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A NEW METHOD FOR COVARIATE SELECTION
IN COX MODEL

Ujjwal Das1, Nader Ebrahimi2

ABSTRACT

In a wide spectrum of natural and social sciences, very often one encounters a large
number of predictors for time to event data. An important task is to select right ones,
and thereafter carry out the analysis. The `1 penalized regression, known as “least
absolute shrinkage and selection operator" (LASSO) became a popular approach
for predictor selection in last two decades. The LASSO regression involves a penal-
izing parameter (commonly denoted by λ ) which controls the extent of penalty and
hence plays a crucial role in identifying the right covariates. In this paper we pro-
pose an information theory-based method to determine the value of λ in association
with the Cox proportional hazards model. Furthermore, an efficient algorithm is dis-
cussed in the same context. We demonstrate the usefulness of our method through
an extensive simulation study. We compare the performance of our proposal with
existing methods. Finally, the proposed method and the algorithm are illustrated
using a real data set.
Key words: Bhattacharya distance, index of resolvability, Kullback-Leibler measure,
`1 penalty, proportional hazards model, time to event data.

1. Introduction

The statistical analysis of time to event data is very common in several applied
fields, such as biology, medicine, economics, engineering and social sciences. Typ-
ical examples of such an event may be the onset of a disease, death of a subject
under study, occurrence of default of a corporate bond, malfunctioning of a system,
etc. It is very frequent to adjust the analysis of those event times by incorporating
the information available from covariates. One of the popular ways of analysing
time to event data is based on the hazard rate function, and a common way of mod-
elling the hazard rate function with covariate matrix Z is to write it as the product
of the baseline hazard and some function of Z. This model referred to as ‘propor-
tional hazards’ or the ‘Cox model’, can connect the covariates with time to event in
a parametric or semi-parametric fashion. Mathematically, from Cox (1972) we have

h(t|Z) = h0(t)exp(Z′β ), (1.1)

where h0(t) is called the baseline hazard rate, Z′β = β1Z1 + β2Z2 + ...+ βpZp and
exp(Z′β ) describes how the hazard rate varies in response to covariates. One may
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assume some parametric form for h0(t) and then (1.1) reduces to a parametric
model. If no parametric form is assumed for h0(t) then the model (1.1) is semi-
parametric. In practice, the estimation and inference from the Cox model is based
on the partial likelihood function. But for our purpose we use the full likelihood
function.

In some practical studies such as genetics, researchers may have a large num-
ber of covariates (p) from fewer number of observations n, and they may need to
select only few of those many covariates. An example includes a typical microarray
data set that consists of thousands of genes from hundred subjects. Traditional se-
lection methods such as stepwise deletion or best subset selection though useful
but may perform poorly in high dimensional (p >> n) situations. The limitations of
the existing methods of model selection are mentioned in Breiman (1996) and Fan
and Li (2001). As a unified method of variable selection for both low and high di-
mension, the penalized approach has gained increasing popularity in recent years.
The penalized methods with some conditions on the penalty functions, not only re-
tain the good properties of the old methods but also enjoy theoretical justifications.
Among the convex penalty functions, the least absolute shrinkage and selection
operator or LASSO proposed by Tibshirani (1996) has gained enormous attention
from the researchers. LASSO is defined as the `1 norm of the parameters: λ ||β ||1,
where β is the vector of regression coefficients and λ is the tuning parameter or pe-
nalizing parameter. The penalizing parameter plays an influential role for variable
selection. A larger value of λ exerts a higher penalty on regression coefficients,
resulting in inclusion of fewer variables in the model. Conversely, a small value
of λ leads to less penalty, and hence inclusion of many variables. Commonly, a
sequence of λ values is generated and then variables are detected for each value
of the series. Thereafter, a value of λ is chosen by k-fold cross validation, and
corresponding set of predictors are included in the model. Tibshirani (1997) used
generalized cross validation for the Cox model. More recently, Simon et al. (2011)
developed an R-package for variable selection in Cox model via LASSO with λ se-
lected thorough cross-validation. Li and Barron (2000) developed the concept of
information theoretically valid `1-penalty by extending the work of Grunwald (2007).
Using a similar risk analysis Barron et al. (2008a) and, Barron and Luo (2008) devel-
oped the concept of information theoretically valid `1 norm penalty function for linear
models. They obtained a lower bound on the penalizing parameter which makes the
LASSO penalty information theoretically valid. Recently, Das and Ebraimi (2017)
extended the concept for accelerated failure time model. In this paper, we introduce
the information theory for time to event data under the model (1.1) and obtain the
bound for λ . The nonlinear structure of the model (1.1) makes the results more
intricate than linear models. We will use the lower bound as the value of the initial
penalizing parameter. In addition to that, we propose an efficient algorithm for the
Cox proportional hazards model for variable selection following Barron et al. (2008).
Any software that performs constrained optimization, can be used to implement the
proposed algorithm.

