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BAYESIAN MODEL AVERAGING AND JOINTNESS 

MEASURES: THEORETICAL FRAMEWORK AND 

APPLICATION TO THE GRAVITY MODEL OF TRADE 

Krzysztof Beck1 

ABSTRACT 

The following study presents the idea of Bayesian model averaging (BMA), as 

well as the benefits coming from combining the knowledge obtained on the basis 

of analysis of different models. The BMA structure is described together with its 

most important statistics, g prior parameter proposals, prior model size 

distributions, and also the jointness measures proposed by Ley and Steel (2007), 

as well as Doppelhofer and Weeks (2009). The application of BMA is illustrated 

with the gravity model of trade, where determinants of trade are chosen from the 

list of nine different variables. The employment of BMA enabled the 

identification of four robust determinants: geographical distance, real GDP 

product, population product and real GDP per capita distance. At the same time 

applications of jointness measures reveal some rather surprising relationships 

between the variables, as well as demonstrate the superiority of Ley and Steel’s 

measure over the one introduced by Dopplehofer and Weeks. 

Key words: Bayesian model averaging, jointness measures, multi-model 

inference, gravity model of trade. 

1. Introduction

In economics, a situation often arises when a vast number of different theories 

attempt to explain the same phenomenon. Although these theories may 

complement each other, it is very common that they contradict one another or are 

even mutually exclusive. In such cases, basing empirical verification on one or a 

few specifications of an econometric model turns out to be insufficient. Moreover, 

researchers applying varying specifications will arrive at different, very often 

incoherent or even contradictory, conclusions. Testing hypotheses on the basis of 

various economic model specifications can result in a situation in which a variable 

that is statistically significant in one research specification, may prove to be not 

significant in another one. 

1 Lazarski University. E-mail: beckkrzysztof@gmail.com. 
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Brock and Durlauf (2001) draw attention to a problem they called theory 

open-endedness. It takes place in a situation where two or more competing 

models propose different explanations of the same phenomenon, and each of the 

variables proposed as an explanation can be expressed using a different measure. 

Moreover, some of the theories can complement each other, while other serve as 

substitutes or even contravene each other. In such a situation, inference based on a 

single model can lead to contradictory or false conclusions. 

The above-mentioned problem is clearly present in the context of the research 

into the determinants of international trade. The vast body of trade theories offers 

a great variety of explanations for international trade flows, which can be seen in 

any international economics textbook. What is more, there is considerable dispute 

over potential effects of participation in free trade agreements as well as monetary 

unions on international trade. Even though the gravity model of trade has been the 

backbone of international trade empirics for over half the century, it is still rather 

unclear which variables should accompany the core of the model. The literature is 

full of competing specifications without much attention paid to robustness checks. 

For these reasons, this paper pertains to the transition from statistical 

relevance to basing inference on the robustness of results against a change in the 

specifications of a model. However, in such a case it is necessary to apply 

inference and combination of knowledge coming from different model 

specifications. In such a situation, it is possible to apply BMA, i.e. Bayesian 

Model Averaging. Through the estimation of all the models within a given set of 

data, this procedure allows one to determine which variables are robust regressors 

regardless of the specification. It also allows one to unequivocally establish the 

direction and strength given regressors possess, and it makes it possible to choose 

the best models of all possible configurations. Furthermore, using the jointness 

measures that are available within the BMA framework enables the determination 

of the substitutional and complementary relationships between the studied 

variables. 
Therefore, for the above-mentioned reasons, BMA and jointness measures are 

the subject of this study. Theory and structure of Bayesian model averaging is 

presented in the first section while in the second one jointness measures are 

discussed. The third section provides an example of BMA application in the 

analysis of the gravity model of trade and comprises four sub-sections. In the first 

one, the gravity model of trade is presented, whereas the second shows the 

variables employed in the verification of the model. The third sub-section presents 

the results of applying BMA, and the fourth one demonstrates the results of the 

analysis using jointness measures. The last section provides the summary and 

conclusions of the article. 
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2. BMA – Bayesian Model Averaging 

For the space of all models, unconditional posterior distribution of coefficient 

β is given by: 
 

𝑃(𝛽|𝑦) =∑𝑃(𝛽|𝑀𝑗, 𝑦) ∗ 𝑃(𝑀𝑗|𝑦)                                    (1)

2𝐾

𝑗=1

 

 

where: y denotes data, j (j=1, 2,..,m) is the number of the model, K  being the total 

number of potential regressors, 𝑃(𝛽|𝑀𝑗, 𝑦)is the conditional distribution of 

coefficient β for a given model Mj, and 𝑃(𝑀𝑗|𝑦) is the posterior probability of the 

model. Using the Bayes' theorem, the posterior probability of the model (PMP – 

Posterior Model Probability) 𝑃(𝑀𝑗|𝑦) can be rendered as (Błażejowski et al., 

2016): 
 

𝑃𝑀𝑃 = 𝑝(𝑀𝑗|𝑦) =
𝑙(𝑦|𝑀𝑗) ∗ 𝑝(𝑀𝑗)

𝑝(𝑦)
,                                   (2) 

