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A NEW AND UNIFIED APPROACH IN GENERALIZING
THE LINDLEY’S DISTRIBUTION WITH APPLICATIONS

Lahsen Bouchahed1, Halim Zeghdoudi2

ABSTRACT

This paper proposes a new family of continuous distributions with one extra shape
parameter called the generalized Zeghdoudi distributions (GZD). We investigate the
shapes of the density and hazard rate function. We derive explicit expressions for
some of its mathematical quantities. Various statistical properties like stochastic
ordering, moment method, maximum likelihood estimation, entropies and limiting
distribution of extreme order statistics are established. We prove the flexibility of the
new family by means of applications to several real data sets.
Key words: Lindley distribution, exponential distribution, Gamma distribution, stochas-
tic ordering, maximum-likelihood estimation.

1. Introduction

Statistical models are very useful in describing and predicting real-world phenom-
ena. Numerous extended distributions have been extensively used over the last
decades for modelling data in several areas. Recent developments focus on defin-
ing new families that extend well-known distributions and at the same time provide
great flexibility in modelling data in practice. Thus, many lifetime distributions for
modeling lifetime data such as Lindley, exponential, Gamma, Weibull, Lognormal,
Akash, Shanker, Sujatha, Amarendra distributions have been proposed in the sta-
tistical literature.

The probability density function of Lindley distribution is given by

f1 (x,θ) =
θ 2

θ +1
(1+ x)exp(−θx) ; x > 0, θ > 0

It has been generalized many times by researchers including Zakerzadeh and Dolati
(2009), Bakouch et al. (2012), Shanker et al. (2013), Elbatal et al. (2013), Ghitany
et al. (2013), Suigh et al. (2014), Abouamoh et al. (2015).

Shanker used a procedure based on certain mixtures of the gamma and expo-
nential distributions to obtain three new distributions:
the Akash distribution, see (Shanker 2015a), whose probability density function is
given by

f2 (x,θ) =
θ 3
(
1+ x2

)
θ 2 +1

exp(−θx) ; x > 0, θ > 0

1LaPS laboratory, Badji-Mokhtar University, Box 12, Annaba, 23000,ALGERIA. E-mail: lboucha-
hed@hotmail.com

2LaPS laboratory, Badji-Mokhtar University, Box 12, Annaba, 23000,ALGERIA. E-mail:
halim.zeghdoudi@univ-annaba.dz
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the Aradhana distribution, see (Shanker 2016a), whose probability density function
is given by

f2 (x,θ) =
θ 3 (1+ x)2

θ 2 +2θ +2
exp(−θx) ; x > 0, θ > 0

the Sujatha distribution, see (Shanker 2016b), whose probability density function is
given by

f3 (x,θ) =
θ 3
(
1+ x+ x2

)
θ 2 +θ +2

exp(−θx) ; x > 0, θ > 0

the Amarendra distribution, see (Shanker 2016c), whose probability density function
is given by

f4 (x,θ) =
θ 4
(
1+ x+ x2 + x3

)
θ 3 +θ 2 +2θ +6

exp(−θx) ; x > 0, θ > 0.

the Devya distribution, see (Shanker 2016d), whose probability density function is
given by

f5 (x,θ) =
θ 5
(
1+ x+ x2 + x3 + x4

)
θ 4 +θ 3 +2θ 2 +6θ +24

exp(−θx) ; x > 0, θ > 0.

the Shambhu distribution, see (Shanker 2016e), whose probability density function
is given by

f6 (x,θ) =
θ 6
(
1+ x+ x2 + x3 + x4 + x5

)
θ 5 +θ 4 +2θ 3 +6θ 2 +24θ +120

exp(−θx) ; x > 0, θ > 0.

In this paper we introduce a new one-parameter family of continuous distributions
by considering a polynomial exponential family, which contains Akash, Sujatha,
Amarendra, Devya and Shambhu distributions as particular cases.

The rest of the paper is outlined as follows. Sections (2-10) are devoted to
present various statistical properties like stochastic ordering, moment method, max-
imum likelihood estimation, entropies, and limiting distribution of extreme order
statistics are established. In section 11 we present the new distribution called Zegh-
doudi distribution, and in section 12 we give numerical examples.