The paper is organized as follows. A brief description on information theory
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along with related concepts and, the determination of the bound on penalizing pa-
rameter for the Cox model are given in subsections 2.1 and 2.2, respectively. Sec-
tion 3 deals with the algorithm and its accuracy. Section 4 ensures the usefulness
of the proposed methodology through extensive simulation studies. The results are
presented in a tabular format for different combinations of n and p with different
censoring proportions. The performance of our method is compared with existing
methods of selecting the tuning parameter in the immediate section. In Section 6
we illustrate our proposed method using a real world data, and compare the re-
sults with other methods. Finally, some concluding remarks complete the paper in
Section 7.

2. Method

2.1. Preliminaries

This section provides a brief summary of different information measures. For a de-
tailed discussion one can see Ebrahimi et al. (2010). The most well-known and
widely used measure of uncertainty is Shannon’s entropy (Shannon, 1948). For a
random variable X with a domain S, its entropy H(X) is defined as −

∫
S log p(x)dP(x),

where P(x) is the cumulative distribution function and p(x) is the probability den-
sity (mass) function of X . As a measure of information discrepancy between two
probability distribution functions P and Q, we use Kullback-Leibler (KL) divergence
(Kullback, 1959) given by D(P,Q) = Ep log( p

q ) =
∫

S log( p(x)
q(x) )dP(x), provided P is ab-

solutely continuous with respect to Q on the support S. Bhattacharya distance is an
alternative way to discriminate between two distribution functions P and Q, and it is
given by

d(P,Q) =−2log
∫ √

p(x)q(x)dx, (2.1)

see Bhattacharya, (1943). Throughout this paper, Bhattacharya distance is used
as the loss function to judge the accuracy of the estimate.

Index of Resolvability: Let L f be the likelihood characterized by f and f ∗ is
the true value of f . Then, the index of resolvability is defined as

Rn( f ∗) = min
f∈F

{
1
n

D(L f ∗ ,L f )+
1
n

pen( f )
}
, (2.2)

where f is a candidate to estimate unknown f ∗, F is the set of all possible values
of f and pen( f ) denotes some penalty function. We use this index to upper-bound
the statistical risk, associated with the estimates obtained by achieving the following
minimization

min
f∈F

{
1
n

log(
1

L f
)+

1
n

pen( f )
}
. (2.3)

The estimator obtained from (2.3) is called minimal complexity estimator. It can be
shown that the expression under minimization in (2.3), converges in probability to
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index of resolvability plus a constant (entropy), which ensures that the minimization
in (2.3) is equivalent to the minimization of the resolvability index, Rn( f ∗) in (2.2).
For more details see Barron et al. (2008).

From (1.1) f ∗ is the linear predictor given by Z′β ∗. Let f̂ be the minimal com-
plexity estimator of f ∗. Then we measure the associated risk of f̂ by E[d(L f ∗ ,L f̂ )].
We choose the penalizing parameter of LASSO such that

E
(

d̄(L f ∗ ,L f̂ )
)
≤ inf

β∈R p
{D̄(L f ∗ ,L f )+

λ

n

p

∑
j=1
|β j|}. (2.4)

where d̄(L f ∗ ,L f̂ ) = d(L f ∗ ,L f̂ )/n and D̄(L f ∗ ,L f ) = D(L f ∗ ,L f )/n are the average Bhat-
tacharya distance and Kullback-Leibler measure respectively, when averaged across
the n independent subjects. In the next subsection we provide a lower bound of λ

so that the risk bound in (2.4) holds for Cox model.

2.2. Determination of the bound on penalizing parameter

We consider survival studies in which n individuals are put on test and data of
the form (vi,δi,zi) for i = 1,2, ...,n, are collected. Here, vi is the minimum of the
exact failure time Xi and the censoring time Ci of the ith individual, δi = I(Xi ≤Ci) is
an indicator variable that represents the failure status, and zi is the corresponding
covariate that may be a vector. In addition, the survival function of the ith individual
is S(t|zi) = P(Xi > t|zi). The corresponding density function is f (t|zi), where Xi is
the exact failure time. Furthermore, we assume that the censoring time Ci of the ith

individual is a random variable with survival and density functions G(t|zi) and g(t|zi)

respectively, and that given z1, ...,zn, the C1, ...,Cn are stochastically independent
of each other and of the independent failure times X1, ...,Xn. Therefore, the full
likelihood function of the data (ti,δi,zi), conditional on z1, ...,zn, is

L f (v1,v2, ...,vn|δ1,δ2, ...,δn,Z) =
n

∏
i=1

( f (xi|Zi)G(xi|Zi))
δi (S(Ci|Zi)g(Ci|Zi))