 

where PMP is proportional to the product of 𝑙(𝑦|𝑀𝑗) – model specific marginal 

likelihood – and 𝑃(𝑀𝑗) – model specific prior probability – which can be written 

down as 𝑃(𝑀𝑗|𝑦) ∝ 𝑙(𝑦|𝑀𝑗) ∗ 𝑃(𝑀𝑗). Moreover, because: 𝑃(𝑦) =

∑ 𝑙(𝑦|𝑀𝑗) ∗ 𝑃(𝑀𝑗)
2𝐾

𝑗=1 , weights of individual models can be transformed into 

probabilities through the normalization in relation to the space of all 2K models:  
 

𝑃(𝑀𝑗|𝑦) =
𝑙(𝑦|𝑀𝑗) ∗ 𝑃(𝑀𝑗)

∑ 𝑙(𝑦|𝑀𝑗) ∗ 𝑃(𝑀𝑗)
2𝐾
𝑗=1

.                                     (3) 

 

Applying BMA requires specifying the prior structure of the model. The value 

of the coefficients β is characterized by normal distribution with zero mean and 

variance σ2Voj, hence: 
 

𝑃(𝛽|𝜎2,𝑀𝑗)~𝑁(0, 𝜎
2𝑉𝑜𝑗).                                              (4) 

 

It is assumed that the prior variance matrix Voj is proportional to the 

covariance in the sample: (𝑔𝑋𝑗
′𝑋𝑗)

−1, where 𝑔 is the proportionality coefficient. 

The g prior parameter was put forward by Zellner (1986) and is widely used in 

BMA applications. In their seminal work on the subject of choosing the g prior 

Fernández et al. (2001) put forward the following rule, to choose the best g prior: 
 

𝑔 =
1

max (𝑛, 𝑘2)
,                                                         (5) 
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where 
1

𝑛
 is known as UIP – unit information prior (Kass and Wasserman, 1995), 

whereas 
1

𝑘2
 is convergent to RIC – risk inflation criterion (Foster and George, 

1994). For further discussion on the subject of g priors see: Ley and Steel (2009, 

2012); Feldkircher and Zeugner (2009); and Eicher et al. (2011). 

Besides the specification of g prior, it is necessary to determine the prior 

model distribution while applying BMA. For binomial model prior (Sala-I-Martin 

et al., 2004): 
 

𝑃(𝑀𝑗) ∝ (
𝐸𝑚

𝐾
)
𝑘𝑗

∗ (1 −
𝐸𝑚

𝐾
)
𝐾−𝑘𝑗

,                                 (6) 

 

where 𝐸𝑚 denotes the expected model size, while 𝑘𝑗 the number of covariate in a 

given model. When 𝐸𝑚 =
𝐾

2
  it turns into uniform model prior – priors on all the 

models are all equal (𝑃(𝑀𝑗) ∝ 1). Yet another instance of prior model probability 

is binomial-beta distribution (Ley, Steel, 2009): 
 

𝑃(𝑀𝑗) ∝ Γ(1 + 𝑘𝑗) ∗ Γ (
𝐾 − 𝐸𝑚

𝐸𝑚
+𝐾 − 𝑘𝑗).                           (7) 

 

In the case of binomial-beta distribution with expected model size K/2, the 

probability of a model of each size is the same ( 
1

𝐾+1
). Thus, the prior probability 

of including the variable in the model amounts to 0.5, for both binomial and 

binomial-beta prior with 𝐸𝑚 = 𝐾/2. 

Using the posterior probabilities of the models in the role of weights allows 

one to calculate the unconditional posterior mean and standard deviation of the 

coefficient 𝛽𝑖. Posterior mean (PM) of the coefficient 𝛽𝑖, independent of the space 

of the models, is then given with the following formula (Próchniak, Witkowski, 

2012): 
 

𝑃𝑀 = 𝐸(𝛽𝑖|𝑦) =∑𝑃(𝑀𝑗|𝑦) ∗

2𝐾

𝑗=1

�̂�𝑖𝑗,                                    (8) 

 

where 𝛽𝑖𝑗 = 𝐸(𝛽𝑖|𝑦,𝑀𝑗) is the value of the coefficient 𝛽𝑖 estimated with OLS for 

the model 𝑀𝑗. The posterior standard deviation (PSD) is equal to (Próchniak, 

Witkowski, 2014): 

 

𝑃𝑆𝐷 = √∑𝑃(𝑀𝑗|𝑦) ∗

2𝐾

𝑗=1

𝑉(𝛽𝑗|𝑦,𝑀𝑗) +∑𝑃(𝑀𝑗|𝑦) ∗ [�̂�𝑖𝑗 − 𝐸(𝛽𝑖|𝑦,𝑀𝑗)]
2

2𝐾

𝑗=1

,   (9) 
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where 𝑉(𝛽𝑗|𝑦,𝑀𝑗) denotes the conditional variance of the parameter for the 

model 𝑀𝑗. 
The most important statistic for BMA is posterior inclusion probability (PIP). 

PIP for the regressor 𝑥𝑖 equals: 

 

𝑃𝐼𝑃 = 𝑃(𝑥𝑖|𝑦) =∑1(𝜑𝑖 = 1|𝑦,𝑀𝑗) ∗

2𝐾

𝑗=1

𝑃(𝑀𝑗|𝑦)                    (10)  

 

where 𝜑𝑖 = 1 indicates that the variable 𝑥𝑖 is included in the model. 