We derive explicit expressions for some of its mathematical quantities. Various
statistical properties like stochastic ordering, moment method, maximum likelihood
estimation, entropies and limiting distribution of extreme order statistics are estab-
lished. We prove the flexibility of the new family by means of applications to several
real data sets.

Basic Theory
Suppose that X is random variable taking values in ]0,∞), and that the distribu-

tion of X depends on an unspecified parameter θ taking values in ]0,∞). So, the
distribution of X might be absolutely continuous or discrete. In both cases, let fθ be
the probability distribution function with respect to the Lebesgue measure or to the
counting measure on a countable set including discontinuity jumps of fθ .
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The distribution of X is a one-parameter polynomial exponential family and the
probability density function can be written as

fGZD (x;θ) = h(θ) p(x)exp(−θx) , θ ,x > 0

where h(θ) is real-valued functions on ]0,∞) , and where p(x) = ∑
n
k=0 akxk and

an 6= 0, is polynomial functions on ]0,∞). Moreover, k is a positive integer and ak is
positive real number with an 6= 0. We can check immediately:

1) It is non-negative for x > 0;
2) P [a < x < b] =

∫ b
a fθ (x)dx;

3)
∫

∞

0 fθ (x)dx = 1 for h(θ) =
1

∑
n
k=0 ak

k!
θ k+1

.

Now, the probability density function of Generalized Zeghdoudi Distribution X is:

fGZD (x;θ) =
∑

n
k=0 akxk exp(−θx)

∑
n
k=0 ak

k!
θ k+1

, θ ,x > 0 (1)

Examples and Special Cases
Many of the special distributions studied in this work are general exponential

families, at least with respect to some of their parameters. On the other hand, most
commonly, a parametric family fails to be a general exponential family because the
support set depends on the parameter.

2. General one-parameter distribution and some properties

In this section, we give the general one-parameter distribution and study its proper-
ties.

The first and second derivatives of fGZD,θ (x)

d
dx

fGZD(x;θ) =

[
(a1−θa0)+ ...+(nan−θan−1)xn−1 +anxn

]
exp(−θx)

∑
n
k=0 ak

k!
θ k+1

= 0

gives x1,x2,...,xn solutions.

We can find easily the cumulative distribution function (c.d.f) of the general one-
parameter distribution:

FGZD(x) = 1−
∑

n
k=0

akΓ(k+1,xθ)

θ k+1

∑
n
k=0 ak

k!
θ k+1

;x,θ > 0 (2)
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2.1. Survival and hazard rate function

Let

SGZD(x) = 1−FGZD(x) =
∑

n
k=0

akΓ(k+1,xθ)

θ k+1

∑
n
k=0 ak

k!
θ k+1

;x,θ > 0

and

hGZD(x) =
fGZD(x)

1−FGZD(x)
=

∑
n
k=0 akxk exp(−θx)

∑
n
k=0

akΓ(k+1,xθ)

θ k+1

be the survival and hazard rate function, respectively.
Proposition1. Let hθ (x) be the hazard rate function of X . Then hθ (x) is increasing
for ∑

m
0 (k+1)(m−2k)am−kak+1 ≥ 0, m = 0, ...,2n−1

Proof. According to Glaser (1980) and from the density function (2) we have

ρ(x) =−
f
′
GZD(x;θ)

fGZD(x;θ)
=−∑

n
k=1 kakxk−1

∑
n
k=0 akxk +θ

After simple computations we obtain

ρ
′
(x) =

∑
2n−1
m=0 ∑

m
k=0(k+1)(m−2k)am−kak+1xm−1

(∑n
k=0 akxk)

2 .

Which implies that hθ (x) is increasing for ∑
m
k=0(k + 1)(m− 2k)am−kak+1 ≥ 0, m =

0, ...,2n−1

3. Moments and related measures

The kth moment about the origin of the GZD is :

E(X i) =
∑

n
k=0

ak
θ k+i+1 (k+ i)!

∑
n
k=0 ak

k!
θ k+1

, i = 1,2, ...

Remark 2 The kth moment about the origin of the Lindley distribution is

E(X i) =
i!(θ + i+1)

θ i (θ +1)

Corollary 1. Let X ∼ GZD(θ), the mean of X is:

E(X) =
∑

n
k=0

ak
θ k+2 (k+1)!