1−δi

Since the censoring time is noninformative, the full likelihood function can be rewrit-
ten as

L f (v1,v2, ...,vn|δ1,δ2, ...,δn,Z) ∝

n

∏
i=1

( f (xi|Zi))
δi (S(Ci|Zi))

1−δi

=
n

∏
i=1

(
h0(xi)exp [−H0(xi)exp( fi)]e fi

)δi

(exp [−H0(Ci)exp( fi)])
1−δi (2.5)
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Under the above likelihood we have the following bound on λ :
Result 1: The `1 penalized likelihood estimator f̂ = f

β̂
= Z′iβ̂ obtained by

min
β

{
n

∑
i=1

δi

n

[
H0(xi)eZ ′iβ −Z′iβ

]
+

n

∑
i=1

[
(1−δi)

H0(Ci)

n
eZ ′iβ

]
+

λ

n
||β ||1

}
(2.6)

attains the risk bound

Ed̄(L f ∗ ,L f̂ )≤ inf
β

{
D̄(L f ∗ ,L f )+

λ

n

p

∑
j=1
|β j|

}

for every sample size provided that

λ ≥ 2
√

log2p

√√√√[ n

∑
i=1

{
δi

(
H0(xi)e fi − 1

2

)
+(1−δi)

(
H0(Ci)e fi − 1

2

)}]
. (2.7)

In practice, fi is replaced by f̂i obtained from (2.6).
Proof: The proof is outlined in the Appendix.
Remark: Under certain conditions (2.7) may not work. In that case, the bound will
be

λ ≥ 2
√

log2p

√
n

∑
i=1

[δie fiH0(xi)+(1−δi)e fiH0(Ci)]. (2.8)

The condition is discussed in the Appendix.

3. The Algorithm

We propose an algorithm for the detection of regression parameters in the Cox
model following Barron et al. (2008). For (p < n) we fit the Cox-model to the data
and use the point estimates as initial estimate for the algorithm. For (p > n) we
begin with β

0 = 0. Then, we estimate the cumulative baseline hazard by using
the Breslow-type estimator. With these, next we estimate λ by using (2.7) or (2.8)
according to the necessity. For any t ≥ 1 we will move from (t−1)th step to tth step
of iteration by: β

t = αβ
t−1 + γIl , where the parameters: α ∈ [0,1], γ ∈ (−∞,∞), and

Il is a vector of zero except for lth component which is 1. Combining this with (2.6)
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the likelihood, as a function of α and γ, becomes

W t(α,γ, l) =
1
n

n

∑
i=1

δi

[
H0(xi)exp

(
α

p

∑
j=1

Z′iβ
t−1 + γZil

)
−

(
α

p

∑
j=1

Z′iβ
t−1 + γZil

)]

+
1
n

n

∑
i=1

[
(1−δi)H0(Ci)exp

(
α

p

∑
j=1

Z′iβ
t−1 + γZil

)]

+
λ

n

(
α

p

∑
j=1
|β t−1

j |+ |γ|

)
. (3.1)

for every coordinate l = 1,2, ..., p. Now, we minimize (3.1) with respect to α and γ

and obtain the value of the objective function for each l = 1,2, ..., p. At tth iteration
the optimal αt , γt and Il(t) are those for which the value of the objective function is
minimum. We change that coordinate(s) and set others to zero. At the end of each
iteration the estimates of λ and cumulative baseline hazards are also updated for
the next iteration. The process is repeated until no new covariate is detected and
the absolute difference between the estimates from two consecutive iterations is
less than some preassigned small number. Any standard software can be used for
performing the constrained optimization. We call R-routine ‘constrOptim’ with the
option ‘Nelder-Mead’ method for its suitability to optimization of non-smooth func-
tions. The R-code can be available from the corresponding author upon request.

3.1. Convergence of the Algorithm

Let L f be the likelihood function with unknown parameters (or linear combination of
parameters) f as given in (2.5), estimated by f̂(k) at kth iteration. Then we have
Result 2: Let L f̂ be the minimal complexity estimate of L f ∗ and L f̂k

be the estimate
from kth iteration obtained by our proposed algorithm. Then,

1
n

log
1

L f̂(k)
(x)

+λu(k) ≤ inf
f

{
1
n

log
1

L f (x)
+λU f +

4U2
f

k+1

}
, (3.2)

where u(k) = ∑
p
j=1 |β̂ j,(k)| and U f = ∑

p
j=1 |β j| with β̂ j,(k) is the estimate of β j at kth

iteration.
Proof: The proof is given in the Appendix.

