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A GENERALIZED RANDOMIZED RESPONSE MODEL 

Housila P. Singh, Swarangi M. Gorey1 

ABSTRACT 

In this paper we have suggested a generalized version of the Gjestvang and Singh 

(2006) model and have studied its properties. We have shown that the 

randomized response models due to Warner (1965), Mangat and Singh (1990), 

Mangat (1994) and Gjestvang and Singh (2006) are members of the proposed RR 

model. The conditions are obtained in which the suggested RR model is more 

efficient than the Warner (1965) model, Mangat and Singh (1990) model and 

Mangat (1994) model and Gjestvang and Singh (2006) model. A numerical 

illustration is given in support of the present study. 

Key words: sensitive variable, population proportion, Gjestvang and Singh’s 

model, variance, efficiency. 

AMS Subject Classification: 62D05. 

1. Introduction 

The collection of data through personal interviews surveys on sensitive issues 

such as induced abortions, alcohol and drug abuse (Weissman et al., 1986, Fisher 

et al., 1992) as well as on attitudes (Antonak and Livnech, 1995), on sexual 

behaviour (Williams and Suen, 1994, Jarman, 1997) and family income is a 

serious issue. Warner (1965) introduced an ingenious technique known as the 

randomized response technique for estimating the proportion   of people bearing 

a sensitive attribute, say A, in a given community from which a sample is 

collected. For estimating , a simple random sample of n respondents is selected 

with replacement from the population. For collecting information on the sensitive 

characteristic, Warner (1965) made use of randomization device. The 

randomization device consists of a deck of cards with each card having one of the 

following two statements: 

(i)  I belong to sensitive group A; 

(ii) I do not belong to sensitive group A, 
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represented with probabilities 0p  and  0p1  respectively in the deck of cards. 

Each respondent in the sample is asked to select a card at random from the well-

shuffled deck. Without showing the card to the interviewer, the interviewee 

answers the question, “Is the statement true for you?” the number of respondents 

1n  that answer “yes” is binomially distributed with parameters 

    1p1p 00 . The maximum likelihood estimator   exists for 
2

1
p0   

and is given by 
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 1p2

p1nn
ˆ
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
                                       (1.1) 

which is  unbiased and has the variance 
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Mangat and Singh (1990) envisaged a two-stage randomized response model. 

In the first stage, each respondent was requested to use a randomization device, 

1R , such as a deck of cards with each card containing one of the following two 

statements: (i) “I belong to sensitive group A”, (ii) “Go the randomization device 

2R ”. The statements occur with probabilities 0T  and  0T1 , respectively, in 

the first device 1R . In the second stage, if directed by the outcome of 1R , the 

respondent is requested to use the randomization device 2R , which is the same as 

the Warner (1965) device. Under the two-stage randomized response model, an 

unbiased estimator of the population proportion , due to Mangat and Singh 

(1990) is given by  
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with the variance  
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Mangat (1994) investigated another randomized response model where each 

respondent selected in the sample was requested to report “yes” if he/she 

belonged to the sensitive group A; otherwise, he/she was instructed to use the 
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Warner (1965) device. Under this model, Mangat (1994) obtained an unbiased 

estimator of the population proportion   given by 
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with the variance  
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where   0m p11  .  

It is to be mentioned that the Mangat (1994) RR model is more efficient than 

both the Warner (1965) and Mangat and Singh (1990) models. 
A rich growth of literature on randomized response procedure has been 

accumulated in Chaudhuri and Mukherjee (1987, 1988). Further, a detailed 

review on randomized response sampling can be found in Singh (2003). Some 

related work on the randomized response sampling can be also be found in 

Odumade and Singh (2008, 2009a, 2009b, 2010) Bouza et al. (2010) and 

Chaudhuri et al. (2016). 