∑
n
k=0 ak

k!
θ k+1

.

Theorem 1. Let X ∼ GZD(θ), me =median(X) and µ = E(X). Then me < µ
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Proof. According to the increasingness of F(x) for all x and θ ,

FGZD(me) =
1
2

and

FGZD(µ) = 1−h(θ)
n

∑
k=0

akΓ

(
k+1,θh(θ)∑

n
k=0

ak
θ k+2 (k+1)!

)
θ k+1

Note that 1
2 < F(µ)< 1. It is easy to check that F(me)< F(µ). To this end, we have

me < µ.�.
The coefficients of variation γ , skewness and kurtosis of the GZD have been ob-
tained as

γ =

√
Var(X)

E(X)

skewness =
E(X3)

(Var(X))
3
2

kurtosis =
E(X4)

(Var(X))2 .

4. Estimation of parameter

Let X1, ..., Xn be a random sample of GZD. The ln-likelihood function, ln l(xi;θ) is
given by :

ln l(xi;θ) = n lnh(θ)+
n

∑
i=1

ln

(
m

∑
k=0

akxk
i

)
−θ

n

∑
i=1

xi.

The derivative of ln l(xi;θ) with respect to θ is :

d ln l(xi;θ)

dθ
=

nḣ(θ)
h(θ)

−
n

∑
i=1

xi.

From the Zeghdoudi distribution (2), the method of moments (MoM) and the
maximum likelihood (ML) estimators of the parameter θ are the same and it can be
obtained by solving the following non-linear equation

ḣ(θ)
h(θ)

− x̄ = 0, where ḣ(θ) =
dh(θ)

dθ
(4)
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The equation to be solved is

m

∑
k=0

akk!
θ k ((k+1)− x̄θ) = 0 (5)

Note that we can solve the equation (5) exactly for m ≤ 4 and for m ≥ 5 the
equation (5) is to be solved numerically.

Special cases
For m = 0, we have θ̂MV = 1

x̄

For m = 1, we have θ̂MV = 1
2xa0

(
a0− xa1 +

√
x2a2

1 +a2
0 +6xa0a1

)
For m = 2, θ̂MV is one of the two solutions :{(

−a1+
√

x2a2
2+a2

1−6a0a2+4xa1a2+xa2

)
a0−xa1

,−
(

a1+
√

x2a2
2+a2

1−6a0a2+4xa1a2−xa2

)
a0−xa1

}
For m = 3 and m = 4, we can solve exactly equation (5) using methods such as

Cardan and Ferrari method
For m≥ 5, according to Galois theorem, there is no general method to solve

exactly equation (5).

5. Stochastic orders

Definition 1. Consider two random variables X and Y . Then X is said to be smaller
than Y in the: a) Stochastic order (X ≺s Y ), if FX (t)≥ FY (t), ∀t.
b) Convex order (X ≤cx Y ), if for all convex functions φ and provided expectation
exist, E[φ(X)]≤ E[φ(Y )].
c) Hazard rate order (X ≺hr Y ), if hX (t)≥ hY (t), ∀t.
d) Likelihood ratio order (X ≺lr Y ), if fX (t)

fY (t)
is decreasing in t.

Remark 3 Likelihood ratio order⇒Hazard rate order⇒Stochastic order.
If E[X ] = E[Y ], then Convex order⇔Stochastic order.

Theorem 4. Let Xi ∼ GZD(θi), i = 1,2 be two random variables. If θ1 ≥ θ2, then
X1 ≺lr X2,X1 ≺hr X2,X1 ≺s X2 and X1 ≤cx X2.

Proof. We have

fX1(t)
fX2(t)

=

∑
n
k=0 ak

k!
θ

k+1
2

∑
n
k=0 ak

k!
θ

k+1
1

e−(θ1−θ2)t .

For simplification, we use ln
(

fX1 (t)
fX2 (t)

)
. Now, we can find

d
dt

ln
(

fX1(t)
fX2(t)

)
=−(θ1−θ2)
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To this end, if θ1 ≥ θ2 , we have d
dt ln

(
fX1 (t)
fX2 (t)

)
≤ 0. This means that X1 ≺lr X2. Also,

according to Remark 3 the theorem is proved.

