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GENERALIZED EXPONENTIAL SMOOTHING IN
PREDICTION OF HIERARCHICAL TIME SERIES

Daniel Kosiorowski1, Dominik Mielczarek2,
Jerzy P. Rydlewski3, Małgorzata Snarska4

ABSTRACT

Shang and Hyndman (2017) proposed a grouped functional time series forecasting
approach as a combination of individual forecasts obtained using the generalized
least squares method. We modify their methodology using a generalized exponen-
tial smoothing technique for the most disaggregated functional time series in order to
obtain a more robust predictor. We discuss some properties of our proposals based
on the results obtained via simulation studies and analysis of real data related to the
prediction of demand for electricity in Australia in 2016.

Key words: functional time series, hierarchical time series, forecast reconciliation,
depth for functional data.

1. Introduction

The problem of optimal reconciliation of forecasts of complex economic phenom-
ena partitioned into certain groups and/or levels of hierarchy has been considered
in the economic and econometric literature many times and is still present in a pub-
lic economic debate (see Kohn (1982), Weale (1988), Hyndman et al. (2011)).
National import/export quantities or Gross National Product balances are important
examples here. Discrepancies between forecasts prepared at the global level and
obtained by aggregating regional forecasts or forecasts prepared according to cer-
tain hierarchy levels are usually thought to be caused by different methodologies
or different precision of measurements used at different hierarchy levels or ”predic-
tion clusters”. The issue is also very important from a particular company’s point of
view in a context of a product or a service lines management, consumers portfolio
optimization and consumers segmentation. Let us take the equipment for running
grouped in levels of hierarchy with respect to age, sex, competitive or re-creative us-
age and season designation as an example of material product line management.
Let us take demand and supply of electricity within day and night optimized with
respect to forecasted day and night demand, customers grouped with respect to
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Figure 1: Electricity demand in regions of Australia in 2016 – hierarchical functional
time series example

regions of living or residing and a degree of ”consumer priority” as examples of im-
material product sales optimization. Let us take the Internet holiday booking service
divided into sub-services with respect to certain wealth or ”an inclination to adven-
tures” criterion as an example of a service management. In recent years a very
interesting statistical methodology named functional data analysis (FDA) for ana-
lyzing functional data has been developed (see Bosq (2000), Ramsay et al. (2009),
Horvath and Kokoszka (2012), Krzyśko et al. (2013), Shang and Hyndman (2017)).
For applications of FDA in economics see Kosiorowski (2014), Kosiorowski (2016),
Kosiorowski, Rydlewski and Snarska (2017a). Economic usefulness of outliers de-
tection procedures in the FDA setup has been recently described and discussed
in Nagy et al. (2017), Kosiorowski, Rydlewski and Zawadzki (2018a), Kosiorowski,
Mielczarek and Rydlewski (2018c).
In this context, it is worth stressing, that many others economic phenomena may
effectively be described by means of functions or their series (i.a. utility curves,
yield curves, development paths of companies or countries).

Following the above cited authors we consider a random curve X = {x(t), t ∈
[0,T ]}, where T is fixed, as a random element of the separable Hilbert space
L2([0,T ]) with the inner product < x,y >=

∫
x(t)y(t)dt. The space is equipped with

the Borel σ−algebra. Furthermore, in Bosq’s (2000) monograph it is proved that
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probability distributions do exist for functional processes with values in Hilbert space.
We denote this probability distribution by F . Functional time series (FTS) is a se-
ries of functions indexed by time (e.g. see Fig. 1, colors indicate time succession
of sequence of the functional objects according to the base R terrain.colors color
palette). A hierarchical functional time series is a series of functions grouped at
specified levels (household, town, region, whole country), (i.e. see Fig. 1). At each
level a forecast can be made. A natural problem arises: how to use information
obtained at different levels to obtain a reconciliated prediction for all levels?