PM and PSD are calculated for all models, even those whose value 𝜑𝑖 = 0, 

which means that the variable is not present. Due to that fact the researcher can be 

interested in the value of the coefficient in the models in which a given variable is 

present. For that purpose, the value of the conditional posterior mean (PMC), that 

is the posterior mean, can be calculated on condition that a variable is included in 

the model: 

 

𝑃𝑀𝐶 = 𝐸(𝛽𝑖|𝜑𝑖 = 1, 𝑦) =
𝐸(𝛽𝑖|𝑦)

𝑃(𝑥𝑖|𝑦)
=
∑ 𝑃(𝑀𝑗|𝑦) ∗
2𝐾

𝑗=1 �̂�𝑖𝑗

𝑃(𝑥𝑖|𝑦)
,               (11) 

 

whereas the conditional posterior standard deviation (PSDC) is given by: 
 

𝑃𝑆𝐷𝐶 = √
𝑉(𝛽𝑗|𝑦) + [𝐸(𝛽𝑖|𝑦)]

2

𝑃(𝑥𝑖|𝑦)
− [𝐸(𝛽𝑖|𝜑𝑖 = 1|𝑦)]

2.                     (12) 

 

Additionally, the researcher can be interested in the sign of the estimated 

parameter if it is included in the model. The posterior probability of a positive 

sign of the coefficient in the model [P(+)] is calculated in the following way: 
 

𝑃(+) = 𝑃[𝑠𝑖𝑔𝑛(𝑥𝑖)|𝑦] =

{
  
 

  
 
∑𝑃(𝑀𝑗|𝑦) ∗

 2𝐾

𝑗=1

𝐶𝐷𝐹(𝑡𝑖𝑗|𝑀𝑗),        𝑖𝑓  𝑠𝑖𝑔𝑛[𝐸(𝛽𝑖|𝑦)] = 1

1 −∑𝑃(𝑀𝑗|𝑦) ∗

2𝐾

𝑗=1

𝐶𝐷𝐹(𝑡𝑖𝑗|𝑀𝑗),   𝑖𝑓 𝑠𝑖𝑔𝑛[𝐸(𝛽𝑖|𝑦)] = −1

      

(13) 

 

where CDF denotes cumulative distribution function, while 𝑡𝑖𝑗 ≡ (�̂�𝑖/𝑆�̂�𝑖|𝑀𝑗). 
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3. Jointness measures 

All the statistics cited so far served to describe the influence of regressors on 

the dependent variable. However, the researcher should also be interested in 

relationships that emerge between the independent variables. To achieve that, one 

can utilize the measure of dependence between regressors, which is referred to as 

jointness.  
Two teams of scientists came up with jointness measures at the same time. 

The article by Ley and Steel (2007) was published first; however, in this paper the 

concept of Doppelhofer and Weeks (2009) shall be presented first due to the fact 

that Ley and Steel's article constitutes by and large the critique of Dopplehofer 

and Weeks' concepts. Measures allow the determination of the substitution and 

complementary relationships between explanatory variables. Below, the focus 

will be put only on the jointness relationships between pairs of variables. It must 

also be mentioned, however, that testing the relationships between triplets or even 

more numerous sets of variables is possible.  
We shall define posterior probabilities for the model 𝑀𝑗 as: 

 

(𝑀𝑗|𝑦) = 𝑃(𝜑1 = 𝑤1, 𝜑2 = 𝑤2, … , 𝜑𝐾 = 𝑤𝐾|𝑦,𝑀𝑗)                       (14) 

 

where 𝑤𝑖 can assume value 1 (if a variable is present in the model) and 0 if a 

variable is not present in the model. In the case of analysing two variables 𝑥𝑖 and 

𝑥ℎ the combined posterior probability of including two variables in the model can 

be expressed as follows: 
 

𝑃(𝑖 ∩ ℎ|𝑦) =∑1(𝜑𝑖 = 1 ∩  𝜑2 = 1|𝑦,𝑀𝑗) ∗

2𝐾

𝑗=1

𝑃(𝑀𝑗|𝑦).                      (15) 

 

Table 1. Points of probability mass defined on space {0,1}2 for uniform 

distribution 𝑃(𝜑𝑖 , 𝜑𝑙|𝑦). 

𝑃(𝜑𝑖 , 𝜑𝑙|𝑦) 𝜑ℎ = 0 𝜑ℎ = 1 Sum 

𝜑𝑖 = 0  𝑃(𝑖̅ ∩ ℎ̅|𝑦)  𝑃(𝑖̅ ∩ ℎ|𝑦) 𝑃(𝑖|̅𝑦) 

𝜑𝑖 = 1  𝑃(𝑖 ∩ ℎ̅|𝑦)  𝑃(𝑖 ∩ ℎ|𝑦) 𝑃(𝑖|𝑦) 

Sum 𝑃(ℎ̅|𝑦) 𝑃(ℎ|𝑦) 1 

Source: Doppelhofer, Weeks, 2009. 
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It can be thus stated that 𝑃(𝑖 ∩ ℎ|𝑦) is the sum of the posterior probability of 

the models, where variables marked by 𝑥𝑖 and 𝑥ℎ appear. Doppelhofer and Weeks 

observe that the relationships between variables𝑥𝑖 and 𝑥ℎ can be analyzed by 

comparing posterior probabilities of including these variables separately [𝑃(𝑖|𝑦) 
and 𝑃(ℎ|𝑦)] with probability of including and excluding both variables at the 

same time. The authors justify their reasoning by presenting an analysis of the 

case of a random vector (𝜑𝑖, 𝜑ℎ) of the combined posterior distribution 

𝑃(𝜑𝑖 , 𝜑𝑙|𝑦). The points of probability mass defined on space {0,1}2 are shown in 