6. Mean Deviations

These are two mean deviation: about the mean and about the median, defined as
MD1 =

∫
∞

0 |x−µ| f (x)dx and MD2 =
∫

∞

0 |x−me| f (x)dx respectively, where µ = E(X)

and me =Median(X). The measures MD1 and MD2 can be computed using the
following simplified formulas

MD1 = 2µF(µ)−2
∫

µ

0
x f (x)dx

MD2 = µ−2
∫ me

0
x f (x)dx

7. Extreme domain of attraction

As to the extreme value stability, the cdf FGZD is in the Gumbel extreme value do-
main of attraction, that is, there exist two sequences (an)n≥0 and (bn)n≥0 of real
numbers such that for any x ∈ R, we have

lim
n→+∞

P
(

Mn−bn

an
≤ x
)
= lim

n→+∞
FGZD (anx+bn)

n = exp(−exp(−x)).

This follows from Formula 1.2.4 in theorem 1.2.1 (De Haan and Ferreira (2006))
since we have

lim
t→∞

1−FGZD(t + x f (t))
1−FGZD(t)

= lim
t→∞

fGZD(t + x f (t))
fGZD(t)

= lim
t→∞

∑
n
k=0 ak (x f (t)+ t)k e(−θ(x f (t)+t))

∑
n
k=0 aktke(−θ t)

= exp(−x),

(such formula is called Γ-variation). Then, FGZD lies in the Gumbel extreme do-
main of attraction. In his case, f (t) = 1

θ
. So, for (as in the invoked theorem)

an = f (F−1
GZD(1−1/n)) = 1

θ
and bn = F−1

GZD(1−1/n), we have

lim
n→+∞

FGZD (anx+bn)
n = exp(−exp(−x))

8. Estimation of the Stress-Strength Parameter

The stress-strength parameter (R) plays an important role in the reliability analysis
as it measures the system performance. Moreover, R provides the probability of
a system failure, the system fails whenever the applied stress is greater than its
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strength, i.e. R = P(X > Y ). Here X ∼ GZD(θ1) denotes the strength of a system
subject to stress Y , and Y ∼ GZD(θ2), X and Y are independent of each other. In
our case, the stress-strength parameter R is given by

R = P(X > Y ) =
∫

∞

0
SX (y) fY (y)dy

=

∫
∞

0 ∑
n
k=0

akΓ(k+1,yθ1)

θ
k+1
1

∑
n
k=0 akyk exp(−θ2y)dy(

∑
n
k=0 ak

k!
θ

k+1
1

)(
∑

n
k=0 ak

k!
θ

k+1
2

)

9. Lorenz curve

The Lorenz curve is often used to characterize income and wealth distributions.
The Lorenz curve for a positive random variable X is defined as the graph of the
ratio

L(F(x)) =
E(X |X ≤ x)F(x)

E(X)

against F(x) with the properties L(p)≤ p,L(0) = 0 and L(1) = 1. If X represents
annual income, L(p) is the proportion of total income that accrues to individuals
having the 100 p% lowest incomes. If all individuals earn the same income then
L(p) = p for all p. The area between the line L(p) = p and the Lorenz curve may be
regarded as a measure of inequality of income, or more generally, of the variability
of X . For the exponential distribution, it is well known that the Lorenz curve is given
by

L(p) = p{p+(1− p)log(1− p)}.

For the GZ distribution in (3),

E(X |X ≤ x)FGZD(x) =
∑

n
k=0

ak
θ k+2 (k+1)!

∑
n
k=0 ak

k!
θ k+1

1−
∑

n
k=0

akΓ(k+1,xθ)

θ k+1

∑
n
k=0 ak

k!
θ k+1



10. Entropies

It is well known that entropy and information can be considered as measures of
uncertainty of probability distribution. However, there are many relationships estab-
lished on the basis of the properties of entropy.