It is noted that the Mangat (1994) model has been improved by Gjestvang and 

Singh (2006). In this paper we have made an effort to suggest a generalized 

randomized response model which includes Warner (1965), Mangat and Singh 

(1990), Mangat (1994), Gjestvang and Singh (2006) randomized response model. 

It has been shown that the proposed model is superior to the models suggested by 

Warner (1965), Mangat and Singh (1990), Mangat (1994) and Gjestvang and 

Singh (2006) under some realistic conditions. Numerical illustration is given in 

support of the present study.    

2. Suggested Randomized Response Model 

In this section we propose a generalized randomized response model. For 

estimating , the proportion of respondents in the population belonging to the 

sensitive group A, a simple random sample of n respondents is selected with 

replacement from the population. If the person who is selected in the sample 

belongs to the sensitive group A, then he or she is requested to use the 

randomization device 1R  that is described below. Similar to Gjestvang and Singh 

(2006), let 1  and 1  be any two positive real numbers such that 

 111p   is the probability in the randomization device 1R  directing the 

selected respondent to report a scrambled response (or indirect response) as 
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 111 Sw1  , and    111p1   is the probability in the randomization 

device 1R  directing the selected respondent to report a scrambled response as 

 111 Sw1  , where 1w  is a known real number and 1S  is any non-directional 

scrambling variable, i.e. 1S  can take positive, zero and negative values. If the 

person who is selected in the sample does not belong to the sensitive group A, 

then he or she is requested to use the randomization device 2R  that is described 

below. Let 2  and 2  be any two positive real numbers (similar to Gjastvang 

and Singh (2006)) such that  222T   is the probability in the 

randomization device 2R  directing the selected respondent to report a scrambled 

response 222 Sw  , and let    222T1   be the probability in the 

randomization device 2R  directing the selected respondent to report scrambled 

response as 222 Sw  , where 2w  is a known real number and 2S is any non-

directional scrambling variables. The main difference from the existing 

randomization response models is that here the distribution of the scrambling 

variables 1S  and 2S  may or may not be known. Gjestvang and Singh (2006) have 

noted that the negative response will not disclose the privacy of any respondent 

belonging to non-sensitive or sensitive group because they come from both 

groups. Here we also note that if the mean i  and variance 
2
i  of the ith 

scrambling variable iS (i=1,2) are known before start of the survey, then in such a 

situation, the value of iw  may be the function of the known quantities  2
ii ,  , 

i=1,2. 

 

Theorem 2.1 An unbiased estimator of the population proportion   is given by  

 


n
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iHS y

n

1
ˆ                                              (2.1) 

Proof The observed response in the proposed method has the distribution  
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               (2.2) 

  

Let 1E  and 2E  denote the expected values over all possible samples and over 

the randomization device. Then we have  

   HS21HS ˆEEˆE   
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1
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where  
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Let   112 SE  and   222 SE  . Then we have  
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Putting (2.4) in (2.3) we get 

  


n

1i
1HS E

n

1
ˆE  

                  

which proves the theorem. 

 

Theorem 2.2 The variance of the estimator HS̂  is given by  

 
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Proof The responses are independent, thus the variance of the estimator HS̂  is 

given by  
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Let 1V  and 2V  denote the variance over all possible samples and the variance 

over the randomization device respectively. Then we have  

              i21i21i yEVyVEyV   

                      1i21 VyVV  
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           i21 yVE .                                                     (2.7) 

Let the variance of the scrambling variables be   2
11SV   and   2

22SV  . 