Table 1. 
Table 1 shows distributions related to all the possible realizations of vector 

(𝜑𝑖, 𝜑ℎ). It is easy to read from the table that the marginal probability of including 

variable 𝑥𝑖 in the model can be calculated as: 
 

𝑃(𝑖|𝑦) =  𝑃(𝑖 ∩ ℎ|𝑦) + 𝑃(𝑖 ∩ ℎ̅|𝑦),                                 (16) 
 

whereas the probability of excluding the variable 𝑥𝑖 can be rendered as: 
 

𝑃(𝑖|̅𝑦) ≡ 1 − 𝑃(𝑖|𝑦) =  𝑃(𝑖̅ ∩ ℎ̅|𝑦) + 𝑃(𝑖̅ ∩ ℎ|𝑦).                    (17) 
 

If there is a correlation between variables 𝑥𝑖 and 𝑥ℎ, one should expect that 

expressions 𝑃(𝑖 ∩ ℎ|𝑦) and 𝑃(𝑖̅ ∩ ℎ̅|𝑦) will get higher values than expressions 

𝑃(𝑖 ∩ ℎ̅\y) and 𝑃(𝑖̅ ∩ ℎ|𝑦). On that basis, to follow Whittaker (2009), the authors 

observe that the natural measure of correlation between two binary random 

variables 𝜑𝑖 and 𝜑ℎ is the cross-product ratio (CPR), expressed as: 
 

𝐶𝑃𝑅(𝑖, ℎ|𝑦) =
𝑃(𝑖 ∩ ℎ|𝑦)

𝑃(𝑖 ∩ ℎ̅|𝑦)
∗
𝑃(𝑖̅ ∩ ℎ̅|𝑦)

𝑃(𝑖̅ ∩ ℎ|𝑦)
.                              (18) 

 

As the realizations of the vector (𝜑𝑖, 𝜑ℎ) for each of the variables can only 

amount to 1 or 0, 𝑃(𝑖 ∩ ℎ|𝑦) is the binomial distribution of the uniform posterior 

probability i, which can be rendered as follows: 
 

𝑃(𝜑𝑖 , 𝜑ℎ|𝑦) = 𝑃(𝑖 ∩ ℎ|𝑦)
𝜑𝑖𝜑ℎ ∗ 𝑃(𝑖 ∩ ℎ̅|𝑦)

𝜑𝑖(1−𝜑ℎ) ∗ 

 ∗ 𝑃(𝑖̅ ∩ ℎ|𝑦)(1−𝜑𝑖)𝜑ℎ ∗ 𝑃(𝑖̅ ∩ ℎ̅|𝑦)
(1−𝜑𝑖)(1−𝜑ℎ)                            (19) 

 

Logarithmized and put in order, the expressions take the following form: 
 

𝑙𝑛[𝑃(𝜑𝑖, 𝜑ℎ|𝑦)] = 𝑙𝑛[𝑃(𝑖̅ ∩ ℎ̅|𝑦)] + 𝜑ℎ𝑙𝑛 [
𝑃(𝑖̅ ∩ ℎ|𝑦)

𝑃(𝑖̅ ∩ ℎ̅|𝑦)
] + 

            +𝜑𝑖𝑙𝑛 [
𝑃(𝑖 ∩ ℎ̅|𝑦)

𝑃(𝑖̅ ∩ ℎ̅|𝑦)
] + 𝜑𝑖𝜑ℎ𝑙𝑛 [

𝑃(𝑖 ∩ ℎ)

𝑃(𝑖 ∩ ℎ̅\|)
∗
𝑃(𝑖̅ ∩ ℎ̅|𝑦)

𝑃(𝑖̅ ∩ ℎ\|)
]             (20) 
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The independence between variables 𝑥𝑖 and 𝑥ℎ is possible if and only if 

𝑙𝑛[𝑃(𝜑𝑖 , 𝜑ℎ|𝑦)] is additive for 𝑃(𝜑𝑖|𝑦) and 𝑃(𝜑ℎ|𝑦). Independence can 

therefore occur if and only if the natural logarithm of CPR is 0, which means CPR 

equals 1. 
On that basis, Doppelhofer and Weeks derive their jointness measure, which 

they define as: 

𝐽𝐷𝑤(𝑖ℎ) = 𝑙𝑛[𝐶𝑃𝑅(𝑖, ℎ|𝑦)] = 𝑙𝑛 [
𝑃(𝑖 ∩ ℎ|𝑦)

𝑃(𝑖 ∩ ℎ̅|𝑦)
∗
𝑃(𝑖̅ ∩ ℎ̅|𝑦)

𝑃(𝑖̅ ∩ ℎ|𝑦)
] = 

           = 𝑙𝑛 [
𝑃(𝑖|ℎ, 𝑦)

𝑃(𝑖|̅ℎ, 𝑦)
∗
𝑃(𝑖|̅ℎ̅, 𝑦)

𝑃(𝑖|ℎ̅, 𝑦)
] = ln[𝑃𝑂𝑖|ℎ ∗ 𝑃𝑂𝑖|̅ℎ̅].                          (21) 

 