The problem of hierarchical time series prediction is solved with various ways.
Bottom-up method relies on forecasting each of the disaggregated series at the
lowest level of the hierarchy, and then using simple aggregation to obtain forecasts
at a higher level of the hierarchy (see Kahn (1998)). Top-down method involves
forecasting of aggregated series at the top level of the hierarchy, and then using
disaggregation to obtain forecasts at a lower level of the hierarchy based on histor-
ical proportions. Shang and Hyndman (2017), extending the method of Hyndman
et al. (2011), considered grouped functional time series forecasting as an opti-
mal combination of individual forecasts using generalized least squares regression
with level forecasts treated as regressors. In the context of hierarchical FTS pre-
diction a general problem arises: which method of forecasting should be chosen
(see Bosq (2000), Besse et al. (2000), Hyndman and Ullah (2007), Hyndman and
Shang (2009), Aue et al. (2015), Kosiorowski, Mielczarek and Rydlewski (2017b,
2018b)). Shang and Hyndman (2017) proposed a grouped functional time series
forecasting approach as a combination of individual forecasts obtained by means
of their smart predicting method, in which functional time series is reduced to a
family of one dimensional time series of principal component scores representing
original functional series (see Kosiorowski, 2014). As a result of conducted simu-
lation studies, we decided to modify their methodology. Instead of using principal
component scores forecast methods, we decided to propose a certain functional
generalization of exponential smoothing technique (see Hyndman et al. (2008) for
a theoretical background of the exponential smoothing), i.e. we used moving lo-
cal medians and moving local functional trimmed averages (Febrero-Bande and
de la Fuente, 2012) for the most disaggregated series in order to obtain more ro-
bust predictor than Shang and Hyndman (2017). The main aim of the paper is to
modify Shang and Hyndman (2017) predictor so that it could cope with functional
outliers and/or it would be elastic enough to adapt to changes in data generating
mechanism. The remainder of the paper is as follows: in the second section el-
ements of depth concept for functional data are sketched and in the third section
our proposals are introduced. Fourth section presents results of simulation as well
as empirical studies. The paper ends with conclusions, references and a short ap-
pendix containing R script showing how to calculate forecasts using our proposals
with free DepthProc and fda.usc R package (see Kosiorowski and Zawadzki, 2018;
Febrero-Bande and de la Fuente, 2012).
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2. Depths for functional data

For obtaining robust hierarchical FTS predictor we focused our attention on the
functional data depth concept (Nagy et al. (2016) and Nieto-Reyes and Battey
(2016)). We have chosen, in our opinion the best depth for the considered functional
data, namely the corrected generalized band depth (cGBD, see López-Pintado and
Jörnsten (2007)), but for computational reasons we restrict our considerations to
the case of the band consisting of two functions.
If X1 and X2 are independent functional random variables generated by the func-
tional time series, and generating the observations (real functions in the L2([0,T ])
space), the cGBD of curve x with respect to F is defined as

cGBD(x|F ) = F (G(x)⊂ Ac(x;X1,X2))

where G(x) = {(t,x(t)) : t ∈ [0,T ])} is a graph of function x, and a1,2 = {t ∈ [0,T ] :
X2(t)−X1(t)≥ 0} and

Ac(x;X1,X2) = {t ∈ a1,2 : X1(t)≤ x(t)≤ X2(t)}, if a1,2 ≥ a2,1

or
Ac(x;X1,X2) = {t ∈ a2,1 : X2(t)≤ x(t)≤ X1(t)}, if a2,1 > a1,2.

Now, let XN = {x1, ...,xN} be a sample of continuous curves defined on the compact
interval [0,T ]. Let λ denote the Lebesgue measure and let a(i1, i2) = {t ∈ [0,T ] :
xi2(t)−xi1(t)≥ 0}, where xi1 and xi2 are band delimiting objects. Let Li1,i2 =

λ (a(i1,i2))
λ ([0,T ]) .