4. Numerical Studies

We investigate the performance of the proposed λ along with the algorithm through
simulations. We will use the lower bound of λ as its value, for all numerical in-
vestigations. First, we create a matrix of 100 rows and 1000 columns by randomly
drawing 1000 observations from a 100-dimensional multivariate normal distribution
with mean 0 and pairwise correlation 0.1. Throughout the simulation study, we keep
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this matrix fixed and use appropriate number of rows and columns as design matrix
under four different scenarios: (a) n=100, p=50, (b) n=1000, p=100 for low dimen-
sion, and (c) n=50, p=100, (d) n=100, p=1000 for high dimension. For (a) we use
the first 50 columns of the matrix, for (b) we transpose the matrix, and for (c) we
consider the first 100 columns with their first 50 rows for numerical studies. Let β

denote the true vector of regression coefficients. So, β is a vector of length 50 for
(a), of length 100 for (b) and (c), and of length 1000 for (d). In each case, we ran-
domly choose seven elements of β and set them to unity, and rest of the elements
are all zero. Let Z be the design matrix of appropriate order. We model the baseline
hazard of Cox regression assuming Weibull distribution to generate data. In this
way we get a closed form expression for the survival function. We equate the sur-
vival function with random numbers generated from uniform(0,1) distribution, and
then invert the survival function to get the time to event. We choose the scale and
shape parameters of the Weibull distribution as 1 and 1.2 respectively. For a de-
tailed discussion on the methods to generate data from the Cox model, one can see
Bender, Augustin and Blettner (2005). Except for (n=50, p=100), for remaining pairs
of (n, p) we vary the censoring proportion from 5% to 40% with an increment of 5%.
In this way, we generate 1000 data sets for every combination of n, p and censoring
percentage. Before analysis, for all the eight covariates we subtract the respective
mean and then divide them by the respective standard deviation. Then, the vari-
ables are selected through the algorithm discussed in Section 3. The simulation
results are summarized in Table 1, where n represents the number of subjects, p
is the number of covariates as candidate of the model, Cens. Pcnt. gives percent
of censoring, TMDR is the true model detection rate defined as the percentage of
replications where the full model (all correct seven covariates) is detected, Median
and Mean the number of correct variables detected, and Avg. Incln. is the average
model size, from the 1000 replications.

From Table 1 we find that the method is working well for detecting the correct
set of variables except for n = 50, p = 100. Along with the median, the average
number of correct variables included is also higher than 6 for both n = 100, p = 50
and n = 100, p = 1000. We note that the average model size is not far from the
average number of correct covariates detected, in all cases considered here. The
phenomena indicates the inclusion of fewer false variables. More specifically, for
n = 1000, p = 100, the entire correct model is identified always without any error for
all censoring percentages. We observe that the convergence was achieved equally
faster whether the initial estimate was 0 or taken from the Cox model fitting, for low
dimension.

5. Comparison

We compare our proposed method of tuning parameter selection with cross-validation
(CV), generalized cross-validation (GCV) and BIC. We use R-package glmnet. For
a detailed discussion on the glmnet, its algorithm and convergence, see Simon et al.
(2011). We reconsider the simulated data sets from Section 4, and reanalyse them
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Table 1: Summary of the Simulation Studies

n p Cens. Pcnt. TMDR Median Mean Avg. Incln.
50 100 5.71 15.01 5 5.39 5.81

10.88 10.1 5 4.89 5.34
14.19 6.6 5 4.66 5.02
19.68 1.1 4 4.12 4.66
25.31 0 4 3.78 4.73
29.19 0 4 3.72 4.81

100 50 5.27 90.1 7 6.87 7.05
10.16 84.1 7 6.75 7.06
15.22 80.8 7 6.71 7.1
20.27 76.7 7 6.65 7.08
25.02 74.9 7 6.64 7.09
31.2 72.8 7 6.62 7.15

34.87 68.1 7 6.54 7.06
39.42 66.5 7 6.52 6.83

100 1000 5.76 84.4 7 6.79 7.58
10.61 80.9 7 6.76 7.62
14.85 77.2 7 6.74 7.53
20.25 74.3 7 6.72 7.12
25.25 71.8 7 6.65 7.24
30.11 69.4 7 6.59 7.19
35.71 65.9 7 6.57 7.22
41.48 62.4 7 6.44 7.61

1000 100 5.02 100 7 7 7
10.11 100 7 7 7
15.01 100 7 7 7
20.09 100 7 7 7
25.19 100 7 7 7
30.15 100 7 7 7
34.9 100 7 7 7

