [an(mn−bn)≤ x]→ 1− e−xαβ

,

as n→ ∞. Using Corollary 1.6.3 of Leadbetter et al. (1983), we can obtain the form of
normalizing constants an, bn, cn and dn.

4. Estimation

Several approaches for parameter estimation have been proposed in the literature but the
maximum likelihood method is the most commonly employed. Here, we consider estimation
of the unknown parameters of the EE-PL distribution by the method of maximum likelihood.
Let x1,x2, ...,xn be observed values from the EE-PL distribution with parameters α,β ,γ and
λ . The log-likelihood function for (α;β ;γ;λ ) is given by

`n = 2n log(λβ )+(β −1)
n

∑
i=1

log(xi)+β

n

∑
i=1

log(1+ xi)−λ

n

∑
i=1

xi

+(α +1)
n

∑
i=1

logki +
n

∑
i=1

log(α +(γ−α)kα
i )−2

n

∑
i=1

log(kα
i +1− kγ

i )
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where

ki = 1− (1+
λ

1+λ
xβ

i )e
−λxβ

i .

The derivatives of the log-likelihood function with respect to the parameters α,β ,γ and λ are
given respectively, by

∂`n

∂α
=

n

∑
i=1

logki +
n

∑
i=1

1− kα−1
i (α + ki)

α +(γ−α)kα
i
−2

n

∑
i=1

αkα−1
i

kα
i +1− kα

i

∂`n

∂β
=

2n
β

+
n

∑
i=1

log(xi(xi +1))+(α−1)
n

∑
i=1

k(β )i
ki

+
n

∑
i=1

α(γ−α)kα−1
i k(β )i

α +(γ +α)kα
i

−2
n

∑
i=1

αk(β )i kα−1
i − γk(β )i kγ−1

i

kα
i +1− kγ

i

∂`n

∂γ
=

n

∑
i=1

kα
i

α +(γ−α)kα
i
+2

n

∑
i=1

kγ

i log(ki)

kα
i +1− kγ

i

∂`n

∂λ
=

2n
λ
−

n

∑
i=1

xi +(α−1)
n

∑
i=1

k(λ )i
ki

+
n

∑
i=1

α(γ−α)kα−1
i k(λ )i

α +(γ +α)kα
i

−2
n

∑
i=1

αk(λ )i kα−1
i − γk(λ )i kγ−1

i

kα
i +1− kγ

i
,

where

k(β )i =
∂ki

∂β
=

[
1+

λ

λ +1
(xβ

i −1)
]

xβ

i e−λxβ

i logxi

k(λ )i =
∂ki

∂λ
= xβ

i e−λxβ

i

[
1+

λ

λ +1
xβ

i +
1

(1+λ )2

]
.

The maximum likelihood estimates (MLEs) of (α;β ;γ;λ ) , say (α̂; β̂ ; γ̂; λ̂ ), are the simultane-
ous solution of the equations ∂`n

∂α
= 0; ∂`n

∂β
= 0; ∂`n

∂γ
= 0; ∂`n

∂λ
= 0.

For estimating the model parameters, numerical iterative techniques should be used to
solve these equations.We can investigate the global maxima of the log-likelihood by set-
ting different starting values for the parameters. The information matrix will be required for
interval estimation. Let θ = (α;β ,γ,λ )T , then the asymptotic distribution of

√
n(θ − θ̂) is

N4(0,K(θ)−1), under standard regularity conditions (see Lehmann and Casella, [?] 1998, pp.
461-463), where K(θ) is the expected information matrix. The asymptotic behavior remains
valid if K(θ)) is superseded by the observed information matrix multiplied by 1/n, say I(θ)/n,
approximated by θ̂ , i.e. I(θ̂)/n. We have

I(θ) =−


Iαα Iαβ Iαγ Iαλ

Iβα Iββ Iβγ Iβλ

Iγα Iγβ Iγγ Iγλ

Iλα Iλβ Iλγ Iλλ


where

Iαα =
∂ 2`n

∂α2 ; Iαβ = Iαβ =
∂ 2`n

∂α∂β
; Iαγ = Iαγ =

∂ 2`n

∂α∂γ
; Iαλ = Iαγ =

∂ 2`n

∂α∂λ
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Iβγ = Iγβ =
∂ 2`n

∂β∂γ
; Iβλ = Iλβ =

∂ 2`n

∂β∂λ
; Iγλ = Iλγ =

∂ 2`n

∂γ∂λ
.

5. Characterizations

This section deals with various characterizations of EE-PL distribution. These characteriza-
tions are presented in four directions: (i) based on the ratio of two truncated moments; (ii)
in terms of the hazard function; (iii) in terms of the reverse hazard function and (iv) based
on the conditional expectation of certain function of the random variable. It should be noted
that characterization (i) can be employed also when the cd f does not have a closed form.
We present our characterizations (i)− (iv) in four subsections.