The empirical cGBD of a curve x with respect to the sample XN , which estimates
cGBD for curve x in the considered functional space with respect to F , is defined
as (see López-Pintado and Jörnsten, 2007)

cGBD(x|XN) =
2

N(N−1) ∑
1≤i1<i2≤N

λ (Ac(x;xi1 ,xi2))

λ ([0,T ])

where
Ac(x;xi1 ,xi2) = {t ∈ a(i1, i2) : xi1(t)≤ x(t)≤ xi2(t)}, if Li1,i2 ≥

1
2

or
Ac(x;xi1 ,xi2) = {t ∈ a(i2, i1) : xi2(t)≤ x(t)≤ xi1(t)}, if Li2,i1 >

1
2
.

Within this definition, the introduced earlier band depth (López-Pintado and Romo,
2009) is modified so that it only takes into account the proportion of the domain
where the delimiting curves define a contiguous region which has non–zero width.
Further in our proposals we use the depth regions of order α for the considered
cGBD, i.e. Rα(F ) = {x : cGBD(x,F ) ≥ α}. Note, that α-central regions Rα(F ) =

{x∈L2([0,T ]) : D(x,F )≥α}may be defined for any statistical depth function D(x,F ),
where F denotes a probability distribution (Zuo and Serfling, 2000). Note also
that various robust and nonparametric descriptive characteristics, like scatter, skew-
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ness, kurtosis, may be expressed in terms of α− central regions. These regions
are nested and inner regions contain less and less probability mass. Following
Paindaveine and Van Bever (2013), when defining local depth it will be more appro-
priate to index the family {Rα(F )} by means of probability contents. Consequently,
for any β ∈ (0,1] we define the smallest depth region with F -probability equal or
larger than β as

Rβ (F ) =
⋂

α∈A(β )

Rα(F ),

where A(β ) = {α ≥ 0 : P(Rα(F )) ≥ β}. The depth regions Rα(F ) and Rβ (F )

provide only the deepest point neighborhood. In our considerations, we can re-
place probability distribution F = F X by its symmetrized version for any function
x, namely Fx =

1
2F X + 1

2F 2x−X. For any depth function D(·,F ) the correspond-
ing sample local depth function at the locality level β ∈ (0,1] is LDβ (x,F (N)) =

D(x,Fx
β (N)), where F

β (N)
x denotes the empirical probability distribution related to

those functional observations that belong to Rβ
x (F (N)), where F (N) denotes empir-

ical probability distribution calculated from XN . Thus Rβ
x (F (N)) is the smallest sam-

ple depth region that contains at least a proportion β of the 2N random functions
x1, ...,xN ,2x− x1, ...,2x− xN . Depth is always well defined – it is an affine invariant
from original depth. For β = 1 we obtain global depth, while for β ' 0 we obtain
extreme localization. As in the population case, our sample local depth will require
considering, for any x ∈ L2([0,T ]), the symmetrized distribution F

(N)
x , which is em-

pirical distribution associated with x1, ...,xN ,2x− x1, ...,2x− xN . Sample properties
of the (global) depths result from general findings presented in Zuo and Serfling
(2000). Implementations of local versions of several depths including projection
depth, Student, simplicial, Lp depth, regression depth and modified band depth can
be found in free R package DepthProc (see Kosiorowski and Zawadzki, 2018). In
order to choose the locality parameter β we recommend using expert knowledge
related to the number of components or regimes in the considered data. Sample
properties of the local versions of depths result from general findings presented in
Paindaveine and Van Bever (2013). For other concepts of local depths see, e.g.,
Sguera et al. (2016).

3. Our proposals

We consider a sample of N functions XN={xi(t) : t ∈ [0,T ], i = 1, ...,N}. Let
FDβ (y|XN) denote sample functional depth of y(t) with locality parameter β , e.g.,
the functional depth is equal to corrected generalized band depth: FD = cGBD.
Sample β–local median is defined as

MEDFDβ (XN) = argmax
i=1,...,N

FDβ (xi|XN).
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Assume now, that we observe a functional time series xcluster
i (t), i = 1,2, ... for each

considered level of hierarchy. We put our proposals forward.