40.11 100 7 7 7

by glmnet in conjunction with 10-fold CV, GCV and BIC. 10-fold CV was performed
using the R-function cv.glmnet, when for the other two we fit the Cox model with the
selected predictors for every value of λ and then obtain the GCV and BIC values
for each model. From a sequence of λ values, we pick the one as the value of the
penalizing parameter and the corresponding model, for which the desired criterion
(CV, GCV or BIC) attains its minimum. We compare the average number of vari-
ables detected for different values of n, p and censoring percentages, from all the
methods. Table 2 provides the average number of predictors identified as non-zero
from 1000 replications for 5% to 40% censoring. For n = 50 and p = 100 we per-
form the simulation up to 30% censoring. From Table 2 we see that cross-validation
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Table 2: Average number of variables detected by Our Method and cross-validation

n p Method 5% 10% 15% 20% 25% 30% 35% 40%
50 100 Our method 5.81 5.34 5.02 4.66 4.73 4.81

CV 15.51 15.87 15.93 15.27 15.43 15.14
GCV 15.56 15.25 16.09 15.36 15.34 15.39
BIC 14.15 13.98 14.53 14.07 14.14 14.01

100 50 Our method 7.05 7.06 7.1 7.08 7.09 7.15 7.06 6.83
CV 20.15 19.63 19.92 18.99 20.19 18.75 20.19 19.09

GCV 20.57 20.08 19.93 19.69 20.74 20.14 21.01 20.68
BIC 15.21 15.17 14.94 14.61 15.33 15.18 15.66 14.88

100 1000 Our method 7.58 7.62 7.53 7.12 7.24 7.19 7.22 7.61
CV 29.39 30.12 30.67 31.76 30.51 30.32 30.48 30.47

GCV 30.15 31.87 31.29 32.27 31.52 31.11 31.61 31.83
BIC 24.25 25.07 24.79 24.82 25.33 25.11 25.02 24.90

1000 100 Our method 7 7 7 7 7 7 7 7
CV 38.93 37.71 38.13 37.82 36.57 36.93 37.12 36.67

GCV 39.51 38.96 39.09 38.76 38.03 37.84 37.94 38.02
BIC 30.01 29.71 29.37 29.58 29.12 29.17 29.93 29.66

tends to select more covariates compared to our method. For both n = 100, p = 50
and n = 100, p = 1000 the average model size by our method is near 7, whereas
from cross-validation and GCV these are around 19 and 30 respectively. Similarly,
for n = 1000 and p = 100 our method detects all the covariates up to 40% censoring
without any false inclusion whereas the average model size from cross-validations
is more than 35. The BIC tends to select fewer variables than CV and GCV but
higher than our proposed method. We note that glmnet is almost always able to
identify the correct set of covariates for the simulated data sets. For example, for
n = 50, p = 100 and with 30% censoring, the true model detection rate (TMDR) was
higher than 95% when our proposed method was unable to find all the correct co-
variates in a single instance. So, the cross-validations and BIC tend to select an
entire set of right predictors at the cost of larger model size. Additionally, the coor-
dinate descent algorithm seems to be faster than our algorithm. In general, we see
that the proposed method may not always detect the full model, but the inclusion
of a false covariate is small compared to the cross-validations and BIC, for all the
scenarios we considered here.

6. Real data analysis

We analyse data on survival of the patients with advanced lung cancer. The study
was conducted by North Central cancer treatment group, and described in Loprinzi
et al. (1994). After some cleaning we are left with survival time on 167 subjects
with information on 8 covariates. The covariates are: institution code, age in years,
gender, ECOG performance score, Karnofsky performance score rated by physi-
cians, Karnofsky performance score rated by the patients, calories consumed at
meals, and weight loss in last six months. We analyse the data in three different
ways, and as before, calculate the Bayesian information criterion (BIC) of the final
selected model from each method for comparison. First, we select the model by
BIC. The resulting model includes only two covariates: gender and ECOG perfor-
mance score. BIC of this model is 1006.99, when the BIC value of the full model is
1023.48. Next, we fit the `1-penalized Cox proportional hazard model with penalizing
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parameter chosen by 10-fold CV, GCV and BIC by using R-package glmnet. The
CV and GCV identify seven out of eight covariates (exclude the variable calories
consumed), and BIC after fitting the Cox model with these seven selected covari-
ates is 1018.36. When the penalizing parameter was selected through BIC, two
more predictors (age and Karnofsky performance score rated by the patients) are
dropped from the model. BIC of the Cox model with these five predictors is 1011.38.
Finally, we analyse the data by our proposed method. As mentioned before, we use
the lower bound from (2.7) as the value of λ . Our method detects three covariates:
institution code, gender and ECOG performance score. The BIC of the Cox model
with these three variables comes out as 1008.66. We note that the p-values of gen-
der and ECOG performance score are significant at 5% level when the same for the
institution code (p-value= 0.0675) is significant at 10% level. The result seems to be
consistent with our finding in Section 5.