5.1. Characterizations based on truncated moments

Our first characterization employs a theorem due to Glänzel (1986) , see Theorem 1 of
Appendix A. The result, however, holds also when the interval H is not closed since the
condition of Theorem 1 is on the interior of H. We like to mention that this kind of charac-
terization based on a truncated moment is stable in the sense of weak convergence (see,
Glänzel (1990)).

Let X : Ω→ (0,∞) be a continuous random variable and let

q1 (x) =

{
1+
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α

−
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]γ}2

{
α +(γ−α)

[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]γ}
and

q2 (x) = q1 (x)

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α

for x > 0. The random variable X belongs to the family (5) if and only if the function η defined
in Theorem1 has the form

η (x) =
1
2

{
1+

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α}
, x > 0.

Proof. Let X be a random variable with pd f (2.2), then

(1−F (x))E [q1 (X) | X ≥ x] =
1

α (1+λ )

{
1−

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α}
and

(1−F (x))E [q2 (X) | X ≥ x] =
1

2α (1+λ )

1−

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]2α
 .

Further,
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η (x)q1 (x)−q2 (x) =
q1 (x)

2

{
1−

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α}
> 0 f or x > 0

Conversely, if η is given as above, then

s′ (x) =
η ′ (x)q1 (x)

η (x)q1 (x)−q2 (x)
=

αβλ 2xβ−1
(

1+ xβ

)
e−λxβ

[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α−1

1−
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α , x > 0,

and hence

s(x) =−λ log

{
1−

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α}
, x > 0.

Now, according to Theorem 1, X has density (2.2) .

Let X : Ω→ (0,∞) be a continuous random variable and let q1 be as in Proposition (5.1).
Then, X has pd f (2.2) if and only if there exist functions q2 and η defined in Theorem 1
satisfying the differential equation

η ′ (x)q1 (x)
η (x)q1 (x)−q(x)

=
αβλ 2xβ−1

(
1+ xβ

)
e−λxβ

[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α−1

1−
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α , x > 0.

The general solution of the differential equation in Corollary (5.1) is

η (x) =

{
1−

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α}−1

×−∫ αβλ
2xβ−1

(
1+ xβ

)
e−λxβ

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α−1

(q1 (x))
−1 q2 (x)dx+D

 ,

where D is a constant. Note that a set of functions satisfying the above differential equation
is given in Proposition (5.1) with D = 1

2 .

For α = γ = 1, q1 (x)≡ 1 and q2 (x) = e−λxβ

, we have η (x) = 1
2 e−λxβ

, x> 0 , s′ (x) = λβxβ−1,

x > 0 and

η (x) = eλxβ

[
−
∫

λβxβ−1
(

1+ xβ
)

e−λxβ

q2 (x)dx+D
]
.

LitkowiecR
Pływające pole tekstowe
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5.2. Characterization in terms of the hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function, F ,
satisfies the first order differential equation

f ′(x)
f (x)

=
h′F (x)
hF (x)

−hF (x).

For many univariate continuous distributions, this is the only characterization available in
terms of the hazard function. The following characterization establishes a non-trivial charac-
terization of EE-PL,for α = γ = 1, in terms of the hazard function which is not of the above
trivial form.

Let X : Ω→ (0,∞) be a continuous random variable. Then, X has pdf (5), for α = γ = 1,
if and only if its hazard function hF (x) satisfies the differential equation

h′F (x)− (β −1)x−1hF (x) = λ
2
β

2x2(β−1)
(

1+λ +λxβ
)−2

, x > 0,

with the initial condition hF (0) = 0 for β > 1.

Proof. If X has pd f (2.2), for α = γ = 1, then clearly the above differential equation holds.
Now, if the differential equation holds, then

d
dx

{
x−(β−1)hF (x)

}
= λ

2
β

2

{
1+ xβ

1+λ +λxβ

}
or

hF (x) =
λ 2βxβ−1

(
1+ xβ

)
1+λ +λxβ

x > 0,

which is the hazard function of (2.2).

5.3. Characterization in terms of the reverse hazard function

The reverse hazard function, rF , of a twice differentiable distribution function, F , is defined
as

rF (x) =
f (x)
F (x)

, x ∈ support o f F.

In this subsection we present characterization of EE-PL distribution in terms of the re-
verse hazard function.

Let X : Ω→ (0,∞) be a continuous random variable. Then, X has pd f (2.2) if and only
if its reverse hazard function rF (x) satisfies the differential equation

LitkowiecR
Pływające pole tekstowe
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r′F (x)+λβxβ−1rF (x) =

λ 2βe−λxβ

1+λ

d
dx


xβ−1

(
1+ xβ

){
α +(γ−α)

[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]γ}
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]{
1+
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α

−
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]γ}
 ,

x > 0.