PROPOSAL 1: We independently apply on each considered level of hierarchy
and in each cluster of that level a moving median predictor to obtain a forecast for
the cluster, and then generalized exponential smoothing takes the following form

x̂cluster
n+1 (t) = MEDFDβ (W cluster

n,k ),

where Wn,k denotes a moving window of length k ending in a moment n, i.e.
W cluster

n,k = {xcluster
n−k+1(t), ...,x

cluster
n (t)}.

Then joint reconciliation of forecasts is conducted and our reconciled predictor
takes the form:

X̂n+1(t) = F(x̂cluster1
n+1 (t), ..., x̂clusterM

n+1 (t)),

where F denotes the reconciliation procedure. In Proposal 1, F is a generalized
least squares procedure originally proposed by Shang and Hyndman (2017) and M
is the number of moving median predictors.

PROPOSAL 2: Sample βthreshold–trimmed mean with locality parameter β is de-
fined as

ave(βthreshold ,β )(XN) = ave(xi : FDβ (xi|XN)> βthreshold),

where ave denotes the sample functional average, and βthreshold is a a pre-specified
trimming threshold. In this setup a generalized exponential smoothing technique is
applied independently on each considered level of hierarchy and in each cluster of
that level as well. As a predictor for (n+1)th moment we take

x̂cluster
n+1 (t) = z ·ave(β 1

threshold ,β1)(W cluster
n1,k1

)+(1− z) ·ave(β 1
threshold ,β1)(W cluster

n2,k2
),

where W cluster
n,k denotes a moving window of length k ending in a moment n , i.e.

W cluster
n,k = {xcluster

n−k+1(t), ...,x
cluster
n (t)}, z ∈ [0,1] is a forgetting parameter and n2 < n1.

Thus we consider a closer past represented by W cluster
n1

and a further past repre-
sented by W cluster

n2
.

Note that lengths of the moving windows k,k1,k2 used in Proposals 1 – 2 relate to
the analogous forgetting parameters α in the classical exponential smoothing. Ad-
ditionally, we have at our disposal the resolution parameter β , at which we predict
a phenomenon. Such an approach allows us to accommodate expert knowledge
and adjust forgetting and resolution parameters to the researcher’s requirements.
For comparison purpose, note that in original Shang and Hyndman (2017) paper,
the authors made predictions using functional regression based on constant in time
functional principal components scores modelled by means of the well known one–
dimensional time series models (see Hyndman and Shang, 2009).
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In the next step we consider the whole hierarchy structure of the phenomenon. As-
sume that a hierarchical structure is described by fixed hierarchy levels, which are
also divided into sub-levels, which are divided into sub-levels, and so on – assume
that we have M clusters in the whole hierarchical structure. Smart reconciliation of
forecasts is conducted in this step and our reconciled predictor takes the form:

X̂n+1(t) = F(x̂cluster1
n+1 (t), ..., x̂clusterM

n+1 (t)),

where F is a Generalized Least Squares Estimator (see Shang and Hyndman,
2017).
Using Shang and Hyndman (2017) notation we can write our model in the form

Rn = Snbn,

where Rn is a vector of all series at all clusters, bn is a vector of the most dis-
aggregated data and Sn is a fixed matrix that shows a relation between them.
In the considered example we have Rn = [RAustralia, RNSW , RQLD, RSA, RTAS, RV IC]

T ,
bn = [RNSW , RQLD, RSA, RTAS, RV IC]

T , where T denotes a vector transpose. The ma-
trix Sn is an 6×5 matrix, where the only non-zero elements are S1i = 1 for i= 1,2, ...,5
and S j j−1 = 1 for j = 2, ...,6. We propose to do the base forecast:

R̂n+1 = Sn+1βn+1 + εn+1,

where R̂n+1 is a matrix of the base forecast for all series at all levels,
βn+1 = E[bn+1|R1, ...,Rn] is the unknown mean of the forecast distribution of the most
disaggregated series and εn+1 is responsible for errors. We propose to use a gen-
eralized least square method as in Shang and Hyndman (2017)