Then  

       2
i2

2
i2i2 yEyEyV   

 
      

         22
2222

2
2222

2
1112

2
1112

SwET1SwTE1

Sw1Ep1Sw1pE




, 

 

  
    
         22

2
2
2

2
2

2
2

2
2

2
2

2
2

2
2

111
2
1

2
1

2
1

2
1

111
2
1

2
1

2
1

2
1

wT1wT1

w2w1p1

w2w1p







 , 

 
 

   
 

   

 
 

 
 

 
2

22

2
2

2
2

2
2

2
22

22

2
2

2
2

2
22

2
2

11

1111

11

2
1

2
11

2
1

2
1

11

1111

11

2
1

2
1

2
11

2
1

ww
1

w2ww2w
1

















































, 

 
  
 

     
 22

2222
2
2

2
2

2
2

11

11
2
1

2
111

2
1 w1w

1










        22
2
2

2
2

2
2

2
1

2
111

2
1 w1w1  .                      (2.8) 

Thus from (2.6), (2.7) and (2.8) we have  
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which proves the theorem. 

Corollary 2.1 Assuming that 
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2
2  [similar to Gjestvang and Singh (2006,p.525)] and  

www 21   (say), the variance of the estimator HS̂  in (2.5) reduces to  
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Proof is simple so omitted. 

The variance in (2.10) of the proposed estimator HS̂ can be estimated as  
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It should be remembered here that  22 ,,w   are known quantities in the 

variance expression (2.10). As mentioned in Gjestvang and Singh (2006), we also 

show that models due to Warner (1965), Mangat and Singh (1990), Mangat 

(1994) and Gjestvang and Singh (2006) are special cases of the suggested RR 

procedure (model). If we set  

(i)       0111111 pw1p1w1p   and  
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(iv)    1,1w,w 21   

the proposed RR model respectively reduces to the Warner (1965), Mangat and 

Singh (1990), Mangat (1994) and Gjestvang and Singh (2006) models. 

3. Efficiency Comparison 

In the proposed procedure, if we set 1ww 21  , then the procedure 

investigated by Gjestvang and Singh (2006, sec.2, p.524) becomes special case 

(or member of the present proposed procedure). 

In the Gjestvang and Singh (2006) model, the observed response has the 

distribution  
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This can be also obtained just by putting 1ww 21   in (2.2). 

An unbiased estimator of   due to Gjestvang and Singh (2006) is given by 
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The variance of GS̂  is given by  

  
       22

2
2

2
211

2
1

2
1GS 1

n

1

n

1
ˆV 


 .         (3.3) 

Assuming that  

2
2

2
2

2
1

2
1

11

22





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
 

and 12
2

2
2  , then variance of GS̂  in (3.3) reduces to  

 
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 .                                 (3.4) 

From (2.5) and (3.3) we have  
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                                                                                                           (3.5) 

which is positive if  

  0w1 2
i  , i=1,2; 

i.e. if  

1w1 i  , i=1,2 

i.e. if  1w i  , i=1,2 

Thus, we established the following theorem. 

Theorem 3.1 The proposed estimator HS̂  (i.e. proposed procedure) is always 

better than Gjeatvang and Singh’s (2006) estimator GS̂  (i.e. Gjestvang and 

Singh’s (2006) procedure) if  

1w i  , i=1,2.                                          (3.6) 

Further, from (2.10) and (3.4) we have  

      222
HSGS w1

n
ˆVˆV 


                           (3.7) 
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which is always positive if  

0w1 2   

i.e. if   1w  .                                             (3.8) 

Thus, we established the following corollary. 

Corollary 3.1 Under the assumption  

2
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2
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2
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22









 

and  

www 21   (a real number, say). 

The proposed estimator HS̂  is more efficient than Gjestvang and Singh’s 

(2006) estimator GS̂  if 1w  . 

Assume that the values of  2,1i,,,, 2
iiii   are predetermined before 

conducting the survey and are assumed to be known. Note that 1  and 2  are 

non-directional. From (1.2) and (2.10) we have that     wHS ˆVˆV   if  
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w




                                         (3.9) 

which is free from the parameter   under investigation and depends on the 

parameters of the randomization devices. We also note that the condition (3.9) is 

also very flexible. 

From (1.4) and (2.10) we have  
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which is positive if  
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 .               (3.10) 

This condition is also free from the parameter   under investigation and 

depends on the parameters of the randomization devices. 