5.4. Characterization based on the conditional expectation of certain function of the
random variable

In this subsection we employ a single function ψ of X and characterize the distribution of
X ,for α = γ = 1, in terms of the conditional expectation of ψ. The following proposition has
already appeared in Hamedani’s previous work (2013), so we will just state it here which can
be used to characterize EE-PL distribution.

Let X : Ω→ (a,b) be a continuous random variable with cd f F . Let ψ (x) be a
differentiable function on (a,b) with limx→a+ ψ (x) = 1. Then for δ 6= 1 ,

E [ψ (X) | X > x] = δψ (x) , x ∈ (a,b) ,

if and only if

ψ (x) = (1−F (x))
1
δ
−1 , x ∈ (a,b) .

For α = γ = 1, (a,b) = (0,∞) , ψ (x) =
(

1+ λxβ

1+λ

)
e−λxβ

and δ = λ

1+λ
, Proposition 5.4 pro-

vides a characterization of the EE-PL distribution.

6. Application

In this section, we illustrate the fitting performance of the EE-PL distribution using a real
data set. For the purpose of comparison, we fitted the following models to show the fitting
performance of EE-PL distribution by means of real data set:
i) Lindley Distribution, L(λ ).
ii) Power Lindley distribution, PL(β ,λ ).
iii) Generalized Lindley, GL(α,λ ), (Nadarajah et al. (2011)), with distribution function given
by

F(x) =
(

1− (1+
λ x

1+λ
)e−λ x

)α

.

iv) Beta Lindley, BL(α,β ,λ ), with distribution function given by

F(x) =
∫ L(x,λ )

0
tα−1(1− t)β−1dt.
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v) Exponentiated power Lindley distribution, EPL(α,β ,λ ), with distribution function given by

F(x) =

(
1− (1+

λ xβ

1+λ
)e−λ xβ

)α

.

vi) Odd log-logistic power Lindley distribution OLL−PL(α,β ,λ ), (Alizadeh et al. (2017)), with
distribution function given by

F(x) =
PL(x,β ,λ )α

PL(x,β ,λ )α +(1−PL(x,β ,λ ))α
.

vii) Kumaraswamy Power Lindley, KPL(α,β ,γ,λ ) (Broderick et al. (2012))

F(x) = 1− [1−PL(x,β ,λ )α ]γ .

viii) Odd Burr-Power Lindley, OBu−PL(α,β ,γ,λ ) (Altun et al.(2017a))

F(x) = 1−
(

1− PL(x,β ,λ )α

PL(x,β ,λ )α +(1−PL(x,β ,λ ))α

)
.

ix) Extended Exponential Lindley, EE−L(α,γ,λ ), Ranjbar, et al. (accepted (2018)),

F(x) =
L(x,λ )α

L(x,λ )α +1− (1−L(x,λ ))γ
.

Estimates of the parameters of EE-PL distribution, Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Cramer Von Mises and Anderson-Darling statistics
(W ∗ and A∗) are presented for each dataset. We have also considered the Kolmogorov-
Smirnov (K-S) statistic and its corresponding p-value and the minimum value of the minus
log-likelihood function (-Log(L)) for the sake of comparison. Generally speaking, the smaller
values of AIC,BIC,W ∗ and A∗, the better fit to a data set. All the computations were carried
out using the software R.
Note that initial values of model parameters are quite important to obtain the correct MLEs
of parameters. To avoid local minima problem, we first obtain the parameter estimate of the
Lindley distribution. Then, the estimated parameter of the Lindley distribution is used as the
initial value of the parameter of the PL and GL distributions. Then, the estimated parame-
ters of PL distribution, λ and β , is used as the initial values of the EE-PL distribution. This
approach is quite useful to obtain correct parameter estimates of extended models.

The data are the exceedances of flood peaks (in m3/s) of the Wheaton River near Car-
cross in Yukon Territory, Canada. The data consist of 72 exceedances for the years 1958-
1984 rounded to one decimal place. These data were analyzed by Akinsete et al. (2008).

The ML estimates of the parameters and the goodness-of-fit test statistics for the real
data set is presented in Table 3 and 4 respectively. As we can see, the smallest values of
AIC,BIC,A∗,W ∗ and −l statistics and the largest p-values belong to the EE-PL distribution.
Therefore the EE-PL distribution outperforms the other competitive considered distribution in
the sense of this criteria. The OLL-L distribution provides the second best fit and this data
set.
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Table 2: The data set.

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3 1.4 18.7 8.5 25.5
11.6 14.1 22.1 1.1 2.5 14.4 1.7 37.6 0.6 2.2 39.0 0.3 15.0 11.0 7.3
22.9 1.7 0.1 1.1 0.6 9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0
3.6 5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0 1.5 2.5
27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5 27.0

Table 3: Parameter ML estimates and their standard errors (in parentheses) for the data
set.