β̂n+1 =
(
ST

n+1W−1Sn+1
)−1

ST
n+1W−1R̂n+1

modified so that we use a robust estimator of the dispersion matrix W , i.e. instead
of diagonal matrix, which contains forecast variances of each time series, we can
use a robust measure of joint forecast dispersion taking into account dependency
structure between the level forecasts. Note that a dynamic updating of the disper-
sion matrix estimates should be considered in further studies. Let us define our
dispersion matrix:

W = diag{vtotal ,vcluster1 , ...,vclusterM}

where

vcluster =V
{∫ T

0

(
xcluster

nk (t)− x̂cluster
n (t)

)2
dt,k = 1,2, ...,Kcluster,n = 1,2, ...,N

}
,

Kcluster is the number of observations in the considered cluster in time n, N is here
the number of moments at which observations have been made and where V is
some chosen robust measure of dispersion. We propose to substitute V = c ·MAD2
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instead of Shang and Hyndman’s (2017) variance. If we consider a hierarchy as in
the above Figure 1, our dispersion matrix takes a simple form:

W = diag{vAustralia,vNSW ,vQLD,vSA,vTAS,vV IC}.

We propose to use c ·MAD2 instead of variance or take into account a dependency
structure between level series using the well-known minimum covariance deter-
minant (MCD) or recently proposed PCS robust matrix estimators of multivariate
scatter (see Vakili and Schmitt (2014)).

4. Properties of our proposals

Thanks to the kindness of prof. Han Lin Shang, who made his R script available for
us, we calculated the optimal combination of forecast predictor and we compared
Shang and Hyndman (2017) proposal with our Proposals 1 and 2 and with indepen-
dent moving functional mean (no reconciliation was conducted for this predictor).

We generated samples of trajectories from one dimensional SV, GARCH, Wiener,
Brownian bridge processes, functional FAR(1) processes tuned as in Didericksen
et al. (2012), and various mixtures of them. In the cases of the considered mix-
tures, we treated one of the component as ”good” and the rest as ”bad” - outlying.
In the simulations we considered several locality parameters which differed within
the levels of hierarchy and several moving window lengths. We considered samples
with and without functional magnitude as well as shape outliers (see Kosiorowski,
Mielczarek, Rydlewski, 2018b, 2018c, and references therein). The outliers were
defined with respect to the functional boxplot induced by cGBD, i. e. we replaced
1%, 5%, 10% of curves in the samples by means of arbitrary curves being outside
a band determined by the functional boxplot whiskers, and compared medians and
medians of absolute deviations from the medians (MAD) of integrated forecasts er-
rors in these two situations. Fig. 2 presents simulated hierarchical functional time
series consisting of three functional autoregression models of order 1 (i.e. FAR(1))
with Gaussian kernels and sine–cosine errors design (see Didericksen et al. 2012).
Fig. 3 presents corresponding level forecasts obtained by means of our Proposal
1 and local moving median calculated from 15-obs. windows and locality parame-
ters equal to 0.45. Fig. 4 presents simulated hierarchical time series consisting of
three processes, each being mixtures of two one-dimensional stochastic volatility
processes (SV). Fig. 5 presents corresponding level forecasts obtained by means
of our Proposal 1 and local moving median calculated from 15-obs. window and
locality parameters equal to 0.45. In Figures 2, 4, 5 and 6 colours indicate time se-
quence of the functional objects according to basic R package terrain.colors colour
palette. We indicated the order of appearance of observations using colors palette
starting from yellow and ending in blue. In the appendix we placed a simple script
depending on DepthProc R package illustrating a general idea of the performed
simulations.

In order to check the statistical properties of our proposals we considered em-
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Figure 2: Simulated HFTS consisting of FAR(1) processes

Figure 3: HFTS prediction using our Proposal 1
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Figure 4: Simulated HFTS consisting of two regime FTS processes