Further, from (1.6) and (2.10) we have that    HSm ˆVˆV   if  

 
  

0

0
22

p

1p1
w


                                          (3.11) 
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Thus, the proposed RR model is more efficient than Warner’s (1965) model, 

Mangat and Singh’s (1990) model and Mangat’s (1994) model as long as the 

conditions (3.9), (3.10) and (3.11) are respectively satisfied. 

4. Some Members of the Proposed Procedure 

I. Assume that the values of 1 , 1 , 2 , 2 , 1 ,
2
1 , 2  and 

2
2  are 

predetermined before conducting the survey and are assumed to be known. Note 

that 1  and 2  are non-directional [see Gjestvang and Singh (2006), sec.3, 

p.525)]. In our model, if we take 
21
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  in (2.2), 

then the observed response has the distribution: 
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          (4.1) 

Thus, an unbiased estimator of the population proportion   is given by  

    
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ˆ .                                            (4.2) 

Putting 
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  in (2.5) we get the 

variance of  1HS̂  as 
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From (3.3) and (4.3) we have  

            2
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2
11111HSGS 1

n

1
ˆVˆV        (4.4) 

which is always positive provided 21   and 22  . Thus, the proposed RR 

model (4.1) is always better than the RR model (3.1) due to Gjestvang and Singh 

(2006). In the situation where ii  ,(i=1,2), both the models are equally 

efficient. 

II.  If 
2
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2
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1
1w




  and 

2
2

2
2

2
2w




  in (2.2), then the observed response 

has the distribution: 
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         (4.5) 

 

Thus, an estimator of the population proportion   is given by 

   


n

1i
2i2HS y

n

1
ˆ .                                       (4.6) 

Inserting 
2
1

2
1

1
1w




  and 

2
2

2
2

2
2w




  in (2.5) we get the variance 

of (4.6) as  

     
  2

222
2
1112HS 1

n

1

n

1
ˆV 


           (4.7) 

From (3.3) and (4.7) we have  
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which is always positive. Thus, the RR model proposed in (4.5) is superior to 

Gjestvang and Singh’s (2006) RR model (3.1). 

Assuming that  
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
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
,                                            (4.9) 

the variance of  2HS̂   reduces to  
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From (3.4) and (4.10) we have  
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                      > 0 if 12
2  .                                            (4.11) 

Thus, the proposed estimator  2HS̂  is more efficient than the Gjestvang and 

Singh (2006) estimator GS̂  as long as the condition 12
2   satisfied. 

III. If we set 
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  in (2.3), then the observed 

response has the distribution: 
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Thus, an unbiased estimator of the population proportion   is defined by 

    
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ˆ .                                        (4.13) 
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Putting 
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  and 
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
  in (2.5) we get the 

variance of the estimator  3HS̂  as  
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From (3.3) and (4.14) we have  
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which is always positive. Thus, it follows from (4.15) that the proposed estimator 

 3HS̂  is more efficient than Gjestvang and Singh’s (2006) estimator GS̂ , i.e. 

the RR model suggested in (4.9) is superior to the RR model in (3.1) due to 

Gjestvang and Singh (2006). 

Assuming that  
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the variance of the estimator  3HS̂  in (4.14) is reduced to  
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It can be seen from (3.4) and (4.17) that  
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which is positive if 
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2                                                         (4.18) 

Thus, the proposed estimator  3HS̂  is more efficient than Gjestvang and 

Singh’s (2006) estimator GS̂  as long as the condition (4.18) is satisfied. 

Remark 4.1 For 
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  one can get the randomized response models always better than 

Gjestvan and Singh’s (2006) randomized response models. 
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Many more suitable choices of 1w  and 2w  can be considered (which may be 

either the function of  2,1i,, ii   or not) for which we can obtain the model 

superior to the Gjestvang and Singh (2006). 