An entropy of a random variable X is a measure of variation of the uncertainty.
Rényi entropy is defined by
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J (γ) =
1

1− γ
log
{∫

f γ (x)dx
}

where γ > 0 and γ 6= 1. For the GZ distribution in (1), note that, for γ integer we
have

∫
f γ

GZD (x)dx =

∫ (
∑

n
k=0 akxk

)γ exp(−θγx)dx(
∑

n
k=0 ak

k!
θ k+1

)γ

=
∑

n
k=0 bk (γ)

∫
xkγ exp(−θγx)dx(

∑
n
k=0 ak

k!
θ k+1

)γ

where,
∫

xkγ exp(−θγx)dx = − 1
θγ(θγ)kγ

Γ(kγ +1,xθγ) and bk (γ) in function the ak

and γ.

Now, the Rényi entropy as given by

J (γ) =
1

1− γ
log


(kγ)!

θγ(θγ)kγ ∑
n
k=0 bk (γ)(

∑
n
k=0 ak

k!
θ k+1

)γ


if γ → ∞, we find Shannon entropy.

11. Zeghdoudi distribution(ZD) and immediate properties

In this section we will introduce a new distribution called Zeghdoudi distribution(ZD)
(see Zeghdoudi and Messadia 2018), which is a member of the new family.

The density function of X  Zeghdoudi distribution is given by:

fZD(x;θ) =

{
θ 3x(1+x)e−θx

θ+2 x,θ > 0
0, otherwise.

We note that ZD distribution is a member of the new family where n = 2,a0 = 0,a1 =

a2 = 1 using formula (1) . Therefore, the mode of ZD is given by

mode(X) = −θ+2+
√

θ 2+4
2θ

for θ > 0

We can find easily the cumulative distribution function(c.d.f) of the ZD :

FZD(x) = 1−
(

θ 2x2 +θ(θ +2)x+θ +2
θ +2

)
e−θx;x > 0,θ > 0
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From the Zeghdoudi distribution, the method of moments (MoM) and the maximum
likelihood (ML) estimators of the parameter θ are the same and can be obtained by
solving the following non-linear equation

3
θ
− 1

θ +2
− x̄ = 0

θ̂M = θ̂ML =

{
1
x̄

(
−x̄+

√
4x̄+ x̄2 +1+1

)}
We can show that the estimator of θ is positively biased.

12. Simulation and Goodness of Fit

12.1. Simulation study

We can see that the equation F(x) = u, where u is an observation from the uni-
form distribution on (0,1), cannot be solved explicitly in x (cannot use lambert W
function in the case k≥ 2), the inversion method for generating random data from
the GZ distribution fails. However, we can use the fact that the GZ distribution is a
mixture of gamma (k,θ) and gamma (k+1,θ) distributions:

fGZD(x;θ) = p(θ) gamma(k,θ)+(1− p(θ))gamma(k+1,θ),0 < p(θ)< 1

In this subsection, we investigate the behaviour of the ML estimators for a finite
sample size (n). A simulation study consisting of the following steps is being carried
out N = 10000 times for selected values of (θ ;n), where θ = 0.01,0.1,0.5,1,3,10 and
n = 10,30,50.

- Generate Ui ∼Uni f orm(0,1), i = 1, ...n.
- Generate Yi ∼ Gamma(k,θ), i = 1, ...n.
- Generate Zi ∼ Gamma(k+1,θ), i = 1, ...n.
- If Ui ≤ p(θ), then set Xi = Yi, otherwise, set Xi = Yi, i = 1, ...n,

average bais(θ) =
1
N

N

∑
i=1

(
θ̂i−θ

)
and the average square error.

MSE (θ) =
1
N

N

∑
i=1

(
θ̂i−θ

)2
, i = 1, ...N.
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12.2. Applications

Example 1
Tables 1 and 2 represent the Data of survival times (in months) of ( 94,91) guinea

individus infected with Ebola virus.