Figure 5: HFTS prediction using our Proposal 1
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pirical data set related to an electricity demand in the period from 1 to 31 January
2016 in Australia. The data come from five regions of Australia, denoted with the fol-
lowing symbols: NSW, QLD, SA, TAS, VIC. All the considered data were taken from
Australian Energy Market Operator https://www.aemo.com.au/. Fig. 6 presents 291
predicted electricity demand curves obtained by means of our Proposal 1 using
moving local median to calculate level forecasts, window lengths k = 10 observa-
tions and locality parameter equal to β = 0.2. Fig. 7 presents boxplots for integrated
prediction errors in each region and in the whole Australia. Fig. 8 presents func-
tional boxplot for the prediction of errors for the whole Australia in 2016, where the
predictions were obtained using Proposal 1. Fig. 9 presents functional boxplots for
prediction of errors of electricity demand in NSW, QLD, VIC and TAS in 2016 ob-
tained using Proposal 1. Note that the functional median of prediction errors is close
to 0 for Australia and its regions (see Fig. 8 and 9). The boxplots in Fig. 7 show that
a prediction error is small as well. The volumes of central regions in Fig. 8 and 9
may be treated as the predictor effectiveness measure. We could therefore deduce
that our predictor is median-unbiased (for more details on median-unbiasedness for
functional data see Kosiorowski, Mielczarek and Rydlewski, 2017b, and references
therein).

The performance of our proposals was compared with Shang and Hyndman
(2017) proposal and with the independent moving functional mean predictor (with-
out the reconciliation of forecasts), in terms of the median of absolute deviation
of integrated prediction errors in each region and in the whole Australia. Table 1
summarizes results of this comparison. In general, the obtained results lead us
to the conclusion that our proposals seem to be more robust to functional outliers
than Hyndman and Shang proposal. It is not surprising, as the authors made their
forecasts on the basis of nonrobust generalized least squares method. Admittedly,
Shang and Hyndman (2017) claimed that their proposal performed better in com-
parison with bottom-up approach based on moving medians, but note that they
considered Fraiman and Muniz global depths only. Moreover, thanks to the locality
parameter adjustment, our proposals are more appropriate for detecting the change
of regimes in the HFTS setup. In the cases of data sets without outliers, simple func-
tional moving means, where the reconciliation procedure is not conducted, seem to
outperform all other proposals. In this ”clean data” situation, the performance of our
both proposals and of Shang and Hyndman (2017) proposal is comparable. Our
second proposal is more computationally demanding, however.

Table 1. MAD of integrated forecasts errors

Predictor Australia NSW V IC SA QLD TAS
Proposal 1 1126 470 401 146 224 49
Proposal 2 1311 628 452 147 181 52

H & S Proposal 1275 627 1004 176 230 51
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Figure 6: Predicted electricity demand in Australia in 2016
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Figure 7: Boxplots for integrated forecasts errors for electricity demand in Australia
and its regions in 2016, predictions obtained using Proposal 1
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Figure 8: Functional boxplot for prediction of errors for the whole Australia in 2016,
predictions obtained using Proposal 1
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Figure 9: Functional boxplots for prediction errors of electricity demand in NSW,
QLD, VIC and TAS in 2016 obtained using Proposal 1
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4.1. Uncertainty evaluation

Series of functional principal component scores are considered as surrogates of
original functional time series (see Aue et al. (2015), Hyndman and Shang (2009)).
Several authors postulate using the dynamic functional principal components ap-
proach in order to take into account the time changing dependency structure of the
described phenomenon (Aue et al., 2015). Note that such modification may dras-
tically increase computational complexity of the HFTS procedure. In a context of
uncertainty evaluation of our proposals, we suggest considering Vinod and López-
de-Lacalle (2009) maximum entropy bootstrap for time series approach. Boot-
strap methods for FTS were studied by Hörmann and Kokoszka (2012) and Shang
(2018), among others. Similarly, as in Shang and Hyndman (2017) we propose
to use maximum entropy bootstrap methodology to obtain confidence regions and
to conduct statistical inference. The meboot and DepthProc R packages give the
appropriate computational support for these aims.