7. Conclusion

The selection of appropriate penalty parameter has great influence on variable se-
lection. Cross-validation is a widely used approach for choosing the parameter.
Leng, Lin and Wahba (2006) suggested to go with some method other than cross-
validations or BIC when covariate selection is of primary importance. The numer-
ical results show that the model resulted from our method always includes fewer
non-active covariates. From that perspective our method may be thought of as
an alternative route to choose the penalizing parameter. Certainly, the proposed
method is not a panacea for variable selection when event time is the outcome of
interest. We have seen in Sections 2 and 7 that for low dimension our method
yields the model with second smallest BIC value. But BIC-based model selection
cannot be performed in high dimension where penalized regression is the only tool
for variable selection. In general, for many of the situations we study in this paper,
our method shows promising results. Together with these, our method may be a
good candidate when covariate selection is the primary goal.
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APPENDIX

Here, we outline the proof of Result 1 and show the convergence of the proposed
algorithm.

Proof of Result 1:

From Barron et al. (2008) the condition on penalty function is

pen( f )≥ log(
L f (X)

L f̃ (X)
)−2log

E
√

L f (X)

L f∗ (X)

E
√

L f̃ (X)

L f∗ (X)

+2L ( f̃ ), (7.1)
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Using the full likelihood and the fact that f̃i
p→ fi we get,

L f (v1,v2, ...,vn)

L f̃ (v1,v2, ...,vn)
=

n

∏
i=1

(
h0(vi)exp

[
−H0(vi)e fi

]
e fi
)δi
(
exp
[
−H0(Ci)e fi

])1−δi(
h0(vi)exp

[
−H0(vi)e f̃i

]
e f̃i
)δi
(

exp
[
−H0(Ci)e f̃i

])1−δi

=
n

∏
i=1

 exp
[
−H0(vi)e fi

]
e fi

exp
[
−H0(vi)e f̃i

]
e f̃i

δi
 exp

[
−H0(Ci)e fi

]
exp
[
−H0(Ci)e f̃i

]
1−δi

.

Thus, by Taylor expansion up-to order 2, we have

log

(
L f (v1,v2, ...,vn)

L f̃ (v1,v2, ...,vn)

)
=

n

∑
i=1

[δi

{
H0(vi)(e f̃i − e fi)+( fi− f̃i)

}
+(1−δi)H0(Ci)

(e f̃i − e fi)]

=
n

∑
i=1

[
δiH0(vi)e fi ( f̃i− fi)

2

2
+(1−δi)H0(Ci)e fi ( f̃i− fi)

2

2

]
=

n

∑
i=1

e fi ( f̃i− fi)
2

2
[δiH0(vi)+(1−δi)H0(Ci)] ,

Next, consider the expectation from (7.1),

E

√
L f (V1,V2, ...,Vn)

L f ∗(V1,V2, ...,Vn)

=
n

∏
i=1

(
∫ Ci

0

√
exp [−H0(vi)e fi ]e fi

exp
[
−H0(vi)e f ∗i

]
e f ∗i

h0(vi)exp
[
−H0(vi)e f ∗i

]
e f ∗i dvi +√

exp [−H0(Ci)e fi ]

exp
[
−H0(ti)e f ∗i

] exp
[
−H0(Ci)e f ∗i

]
)

=
n

∏
i=1

{∫ Ci

0
h0(vi)exp

[
−H0(vi)

2

(
e fi + e f ∗i

)]
e

fi+ f∗i
2 dvi + exp

[
−H0(Ci)

2

(
e fi + e f ∗i

)]}

=
n

∏
i=1

 2e
fi+ f∗i

2

e fi + e f ∗i

[
1− exp

(
−H0(Ci)

e fi + e f ∗i

2

)]
+ exp

[
−H0(Ci)

2

(
e fi + e f ∗i

)] .

(7.2)
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Hence, after some algebra the ratio of the expectation in (7.1) reduces to

E
√

L f (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

E
√

L f̃ (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

=
n

∏
i=1

2e
fi+ f∗i

2

e fi+e f∗i

[
1− exp

(
−H0(Ci)

e fi+e f∗i
2

)]
+ exp

[
−H0(Ci)

2

(
e fi + e f ∗i

)]
2e

f̃i+ f∗i
2

e f̃i+e f∗i

[
1− exp

(
−H0(Ci)

e f̃i+e f∗i
2

)]
+ exp

[
−H0(Ci)

2

(
e f̃i + e f ∗i

)]
=

n

∏
i=1

{
1+

fi− f̃i

2
+

( fi− f̃i)
2

8

}(
e fi + e f ∗i +( f̃i− fi)e fi

e fi + e f ∗i

)


1− exp
(
−H0(Ci)

e f̃i+e f∗i
2

)
+( fi− f̃i)exp

(
−H0(Ci)

e f̃i+e f∗i
2

)
H0(Ci)

e fi
2

1− exp
(
−H0(Ci)

e f̃i+e f∗i
2

)