5. Relative Efficiency 

It is assumed that the values of 
2
22

2
112211 and,,,,,,   are known 

before the start of the survey. It is to be noted that the Mangat (1994) model 

remains more efficient than the Mangat and Singh (1990) model. Also, Gjestvang 

and Singh (2006) have proved that the estimator GS̂  proposed by them can 

always be made more efficient than the Warner (1965), Mangat and Singh (1990) 

and Mangat (1994) estimators for various choices of known parameters of the 

model. Thus, it is acceptable to compare the proposed model only with Gjestvang 

and Singh (2006). 

To see the magnitude of the gain efficiency of the suggested randomized 

response model, we compute the percent relative efficiency (PRE) of the proposed 

estimator HS̂  with respect to Gjestvang and Singh’s (2006) estimator GS̂  as 

follows. 
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or equivalently (by using (2.9) and (3.3) in (5.1)) 
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 (5.2) 

Further, for the simplicity we have assumed     12
2

2
2

2
1

2
1   

[similar to Gjestvang and Singh (2006), p.526] and www 21   (a real 

constant) under these assumptions, the  GSHS ˆ,ˆPRE   in (5.2) reduces to : 
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We have computed the  GSHS ˆ,ˆPRE   by using (5.3) for 

  9.01.01.0,05.0 , and for three sets of s'i , s'i (i=1,2) values as (i) 

6.01  , 4.01  , 3.02  , 7.02   (ii) 8.01  , 2.01  , 4.02  ,
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6.02  (iii) 5.02211  w 0.05,0.1(0.1)0.9. Findings are 

compiled in Table 5.1. 

Table 5.1. The percent relative efficiency of the proposed model with respect to 

 Gjestvang and Singh’s (2006) model 

6.01  , 4.01  , 3.02  , 7.02   

 w  

  

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.05 104.85 104.81 104.65 104.40 104.05 103.60 103.06 102.42 101.70 100.89 

0.1 104.81 108.51 108.23 107.77 107.13 106.32 105.34 104.21 102.94 101.53 

0.3 104.65 119.93 119.21 118.03 116.41 114.40 112.03 109.36 106.43 103.29 

0.5 104.40 133.35 132.02 129.85 126.94 123.38 119.29 114.79 110.00 105.04 

0.7 104.05 160.55 157.66 153.06 147.06 140.00 132.24 124.11 115.89 107.80 

0.9 293.17 288.97 273.32 250.69 224.65 198.18 173.24 150.80 131.20 114.35 

8.01  , 2.01  , 4.02  , 6.02   

w  

  

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.05 102.90 102.87 102.78 102.64 102.43 102.16 101.84 101.46 101.03 100.54 

0.1 105.22 105.17 105.01 104.74 104.36 103.87 103.28 102.60 101.82 100.95 

0.3 112.66 112.56 112.13 111.42 110.45 109.23 107.77 106.10 104.23 102.19 

0.5 121.56 121.36 120.58 119.30 117.55 115.38 112.84 109.97 106.84 103.50 

0.7 139.58 139.16 137.53 134.89 131.37 127.10 122.24 116.96 111.40 105.71 

0.9 225.60 223.49 215.43 203.21 188.27 172.00 155.57 139.79 125.15 111.86 

1 1 2 5.02   

w  

  

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.05 104.37 104.34 104.20 103.98 103.66 103.25 102.76 102.19 101.54 100.80 

0.1 107.92 107.85 107.59 107.17 106.58 105.84 104.94 103.90 102.72 101.42 

0.3 119.42 119.25 118.56 117.42 115.87 113.93 111.65 109.07 106.24 103.20 

0.5 133.22 132.89 131.58 129.45 126.58 123.08 119.05 114.61 109.89 104.99 

0.7 161.16 160.42 157.53 152.95 146.96 139.92 132.18 124.07 115.87 107.79 

0.9 294.21 289.98 274.19 251.39 225.17 198.54 173.47 150.94 131.27 114.38 

 