5. Conclusions

The hierarchical functional time series methodology opens new areas of statistical
as well as economic research. E–economy provides a great deal of HFTS data. Our
HFTS predictor proposal, which is based on local moving functional median, per-
forms surprisingly well in comparison with Shang and Hyndman (2017) proposal.
The lengths of the moving windows used in our proposals relate to the forgetting
parameters α ’s in the classical exponential smoothing. Moreover, we have at our
disposal a ”data resolution parameter” - β , at which we predict the phenomenon.
When using the locality parameter, we can take into account different sensitivity to
details, e.g. the number of different regimes of the considered phenomena. Fur-
ther economic applications of the HFTS methodology may be found, for example,
in Kosiorowski, Mielczarek, Rydlewski (2018b).
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and functional principal component analysis, Multivariate Statistical Analysis
2013 Conference, plenary lecture.



STATISTICS IN TRANSITION new series, June 2018 347
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APPENDIX

#Simple R script, example showing how to calculate base forecasts for three hierarchy levels
#using moving functional median implemented within the DepthProc R package.
require(DepthProc)
require(fda.usc)
require(RColorBrewer)
require(zoo)

wrapMBD = function(x){ depthMedian(x, depth params = list(method=”Local”, beta=0.45,
depth params1 = list(method = ”MBD”))) }
#Simple stochastic volatility 1D process simulator
SV ¡- function(n, gamma, fi, sigma, delta) {
epsilon ¡- rnorm(n)
eta ¡- rnorm(2*n, 0, delta)
h ¡- c()
h[1] ¡- rnorm(1)
for (t in 2:(2*n)) {
h[t] ¡- exp(gamma+fi*(h[t-1]-gamma)+sigma*eta[t]) }
Z ¡- sqrt(tail(h,n)) * epsilon
return(Z)}
example ¡- SV(100, 0, 0.2, 0.5, 0.1)
plot(ts(example))
#functional time series simulator
m.data1¡-function(n,a,b) {
M¡-matrix(nrow=n,ncol=120)
for (i in 1:n) M[i,]¡- a*SV(120,0,0.3,0.5,0.1)+b
M }
m.data.out1¡-function(eps,m,n,a,b,c,d){
H¡-rbind(m.data1(m,a,b),m.data1(n,c,d))
ind=sample((m+n),eps)
H1=H[ind,]
H1 }
m ¡- matrix(c(1, 0, 1, 3, 2, 3, 2, 0), nrow = 2, ncol = 4) m[2,]=c(2,2,3,3) m[1,]=c(0,1,1,0)
#below three functional time series
M2A= m.data.out1(150,3000,7000,5,0,1,25)
M2B= m.data.out1(150,3000,7000,2,0,1,15)
M2C= m.data.out1(150,3000,7000,3,0,1,10)
matplot(t(M2A),type=”l”,col=topo.colors(151),xlab=”time”, main=”Functional time series with
two regimes”)
matplot(t(M2B),type=”l”,col=topo.colors(151),xlab=”time”, main=”FTS with two regimes”)
matplot(t(M2C),type=”l”,col=topo.colors(151), xlab=”time”, main=”FTS with two regimes”)
#below moving local medians applied to the above series, window lengths = 15 obs.,
#locality parameters betas = 0.45
result4A = rollapply(t(M2A),width = 15, wrapMBD, by.column = FALSE)
result4B = rollapply(t(M2B),width = 15,wrapMBD, by.column = FALSE)
result4C = rollapply(t(M2C),width = 15, wrapMBD, by.column = FALSE)
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matplot(result4A,type=”l”,col=topo.colors(87), xlab=”time”,main=”local 15-obs moving func-
tional median, beta=0.45”)
matplot(result4B,type=”l”,col=topo.colors(87), xlab=”time”,main=”local 15-obs moving func-
tional median, beta=0.45”)
matplot(result4C,type=”l”,col=topo.colors(87), xlab=”time”,main=”local 15-obs moving func-
tional median,
beta=0.45”)

#basic function for calculating β treshold− trimmed β− local MBD functional mean

beta tresh mean¡-function(x,beta tresh,beta)
depths= depth(x, depth params = list(method=”Local”, beta=beta, depth params1 = list(method
= ”MBD”)))
ind=which(depthsbetatresh)
wyn = f unc.mean(x[ind, ])
wyn$data