Table 1 Chi-Square Values for Lindley and Zeghdoudi distributions
Survival time m = 3.17 Obs freq LD θ̂ = 0.522 ZD θ̂ = 0.852
[0,2[ 32 38.217 33.252
[2,4[ 35 28.16 32.366
[4,6[ 17 15.089 17.799
[6,8[ 7 7.33 7. 133
[8,10] 3 3.152 2.418
Total 94 94 94
χ2 - 2.9244 0.40020

Table 2 Chi-Square Values for Lindley and Zeghdoudi distributions
Survival time m = 3 Obs freq LD θ̂ = 0.548 ZD θ̂ = 0.896
[0,2[ 35 39.100 34.56
[2,4[ 32 27.390 31.497
[4,6[ 16 13.92 16.206
[6,8[ 6 6.247 5 6.069 7
[8,10] 2 2.618 9 1.921 8
Total 91 91 91
χ2 - 1.616 5 0.01995

Figure 1: Plots of the density function of LD and ZD
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Example 2
Now, we compare one-parameter (Aradhana, Akash, Shanker, Amarendra, De-

vya, Shambhu) distributions see Shanker (2015a, 2015b, 2016a, 2016b, 2016c,
2016d, 2016e) and two-parameter (Gamma, Weibull, Lognormal) distributions with
Zeghdoudi distribution (see tables 3 and 4).

Table 3 Comparison of ZD with one-parameter distributions
Data Distribution θ log-likelihood Kolmogrov-Smirnov

data 1 ZD 1.365 -52.4 0.292
n = 20 Aradhana 1.123 -56.4 0.302
m = 1.9 Akash 1.157 -59.5 0.320
s = 0.704 Shanker 0.804 -59.7 0.315

Amarendra 1.481 -55.64 0.286
Devya 1.842 -54.50 0.268
Shambhu 2.215 -53.9 0.254

Data Distribution θ log-likelihood Kolmogrov-Smirnov

data 2 ZD 0.095 -239.7 0.251
n = 25 Aradhana 0.094 -242.2 0.274
m = 30.811 Akash 0.097 -240.7 0.266
s = 7.253 Shanker 0.063 -252.3 0.326

Amarendra 1.481 -233.41 0.225
Devya 1.842 -227.68 0.193
Shambhu 2.215 -223.40 0.167

Table 4 Comparison of ZD with two-parameter distributions
Data Distribution β θ log-likelihood Kolmogrov-Smirnov

data 3 ZD — 0.107 -58.67 0.081
n = 15 Gamma 1.442 0.052 -64.197 0.102
m = 27.54 Weibull 1.306 0.034 -64.026 0.450
s = 20.06 Lognormal 1.061 2.931 -65.626 0.163
data 4 ZD — 0.0167 -142.32 0.108
n = 25 Gamma 1.794 0.010 -152.371 0.135
m = 178.32 Weibull 1.414 0.005 -152.440 0.697
s = 131.09 Lognormal 0.891 4.880 -154.092 0.155

According to tables 1, 2, 3, 4 and figures 1, 2, we can observe that Zeghdoudi
distribution provide smallest -LL and K-S values as compared to one-parameter
(Aradhana, Akash, Shanker, Amarendra, Devya, Shambhu) distributions, and two-
parameter (Gamma, Weibull, Lognormal), and hence best fits the data among all
the models considered.

13. Conclusions

In this work we propose a one-parameter family GZD. Several properties have
been discussed: moments, cumulants, characteristic function, failure rate function,
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stochastic ordering, the maximum likelihood method and the method of moments.
The LD does not provide enough flexibility for analyzing and modelling different
types of lifetime data and survival analysis. But GZD is flexible, simple and easy to
handle. Two real data sets are analyzed using the new distribution and are com-
pared with five immediate sub-models mentioned above in addition to other distribu-
tions (Lindley, Exponential, Gamma, Weibull, Lognormal distributions). The results
of the comparisons confirm the goodness of fit of GZ distribution. We hope our new
distribution family might attract wider sets of applications in lifetime data reliability
analysis and actuarial sciences. For future studies, we can go more generally by
using p(x;θ). Also, we can explain the derivation of posterior distributions for the
GZ distribution under Linex loss functions and squared error using non-informative
and informative priors (the extension of Jeffreys and Inverted Gamma priors) re-
spectively.

Annexe

Data set 1: represents the lifetime data relating to relief times (in minutes) of
20 patients receiving an analgesic and reported by Gross and Clark (1975, P. 105).
The data are as follows: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5,
1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0

Data set 2: is the strength data of glass of the aircraft window reported by Fuller
et al. (1994): 18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.50, 25.52,
25.80, 26.69, 26.77, 26.78, 27.05, 27.67, 29.90, 31.11, 33.20, 33.73, 33.76, 33.89,
34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381
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