=
n

∏
i=1

{
1+

( fi− f̃i)
2

8

}
. (7.3)

We expand fi around f̃i up-to first order by Taylor series, and since f̃i
p→ fi then by

the fact that for x close to 0, ex = 1+x+ x2

2 . Taking log on both sides of (7.3) we get

log
E
√

L f (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

E
√

L f̃ (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

=
n

∑
i=1

log
{

1+
( fi− f̃i)

2

8

}

=
n

∑
i=1

( fi− f̃i)
2

8
. (7.4)

As a result, the second expression in (7.1) may be approximated as

−2log

E
√

L f (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

E
√

L f̃ (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

 = −
n

∑
i=1

( fi− f̃i)
2

4
. (7.5)
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Hence, together with (7.2) and (7.5) the condition (7.1) is equivalent to

pen( f ) ≥
n

∑
i=1

[
e fi ( f̃i− fi)

2

2
{δiH0(vi)+(1−δi)H0(Ci)}−

( f̃i− fi)
2

4

]
+2L ( f̃ )

=
n

∑
i=1

( f̃i− fi)
2

2

[
δi

(
e fiH0(vi)−

1
2

)
+(1−δi)

(
e fiH0(Ci)−

1
2

)]
+2L ( f̃ ).

(7.6)

Using the facts that ( f̃i− fi)
2 p→ E( f̃i− fi)

2 =Var( f̃i) and this variance has an upper
bound UU f

K i.e. Var( f̃i)≤
UU f

K . This upper bound together with the fact that L ( f̃ ) =
K log2p yield an upper bound for the right-hand side of (7.6). Replacing these in
(7.6) we obtain

pen( f ) ≥
UU f

2K

n

∑
i=1

[
δi

(
e fiH0(vi)−

1
2

)
+(1−δi)

(
e fiH0(Ci)−

1
2

)]
+2K log2p.

(7.7)

Differentiating (7.7) with respect to K and then equating it to zero we get

K =

√
UU f

2
√

log2p

√
n

∑
i=1

[
δi

(
e fiH0(vi)−

1
2

)
+(1−δi)

(
e fiH0(Ci)−

1
2

)]
.

Then, replacing that value of K in (7.7) with the choice of U =U f we get

pen( f ) ≥ 2

√
UU f

n

∑
i=1

[
δi

(
e fiH0(vi)−

1
2

)
+(1−δi)

(
e fiH0(Ci)−

1
2

)]√
log2p

⇒ λU f ≥ 2

√
UU f

n

∑
i=1

[
δi

(
e fiH0(vi)−

1
2

)
+(1−δi)

(
e fiH0(Ci)−

1
2

)]√
log2p

which is equivalent to

λ

n
≥ 2

√
log2p

n

√
n

∑
i=1

[
δi

(
e fiH0(vi)−

1
2

)
+(1−δi)

(
e fiH0(Ci)−

1
2

)]
.

(7.8)

This completes the proof of the theorem.
There is a chance that the sum in (7.7) can be negative. Then, we cannot proceed
further with that negative sum. In that situation, we adopt a slightly modified route
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to overcome this difficulty. From (7.5) we have

−2log

E
√

L f (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

E
√

L f̃ (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

 ≈ −
n

∑
i=1

( fi− f̃i)
2

4
≤ 0. (7.9)

With the bound in (7.9) and by the facts that ( f̃i− fi)
2 p→ E( f̃i− fi)

2 =Var( f̃i)≤
UU f

K
and L ( f̃ ) = K log2p, the condition (7.1) reduces to

pen( f ) ≥
n

∑
i=1

[
e fi ( f̃i− fi)

2

2
{δiH0(vi)+(1−δi)H0(Ci)}

]
+2L ( f̃ )

=
UU f

2K

n

∑
i=1

[
δie fiH0(vi)+(1−δi)e fiH0(Ci)

]
+2K log2p.

(7.10)

Then, we minimize the right-hand side of (7.10) with respect to K and choose
U =U f as before. Now, the equation (7.10) reduces to

pen( f ) ≥ 2

√
UU f

n

∑
i=1

[δie fiH0(vi)+(1−δi)e fiH0(Ci)]
√

log2p

⇒ λU f ≥ 2

√
UU f

n

∑
i=1

[δie fiH0(vi)+(1−δi)e fiH0(Ci)]
√

log2p

⇒ λ

n
≥ 2

√
log2p

n

√
n

∑
i=1

[δie fiH0(vi)+(1−δi)e fiH0(Ci)].