The expression 𝑙𝑛[𝑃𝑂𝑖|ℎ ∗ 𝑃𝑂𝑖|̅ℎ̅] is the natural logarithm of the product of 

two quotients of posterior odds, where 𝑃𝑂𝑖|ℎ indicates posterior odds of including 

the variable 𝑥𝑖 to the model on condition that 𝑥ℎis included, while 𝑃𝑂𝑖|̅ℎ̅ indicates 

posterior odds of excluding the variable 𝑥𝑖 from the model on condition that the 

variable 𝑥ℎ is excluded. 
At this moment, it is worth pointing out that if the probability product of 

including and excluding both variables [(𝑃(𝑖 ∩ ℎ|𝑦) ∗ 𝑃(𝑖̅ ∩ ℎ̅|𝑦)] is greater than 

the probability product of including each of the variables one at a time [𝑃(𝑖 ∩

ℎ̅|𝑦) ∗ 𝑃(𝑖̅ ∩ ℎ|𝑦)], then the logarithm assumes positive values. Thus, for the 

positive values of the measure, complementary relationship has to occur: models 

that include both variables at the same time or reject both variables at the same 

time are characterized by the highest posterior probability. If the product of 

probabilities of including the variables separately is greater than the product of 

including both or neither at the same time, the logarithm takes negative values. In 

such an event, a substitutional relationship occurs. To sum up, Doppelhofer 

and Weeks' jointness measure assumes positive values if there is a complementary 

relationship between variables, whereas it assumes negative values when this 

relationship is of substitutional character. 
Ley and Steel (2007) set out to develop a jointness measure that would 

possess the following characteristics: 

1) Interpretability – a measure should have a formal statistical or intuitive 

interpretation. 

2) Calibration – values of a measure should be determined on a clearly defined 

scale based on formal statistical or intuitive interpretation. 

3) Extreme jointness – in a situation when two variables appear in all the 

analyzed models together (e.g. in the case of using MC3 methods), the 

maximum value of jointness measure should occur; 

4) Definability – jointness should be defined always if at least one of the 

considered variables is characterized by positive inclusion probability. 
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Ley and Steel claimed that Doppelhofer and Weeks' jointness measure is 

faulty as it is not defined in a situation when both regressors are included in all 

models and when one of the regressors is not taken into consideration in any of 

the models. Moreover, when the probability of including a variable in the model 

approaches 1, then the value of the measure is by and large dependent on the limit 

of the expression [𝑃(𝑖̅ ∩ ℎ̅|𝑦)]/[ 𝑃(𝑖̅ ∩ ℎ|𝑦)]. This means that a few models, 

excluding the variable 𝑥𝑖, that are characterized by a very low probability can 

strongly influence the value of the measure: both in the direction of 0 (if they 

include the variable 𝑥ℎ) or ∞ (if they do not include the variable 𝑥ℎ). Thus, the 

measure 𝐽𝐷𝑤(𝑖ℎ) does not contain features 1) and 4). 
What is more, the authors pointed out that the interpretation of Doppelhofer 

and Weeks' measure is not clear enough and, due to this fact, they proposed an 

alternative measure. This measure is the ratio of probability of including two 

variables simultaneously to the sum of probabilities of including each of the 

variables separately, with the exclusion of the probability of including two 

variables at the same time. This measure meets all the criteria laid out by the 

authors. Ley and Steel's jointness measure is given by: 
 

                𝐽𝐿𝑆(𝑖ℎ) = 𝑙𝑛 [
𝑃(𝑖 ∩ ℎ|y)

𝑃(𝑖 ∩ ℎ̅|𝑦) + 𝑃(𝑖̅ ∩ ℎ|𝑦)
]                      

= 𝑙𝑛 [
𝑃(𝑖 ∩ ℎ|𝑦)

𝑃(𝑖|𝑦) + 𝑃(ℎ|𝑦) − 2𝑃(𝑖 ∩ ℎ|𝑦)
].                           (22) 

 

The advantage of this measure is its interpretative clarity. The expression 

inside the natural logarithm represents the quotient of posterior odds of models 

including both variables to the models including each of them separately. Again, 

the logarithm of this expression takes positive values if the probability of the 

models including both variables is dominant, which testifies to the 

complementary relationship. The measure takes negative values if posterior odds 

of the models including variables separately are higher than in the case where 

variables appear in the model simultaneously, which testifies to a substitutional 

relationship. 
Doppelhofer and Weeks calculated the limit values of jointness measures, 

which allow qualifying variables to one of five categories. These values also hold 

in the case of Lay and Steel's jointness measure. The limit values of jointness 

measures with their corresponding classifications of relationships between 

variables are presented in Table 2. 
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Table 2.  Limit values of jointness measures and classification of relationships 

between variables 

Type of the relationship between the variables Value of the jointness measure (J) 

Strong substitutes J < (-2) 

Significant substitutes (-2) < J < (-1) 

Unrelated variables (-1) < J < 1 

Significant complements 1 < J < 2 

Strong complements 2< J 

Source: Błażejowski, Kwiatkowski, 2015. 

4. Application on the example of the gravity model of trade 

All the empirical analyses employing BMA were carried out using BMS 

package for R environment (Zeugner and Feldkircher, 2015). Jointness measures 

were computed using a package for gretl (Błażejowski and Kwiatkowski, 2015). 