It is observed from Table 5.1 that the values of  GS,HS ˆˆPRE   are larger 

than 100 for the given parametric values. It follows that the suggested estimator 

HS̂  can always be made more efficient than Gjestvang and Singh’s (2006) 

estimator GS̂  and hence more efficient than the Warner (1965), Mangat and 
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Singh (1990) and Mangat (1990) estimators. For larger values (or even 

moderately large values) of andw , the considerable gain in efficiency is 

observed by using the proposed estimator HS̂  over Gjestvang and Singh’s 

(2006) estimator GS̂ . Thus, we see that the proposed procedure is an 

improvement over Gjestvang and Singh’s (2006) procedure. 

We have further computed the percent relative efficiencies (PRE’s) of the 

proposed estimators  1HS̂ ,  2HS̂  and  3HS̂  with respect to Gjestvang and 

Singh’s (2006) estimator GS̂  by using the formulae: 

          
     

100
121

11
ˆ,ˆPRE

22221111

22
2
2

2
211

2
1

2
1

GS1HS 



      

(5.4) 

          
    

100
11

11
ˆ,ˆPRE

2
222

2
111

22
2
2

2
211

2
1

2
1

GS2HS 



     

(5.5) 

 

          
    

100
11

11
ˆ,ˆPRE

2
222

2
111

22
2
2

2
211

2
1

2
1

GS2HS 



     

(5.6) 

for    50.0,6.0, 2
11  ,    36.0,8.0, 2

22  ,    4.0,6.0, 11  , 

   95.0,05.0, 22   [similar to Gjestvang and Singh (2006), section 4, 

p.527]. Findings are given in Table 5.2. 

Table 5.2. The percent relative efficiencies of  1HS̂ ,  2HS̂  and  3HS̂  with 

 respect to Gjestvang and Singh’s (2006) estimator GS̂  

    GS1HS ˆ,ˆPRE     GS2HS ˆ,ˆPRE     GS3HS ˆ,ˆPRE   

0.1 101.31 121.74 130.67 

0.2 100.87 118.69 121.04 

0.3 100.71 118.65 118.30 

0.4 100.64 119.90 117.70 

0.5 100.62 122.23 118.33 

0.6 100.63 125.93 120.07 

0.7 100.68 131.88 123.27 

0.8 100.78 142.27 128.99 

0.9 100.96 164.23 140.46 



STATISTICS IN TRANSITION new series, December 2017 

 

685 

It is observed from Table 5.2 that the percent relative efficiencies of the 

proposed estimators  1HS̂ ,  2HS̂  and  3HS̂  with respect to Gjestvang and 

Singh’s (2006) estimator GS̂  are larger than 100. It follows that the proposed 

estimators are more efficient than Gjestvang and Singh’s (2006) estimator GS̂ . 

We note that there is a marginal gain in efficiency by using the proposed 

estimator  1HS̂  over Gjestvang and Singh’s (2006) estimator GS̂  while the 

gain in efficiency is substantial by using the suggested estimators   2HS̂  and 

 3HS̂ . The proposed estimator  2HS̂  is more efficient than the estimator 

 3HS̂  as long as 3.0 . On the other hand, if 3.0  the proposed estimator 

 3HS̂  is better than the estimator  2HS̂ . However, the proposed estimators  

 2HS̂  and  3HS̂  are more efficient than the estimator  1HS̂ . Thus, we 

conclude that the proposed estimator  2HS̂  is a suitable choice for 3.0 , 

whereas for 3.0 , the estimator  3HS̂ is the appropriate choice for estimating 

the population proportion  3HS̂ . 

Finally, we conclude that the suggested general procedure is justifiable in the 

sense of obtaining better estimators from the proposed generalized estimator HS̂  

for appropriate values of  21 w,w . 
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