(7.11)

From (7.11) it is clear that the penalty function is still information theoretically valid
since it satisfies the condition (7.1).
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Proof of Result 2:

Let ek =
1
n log

L f̂ (x)
L f̂(k)

(x) +λ (u(k)−U f ). Then, using the full likelihood we get

ek =
1
n

log
L f̂ (x)

L f̂(k)
(x)

+λ (u(k)−U f )

=
1
n

n

∑
i=1

log

( p f̂ (xi)

p f̂(k)
(xi)

)δi
(

P̄f̂ (Ci)

P̄f̂(k)
(Ci)

)1−δi
+λ (u(k)−U f )

=
1
n

n

∑
i=1

log

δi

{
f̂i− f̂i,(k)+H0(vi)(e

f̂i,(k) − e f̂i)
}
+(1−δi) log

exp
(
−H0(Ci)e f̂i

)
exp
(
−H0(Ci)e

f̂i,(k)
)


+λ (u(k)−U f ), (7.12)

where f̂i = Z′iβ̂ and f̂i,(k) = Z′iβ̂ (k) with β̂ (k), obtained at kth iteration, is the estimate
of β . To prove the theorem we need to show that

ek ≤ (1−α)ek−1 +
1
2

α
2U2

f . (7.13)

It is clear that to have the inequality (7.13), we only need to tackle the ratio of the
survival functions from (7.12). For the ith subject we rewrite the ratio of the survival
functions from (7.12) in the following way

exp
(
−H0(Ci)e f̂i

)
exp
(
−H0(Ci)e

f̂i,(k)
)

=

 exp
(
−H0(Ci)e f̂i

)
exp
(
−H0(Ci)e

f̂i,(k−1)
)
ᾱ {

exp
(
−H0(Ci)e f̂i

)}α {
exp
(
−H0(Ci)e

f̂i,(k−1)
)}ᾱ

exp
(
−H0(Ci)e

f̂i,(k)
) .

(7.14)

So, to prove (7.13) we need to show{
exp
(
−H0(Ci)e f̂i

)}α {
exp
(
−H0(Ci)e

f̂i,(k−1)
)}ᾱ

exp
(
−H0(Ci)e

f̂i,(k)
) ≤ 1. (7.15)
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Then, using the updating rule that f̂i,(k) = ᾱ f̂i,(k−1) + γZil we rewrite (7.15) in the
following way{

exp
(
−H0(Ci)e f̂i

)}α {
exp
(
−H0(Ci)e

f̂i,(k−1)
)}ᾱ

exp
(
−H0(Ci)e

f̂i,(k)
)

=
exp
(
−H0(Ci)

{
e f̂i + e f̂i,(k−1)

})
{

exp
(
−H0(Ci)e f̂i

)}ᾱ {
exp
(
−H0(Ci)e

f̂i,(k−1)
)}α

exp
(
−H0(Ci)e

ᾱ f̂i,(k−1)+γZil
)

. (7.16)

We choose customarily some α and γ = αU f in such a way that γZil
p→ α fi, which

is estimated by α f̂i. For more details regarding the customary choices and the
convergence see [2]. Using these facts (7.16) reduces to

exp
(
−H0(Ci)

{
e f̂i + e f̂i,(k−1)

})
{

exp
(
−H0(Ci)e f̂i

)}ᾱ {
exp
(
−H0(Ci)e

f̂i,(k−1)
)}α

exp
(
−H0(Ci)e

ᾱ f̂i,(k−1)+α f̂i
)

=
exp
(
−H0(Ci)

{
e f̂i + e f̂i,(k−1)

})
{

exp
(
−ᾱH0(Ci)e f̂i

)}{
exp
(
−αH0(Ci)e

f̂i,(k−1)
)}

exp
(
−H0(Ci)e

ᾱ f̂i,(k−1)+α f̂i
)

=
exp
(
−H0(Ci)

{
e f̂i + e f̂i,(k−1)

})
exp
(
−ᾱH0(Ci)e f̂i −αH0(Ci)e

f̂i,(k−1) −H0(Ci)e
ᾱ f̂i,(k−1)+α f̂i

) . (7.17)

We denote the numerator and denominator of (7.17) by Dn and De, respectively.
We see that for α = 0 and 1, Dn = De which reduces (7.17) to 1 and hence log of
(7.17) becomes 0. For α ∈ (0,1) we study the nature of De. We have

∂ logDe

∂α
= H0(Ci)

(
e f̂i − e f̂i,(k−1) − eᾱ f̂i,(k−1)+α f̂i( f̂i− f̂i,(k−1))

)
and

∂ 2 logDe

∂α2 = −H0(Ci)exp
{

ᾱ f̂i,(k−1)+α f̂i
}
( f̂i− f̂i,(k−1))

2 (7.18)

From (7.18) it is clear that logDe and hence, De is strictly concave function. As a
result, De cannot attain its maximum for α = 0 or 1 since in that case De will be a
constant. So, (7.17) is less than or equal to 1 for 0 < α < 1, indicating that its log is
negative. This completes the proof of the result.