4.1. Gravity model of trade 

In the simplest form, the equation describing the gravity model of trade 

(Anderson, 1979, 2011; Egger, 2002; Anderson, Wincoop, 2003) can be shown 

as: 

 

                                         𝑇𝑅𝐴𝐷𝐸 = 𝛼
(𝑅𝐺𝐷𝑃𝑝𝑟𝑜𝑑)𝛽1

𝐷𝐼𝑆𝑇𝛽2
,                                  (23) 

 

which can be easily transformed into a log-linear form: 

 

     ln(𝑇𝑅𝐴𝐷𝐸) = ln(𝛼) + 𝛽1 ln(𝑅𝐺𝐷𝑃𝑝𝑟𝑜𝑑) − 𝛽2 ln(𝐷𝐼𝑆𝑇),           (24) 
 

where TRADE stands for the amount of international trade, RGDPprod – product 

of real GDP of the two countries, DIST – distance between the countries, whereas 

𝛼, 𝛽1, 𝛽2 are parameters in the model. However, the model can be expanded by 

including additional explanatory variables, which was performed in this paper. 

4.2. Variables and source of data 

Data for 19 European Union countries was used, namely:  Austria, Belgium, 

Cyprus, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, 

Luxembourg, Malta, the Netherlands, Poland, Portugal, Spain, Sweden and the 

UK. All the variables are expressed bilaterally and as a result the size of the 
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sample for each variable amounts to 171 pairs of countries. The period of analysis 

spans the years between 1999 and 2007 for all the variables. 
Bilateral trade, which is expressed as logarithmized trade between partners, 

constitutes the response variable in the model:  
 

𝑇𝑅𝐴𝐷𝐸𝑖𝑗 = 𝑙𝑛 (
1

𝑇
∑𝐼𝑚𝑝𝑜𝑟𝑡𝑖𝑗𝑡 + 𝐸𝑥𝑝𝑜𝑟𝑡𝑖𝑗𝑡

𝑇

𝑡=1

),                 (25) 

 

where i and j are indexes of partner countries, and the measure itself is a mean for 

the entire analyzed period (1, 2, …, T). The data on bilateral trade are taken from 

IMF Directions of Trade. 
In the BMA analysis, 9 variables were employed. The first one constitutes the 

logarithm of the product of real GDPs: 
 

 𝑅𝐺𝐷𝑃𝑝𝑟𝑜𝑑𝑖𝑗 = 𝑙𝑛 (
1

𝑇
∑𝐺𝐷𝑃𝑖𝑡 ∗ 𝐺𝐷𝑃𝑗𝑡

𝑇

𝑡=1

),                       (26) 

 

also treated as a mean for the whole period. Data on the subject of real GDP are 

taken from the Penn World Table. The second of the main gravity variables is the 

natural logarithm of the distance between the capitals of the countries under 

consideration, which is marked as DIST.  
The basic explanatory variables in the gravity model of trade were 

complemented by additional 7. The first one is the similarity of the production 

structures measured by Krugman specialization index (1991): 
 

𝐾𝑆𝐼𝑖𝑗 =
1

𝑇
∑∑|𝑣𝑖𝑡

𝑙 − 𝑣𝑗𝑡
𝑙 |

17

𝑙

𝑇

𝑡=1

,                                       (27) 

 

where vit
l is the value added in the sector l expressed as the percentage of the 

value added in the entire economy of the country i in the period t, vit
l and is the 

value added in the sector l expressed as the percentage of the value added in the 

entire economy of a country j in the period t. The mean for the entire period and 

the division of the economy into 17 sectors were used, whereas the data on them 

were taken from EU KLEMS. The measure takes values from the interval [0,2], 

while the growth of the value of the measure is accompanied by the decrease in 

similarity of production structures. 
The next variable added to the gravity model is the average absolute value of 

the difference of natural log of GDP per capita for each pair of countries in the 

period between 1999 and 2007: 
 

𝑅𝐺𝐷𝑃𝑑𝑖𝑠𝑡𝑖𝑗 =
1

𝑇
∑|ln(𝐺𝐷𝑃𝑝𝑒𝑟𝑐𝑎𝑝𝑖𝑡𝑎𝑖𝑡) − ln(𝐺𝐷𝑃𝑝𝑒𝑟𝑐𝑎𝑝𝑖𝑡𝑎𝑗𝑡)|.

𝑇

𝑡=1

    (28) 
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The data on GDP per capita comes from the Penn World Table. The 

similarity of production structures and the distance of GDP per capita can be 

justified by the theory of monopolistic competition adopted by Linder (1961). The 

theory assumes that there is a tendency that, together with the increasing 

industrialization, the structures of consumption/production become more similar, 

which leads to a situation where countries at similar level of affluence will display 

a high level of intra-industry trade. These conclusions are supported by the works 

of: Grubel (1971), Grubel and Loyd (1975), Dixit and Stiglitz (1977), Krugman 

(1979, 1980), Lancaster (1980), Helpman (1981) and Gray (1980). 
What is more, averaged binary variables were used in the models in order to 

reflect the influence of participation in the European Union and Economic and 

Monetary Union. For the participation in the monetary union (MU), the variable 

takes the value equal to 1 if in a given year both countries were members of the 

Eurozone, and 0 for other years. Then, a mean for the whole period is calculated. 

Analogical construction was applied for the participation in the European Union 

(EU): 

Another potential determinant of bilateral trade is the natural logarithm of the 

population product of two analyzed EU countries in the period between 1990 and 

2007 – POPprod. The data on the size of population come from the Penn World 

Table. One can expect substitutional relationship between POPprod and 

RGDPprod. 