Model α β γ λ

Lindley(λ ) – – – 0.153 (0.013)
GL(α,λ ) 0.508(0.076) – – 0.104 (0.0149)
PL(β ,λ ) – 0.700 (0.057) – 0.338 (0.055)
BL(α,β ,λ ) 0.555(0.098) 0.274 (0.239) – 0.333 (0.272)
EPL(α,β ,λ ) 0.730(0.235) 0.915 (0.595) – 0.300 (0.279)
OLLPL(α,β ,λ ) 0.557(0.178) 1.073 (0.244) – 0.154 (0.091)
KPL(α,β ,γ,λ ) 1.675(2.433) 0.453 (0.432) 7.563 (11.736) 0.279 (0.522)
OBu(α,β ,γ,λ ) 24.91(25.654) 0.024 (0.032) 41.25 (22.520) 0.984 (0.149)
EEL(α,γ,λ ) 0.618(0.101) – 2.770 (1.704) 0.169 (0.028)
EEPL(α,β ,γ,λ ) 4.521(3.067) 0.472 (0.094) 55.07 (58.193) 1.551 (0.643)

Table 4: Goodness-of-fit test statistics for the data set.

Model AIC BIC p− value W ∗ A∗ −l
Lindley(λ ) 530.423 532.700 0.001 0.139 0.852 264.211
GL(α,λ ) 509.349 513.902 0.276 0.132 0.822 252.674
PL(β ,λ ) 508.443 512.996 0.405 0.123 0.766 252.103
BL(α,β ,λ ) 510.206 517.036 0.297 0.150 0.866 252.221
EPL(α,β ,λ ) 510.425 517.255 0.395 0.147 0.854 252.212
OLLPL(α,β ,λ ) 507.937 514.767 0.471 0.093 0.592 250.968
KPL(α,β ,γ,λ ) 512.221 521.328 0.371 0.152 0.866 252.110
OBu(α,β ,γ,λ ) 511.212 520.319 0.401 0.140 0.799 251.606
EEL(α,γ,λ ) 508.931 515.761 0.174 0.101 0.662 251.465
EEPL(α,β ,γ,λ ) 500.594 509.701 0.994 0.026 0.180 246.297

In addition, the profile log-likelihood functions of the EE-PL distribution are plotted in
Figure 4. These plots reveal that the likelihood equations of the EE-PL distribution have
solutions that are maximizers.

Here, we also applied likelihood ratio (LR) tests. The LR tests can be used for comparing
the EE-PL distribution with its sub-models. For example, the test of H0 : β = 1 against H1 :
β = 1 is equivalent to comparing the EE-PL and EE-L distributions with each other. For this
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Figure 4: The profile log-likelihood functions of the EE-PL distribution.

test, the LR statistic can be calculated by the following relation

LR =
[
l(α̂, β̂ , γ̂, λ̂ )− l(α̂∗,1, γ̂∗, λ̂ ∗)

]
,

where α̂∗, γ̂∗ and λ̂ ∗ are the ML estimators of α,γ and λ , respectively, obtained under H0. Un-
der the regularity conditions and if H0 is assumed to be true, the LR test statistic converges in
distribution to a chi square with r degrees of freedom, where r equals the difference between
the number of parameters estimated under H0 and the number of parameters estimated in
general, (for H0 : β = 1, we have r = 1). Table 5 gives the LR statistics and the corresponding
p-values.

Table 5: The LR test results.

Hypotheses LR p-value
EE-PL versus Lindley H0 : α = β = γ = 1 35.828 < 0.0001
EE-PL versus PL H0 : α = γ = 1 11.612 0.0030
EE-PL versus GL H0 : α = γ, β = 1 12.754 0.0017
EE-PL versus EPL H0 : α = γ 11.830 0.0005
EE-PL versus EE-L H0 : β = 1 10.336 0.0013

From Table 5, we observe that the computed p-values are too small so we reject all the
null hypotheses and conclude that the EE-PL fits the first data better than the considered
sub-models according to the LR criterion.

We also plotted the fitted pdfs and cdfs of the considered models for the sake of visual
comparison, in Figure 4. Figure 4 suggests that the EE-PL fits the skewed data very well.

7. Conclusion

In this paper, a new distribution called Extended Exponentiated Power Lindley (EE-PL) distri-
bution is introduced. The statistical properties of the EE-PL distribution including the hazard
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Figure 5: Fitted densities and distribution functions for the data set.

and reverse hazard functions, quantile function, moments, incomplete moments, generat-
ing functions, mean deviations, Bonferroni and Lorenz curves, order statistics and maximum
likelihood estimation for the model parameters are given. Simulation studies was conducted
to examine the performance of the new EE-PL distribution. We also present applications of
this new model to a real life data set in order to illustrate the usefulness of the distribution.
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