Moreover, two additional binary variables were used. They are: BORDER - a 

dummy variable assuming 1 if two countries share a common border, and LANG 

– a binary variable assuming 1 if a pair of countries share at least one official 

language. 

4.3. The results of applying BMA 

Below one can find the results of applying BMA after employing Fernández 

et al.  (2001) Benchmark Prior, which dictated the choice of unit information 

prior (UIP). Additionally, uniform model size prior was applied. This 

combination of priors was recommended by Eicher et al. (2011). The prior 

probability of including a given regressor is 0.5. As 9 regressors were used, the 

space of the model consists of 2K=29=512 elements, and the inference itself was 

carried out on the basis of all models. The results of applying BMA are presented 

in Table 3. 

The results indicate that 5 variables were qualified as robust determinants of 

bilateral trade: geographical distance, product of real GDPs, population product, 

GDP per capita distance, and common language. The remaining four display 

lower posterior than the prior probability of inclusion, which is 0.5. A stable sign 

of the coefficient among all the analyzed models also characterizes all the 

variables that were qualified as robust, and it is in accordance with expectations of 

the theory, with an exception of population product, which is characterized by 

negative posterior mean. DIST and RGDPprod turned out to be the most robust 
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determinants of trade – models including these variables take the lion’s share of 

posterior probability mass. This ascertains the gravity model of trade capacity to 

explain international trade flows. RGDPpc has a negative impact on trade. This 

gives support to the theories that suggest a positive relationship between GDP per 

capita and the volume of intra-industry trade. On the other hand, similarity of the 

production structure is marked as fragile. It will be instructive to look at the value 

of the jointness measures for RGDPdist and KSI. 

Table 3.  BMA statistics with the use of uniform prior model size distribution 

(dependent variable - bilateral trade). 

Variable PIP PM PSD CPM CPSD P(+) 

DIST 1.000 -0.879 0.097 -0.879 0.097 0.000 

RGDPprod 1.000 1.169 0.180 1.169 0.180 1.000 

POPprod 0.827 -0.311 0.176 -0.376 0.114 0.000 

RGDPdist 0.739 -0.336 0.242 -0.455 0.159 0.000 

LANG 0.627 0.299 0.275 0.476 0.190 1.000 

BORDER 0.380 0.139 0.209 0.365 0.180 1.000 

KSI 0.369 -0.465 0.723 -1.260 0.645 0.000 

EU 0.244 0.162 0.364 0.662 0.461 0.916 

MU 0.152 0.022 0.069 0.146 0.116 1.000 

 

A cultural similarity captured by the common language dummy proved to 

have a robust and positive impact on trade. Unexpected result was obtained for 

the population product. The variable is robust but is characterized by a negative 

posterior mean. This result is especially surprising when we look at correlation 

coefficient between RGDPprod and POPprod – 0.96. This suggests a 

substitutional dependence between those two variables. 

The common border dummy was classified as fragile. This might be explained 

by potential substitutional relationship with geographical distance or language 

dummy – these variables most certainly carry the same information. Similarly, the 

membership in the European Union and the Eurozone are considered fragile. In 

instances of both of these variables one might expect a substitutional relationship 

with other regressors, e.g. RGDPdist (European Union/Eurozone members are 

characterized by lower GDP per capita distances compared with pairs with 

countries outside these entities) or BORDER.  

The next step requires an inquiry on whether the conclusions rely upon the 

undertaken assumptions. Impact of changing g prior, as well as, model size prior 

is depicted in the Figure 1. No matter what prior model specification is chosen 

DIST, RGDPprod, POPPprod and RGDPdist are robust determinants of 

international trade. LANG depends on the chosen prior combination, which deem 

questioning robustness of this variable.  
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This point shows the superiority of BMA over the classical methods. 

Applying BMA allows one not only to use knowledge coming from many models 

but also to check the robustness of the results over the changes in prior 

specification: both in terms of g prior and model size prior. The classical approach 

based on statistical significance relies upon the knowledge coming from just one 

model. Model averaging procedures used in classical econometrics rely on a given 

specific set of prior assumptions, yet one more time making entire analysis more 

limited and vulnerable to criticism. 

 

* Uniform, Betabinomial, Binomial2, Binomial8 – denotes uniform, binomial-

beta with 𝐸𝑚 = 4.5, binomial with 𝐸𝑚 = 2 and binomial with 𝐸𝑚 = 8 model 

prior respectively. 

Figure 1. Posteriori inclusion probabilities in different specifications of g prior 

and model size prior 

4.4. Jointness measures 

To uncover the character of the correspondence between regressors, jointness 

measures were employed. They were calculated for BMA with unit information 

prior and uniform model size prior. Results for both measures are shown in Table 

4. The values of Doppelhofer and Weeks measures (JDW) are located above the 

primary diagonal and for Ley and Steel's measure (JLS) above. 
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Table 4.  Jointness measures: JDW (below primary diagonal) and JLS (above 

primary diagonal) 
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MU x -2.48 -1.76 -1.73 -1.72 -2.30 -1.73 -1.97 -1.88 

EU -0.38 x -1.96 -1.13 -2.48 -1.99 -1.13 -1.09 -1.84 

RGDPdist 0.11 -1.85 x 1.03 1.14 -0.72 1.03 -0.02 -1.31 

RGDPprod nan nan nan x 1.56 -0.48 0.00 0.53 -0.53 

POPprod 0.24 -5.68 2.03 nan x -0.41 1.56 0.07 -0.49 

BORDER -0.45 -0.58 -0.13 nan 0.88 x -0.48 -1.49 -0.98 

DIST nan nan nan nan nan nan x 0.53 -0.53 

LANG -0.28 0.50 -0.22 nan -0.74 -1.57 nan x -0.86 

KSI 0.14 -0.38 -1.72 nan 0.73 0.37 nan -0.09 x 

 

In Table 4, strong substitutes are highlighted in dark grey, whereas light grey 

indicates relevant substitutes. Employing the measure JDW allowed the 

establishing of four pairs of substitutes, one pair of strong substitutes and one pair 

of complements. EU is a strong substitute of POPprod and a significant one of 

RGDPdist Border and language dummies are also substitutes, which might be 

reasonably explained in the following way: countries that are located closer to 

each other tend to share the same language more often. KSI exhibits substitutional 

relationship with RGDPpc. This result might be explained by U-shaped 

relationship between GDP per capita and degree of specialization described by 

Imbs and Wacziarg (2003): differences in GDP per capita are determining 

specialization patterns, and those in turn determine the patterns of trade. 

Moreover, using JDW allowed for the identification of one pair of complements 

marked with the grey font: POPprod and RGDPdist. 

Results in Table 3 reveal a few weaknesses related to the application of JDW, 

which were mentioned in section 3. First, the measure did not identify many 

relationships between the variables. Second, an abbreviation "nan” (not a 

number), which denotes an undefined numeric value, is given in the table. In this 

case it is the result of the operations in the form of x/0. For that reason, it is worth 
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employing Ley and Steel's measure (JLS), for which such problems are not 

present. The values of JLS are located above the primary diagonal in Table 4. 
The values of measure JLS better justify the results obtained in section 4.3. The 

measure identifies 3 pairs of strong substitutes, 14 pairs of significant substitutes 

and 5 of significant complements. The JLS measure indicates that the participation 

in the European Union and the Eurozone are either strong or significant 

substitutes for all the remaining variables. It explains why those variables 

themselves, despite their strong position in the literature and empirical analyses in 

the past, turned out to be fragile in the analysis described in section 4.3. Similarly 

to the JDW measure, JLS classified border and language dummy, as well as real 

GDP per capita and similarity of production structures as significant substitutes. 

Geographical distance was labelled complement of POPprod and RGDPdist. 

Finally, JLS captured the complementary relationship between RGDPprod, 

POPprod and RGDPpc. This might help provide two explanations for the 

negative coefficient on POPprod. Firstly, the higher the real GDP product, the 

bigger the economies and the greater their capacity to trade. At the same time, the 

higher the population product, the lower GDP per capita, and capacity for 

purchasing of individuals, which could explain negative coefficient on POPprod. 

This effect is present only if RGDPprod and POPprod are both present in the 

model. In this instance, RGDPdist allows one to control for structural similarity 

(in terms of both production and consumption) and participation in the EU or the 

Eurozone. 

The second explanation relies upon economies of scale: the bigger the 

countries, the higher their capacities to explore economies of scale internally and 

lower the need to trade with outside world. In that instance, RGDPprod captures 

countries capacity to trade and POPprod captures their capacity to explore 

economies of scale internally. In this case, RGDPdist additionally allows for 

controlling differences in welfare between nations.  

Therefore, the application of the measure allows one to explain all the results 

that defy the predictions made according to the theory. It also confirms the 

criticism levelled against Dopplehofer and Weeks' measure by Ley and Steel. JLS 

is not only free form computational difficulties of JDW, but also provides better 

explanations to the obtained results. 

5. Conclusions 

The following study presents the idea of Bayesian approach to statistics and 

econometrics, as well as the benefits coming from combining knowledge obtained 

on the basis of analysis of different models. In the first part, the BMA structure 

was described together with its most important statistics and g prior, as well as 

prior model proposals. The second part outlined jointness measures that were put 

forward by Ley and Steel, as well as Dopplehofer and Weeks. 
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The empirical part presents the results obtained from the analysis of the 

determinants of bilateral international trade. The application of Bayesian Model 

Averaging enabled the identification of four robust determinants: geographical 

distance, real GDP product, population product and real GDP per capita distance. 

Those four variables are robust to changes in both g prior and model size prior. 

Language and border dummy, similarity of production structures and participation 

in the EU were classified as robust for some prior specifications of BMA. 

The applied procedure also showed that the model that is the closest to the 

true one is the model containing the following five independent variables: 

geographical distance, real GDP and population product, real GDP per capita 

distance and the language dummy. All variables, except for population product, 

have coefficient signs predicted by the theory. Owing to the application of Ley 

and Steel's jointness measure, it was possible to explain why some variables 

firmly rooted in theory were classified as fragile. Participation in the EU and the 

Eurozone are characterized by substitutional relationship with all other variables. 

Fragile border dummy and similarity of production structures are substitutes with 

language dummy and real GDP per capita distance respectively, ergo contained 

the same information as the variables classified as robust.  

Finally, the complementary relationship between real GDP product and 

population product enabled two possible explanations of the negative sign of the 

population product coefficient to be proposed. The first uses the welfare effect 

reflected in real GDP per capita, and the second points to the exploitation of 

internal economies of scale. It is worth mentioning that the performed exercise 

demonstrated the superiority of Ley and Steel’s jointness measure over the one 

introduced by Dopplehofer and Weeks. 
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