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A THREE-PARAMETER WEIGHTED LINDLEY 
DISTRIBUTION AND ITS APPLICATIONS TO MODEL 

SURVIVAL TIME  

Rama Shanker1, Kamlesh Kumar Shukla2, Amarendra Mishra3 

ABSTRACT 

In this paper a three-parameter weighted Lindley distribution, including Lindley 
distribution introduced by Lindley (1958), a two-parameter gamma distribution, a 
two-parameter weighted Lindley distribution introduced by Ghitany et al. (2011) 
and exponential distribution as special cases, has been suggested for modelling 
lifetime data from engineering and biomedical sciences. The structural properties 
of the distribution including moments, coefficient of variation, skewness, kurtosis 
and index of dispersion have been derived and discussed. The reliability 
properties, including hazard rate function and mean residual life function, have 
been discussed. The estimation of its parameters has been discussed using the 
maximum likelihood method and the applications of the distribution have been 
explained through some survival time data of a group of patients suffering from 
head and neck cancer, and the fit has been compared with a one-parameter 
Lindley distribution and a two-parameter weighted Lindley distribution.  

Key words: moments, stochastic ordering, hazard rate function, mean residual 
life function, maximum likelihood estimation, lifetime data, goodness of fit. 

1. Introduction

The probability density function (p.d.f.) of the two-parameter weighted
Lindley distribution (WLD), introduced by Ghitany et al. (2011) with parameters 

and , is given by 

1 1

; , 1 ; 0, 0, 0xxf x x e x               (1.1) 
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where        

                                          

 is the complete gamma function. Its structural properties including moments, 
hazard rate function, mean residual life function, estimation of parameters and 
applications to modelling survival time data have been discussed by Ghitany et al. 
(2011). The corresponding cumulative distribution function (c.d.f.) of WLD (1.1) 
can be obtained as 

  
,

; , 1 ; 0, 0, 0
xx x e

F x x     (1.2) 

where  

                                                           (1.3) 

is the upper incomplete gamma function. 
It can be easily shown that at 1 , WLD (1.1) reduces to Lindley (1958) 

distribution having p.d.f. 

                                
2
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1
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It can be easily verified that the p.d.f. (1.4) is a two-component mixture of 
exponential and gamma 2, distributions. Ghitany et al. (2008) have 
conducted a detailed study about various properties of Lindley distribution 
including skewness, kurtosis, hazard rate function, mean residual life function, 
stochastic ordering, stress-strength reliability, among other things; estimation of 
its parameter and application to model waiting time data in a bank. Shanker and 
Mishra (2013 a, 2013 b), Shanker and Amanuel (2013), and Shanker et al. (2013) 
have obtained different forms of the two-parameter Lindley distribution and 
discussed their various properties including skewness, kurtosis, index of 
dispersion, hazard rate function, mean residual life function, stochastic ordering, 
mean deviation, stress-strength reliability; estimation of parameters and their 
applications to model waiting and survival times data. Sankaran (1970) has 
obtained discrete Poisson-Lindley distribution by mixing Poisson distribution 
with Lindley (1958) distribution and studied its properties based on moments, 
estimation of parameters and applications to model count data from biological 
sciences. Shanker et al. (2015) have discussed a comparative study of Lindley and 
exponential distributions for modelling various lifetime data sets from biomedical 
science and engineering, and concluded that there are lifetime data where 
exponential distribution gives better fit than Lindley distribution and in majority 
of data sets Lindley distribution gives better fit than exponential distribution. 
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Further, p.d.f. (1.1) can also be expressed as a two-component mixture of gamma 
,  and gamma 1, distributions. We have 

                   1 2; , ; , 1 ; , 1f x p f x p f x ,                (1.5) 
where  

p , 1
1 ; , xf x e x , and 

1
1 1

2 ; , 1
1

xf x e x . 

Ghitany et al. (2011) have discussed the structural properties of WLD 
including the nature of its p.d.f., hazard rate function, mean residual life function 
and applications to survival data using maximum likelihood estimation. It has 
been shown by Ghitany et al. (2011) that the shapes of hazard rate function and 
mean residual life function are decreasing, increasing and bathtub and thus has the 
potential to model survival time data of different nature. Shanker et al. (2016) 
have discussed some of its important statistical and mathematical properties 
including central moments, coefficient of variation, skewness, kurtosis, index of 
dispersion, stochastic ordering and the applications to modelling lifetime data 
from engineering and biomedical sciences.  

In the present paper, a three-parameter weighted Lindley distribution, which 
includes Lindley (1958) distribution, WLD introduced by Ghitany et al. (2011), 
two-parameter gamma distribution and exponential distribution as particular 
cases, has been proposed and discussed. Its moments about origin and central 
moments, coefficient of variation, skewness, kurtosis and index of dispersion 
have been derived. The hazard rate function and the mean residual life function of 
the distribution have been derived and their shapes have been discussed for 
varying values of the parameters. The estimation of its parameters has been 
discussed using maximum likelihood method. Finally, the goodness of fit and the 
applications of the distribution have been explained through some survival data 
and the fit has been compared with a one-parameter Lindley distribution and the 
two-parameter WLD. 

2. A three-parameter weighted Lindley distribution 

A three-parameter weighted Lindley distribution (TPWLD) having parameters
, , and  can be defined by the probability density function 

1 1

; , , ; 0, 0, 0, 0xxf x x e x    

   (2.1) 
 where and  are shape parameters and is a scale parameter. 



 

It can be easily verified that the Lindley distribution introduced by Lindley 
(1958) and the two-parameter WLD introduced by Ghitany et al. (2011) are 
particular cases of (2.1) for 1 and 1  respectively. A two-parameter 

gamma ,  distribution is a particular case of TPWLD for . Again, for

1and , TPWLD reduces to the one-parameter exponential 
distribution. Further, the p.d.f. (2.1) can be easily expressed as a two-component 
mixture of gamma ,  and gamma 1, distributions. We have 

                   1 2; , , ; , 1 ; , 1f x p f x p f x ,           (2.2) 
 where  

p , 1
1 ; , xf x e x , 

1
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1

xf x e x . 

The corresponding cumulative distribution function of TPWLD (2.1) can be 
obtained as 

,
; , 1

xx x e
F x ; 

0, 0, 0, 0x                                 (2.3) 

where , z   is the upper incomplete gamma function defined in (1.3). 
The nature of the p.d.f. of TPWLD for varying values of the parameters has 

been shown graphically in Figure 1. 
 

 



 

 

 

 



 

 

 

 



 

 
Figure 1. Nature of the p.d.f. of TPWLD for varying values of the parameters 

3. Moments and related measures 

Using the mixture representation (2.2), the r th moment about origin of 
TPWLD (2.1) can be obtained as 

  1 2
0 0

; , 1 ; , 1r r r
r E X p x f x dx p x f x dx  

; 1,2,3,...r

r r
r                               (3.1) 

Substituting 1,2,3, and 4r in (3.1), the first four moments about origin of 
TPWLD are obtained as 

 

 

 

 

 
It can be easily verified that these raw moments reduce to the corresponding 

raw moments of a two-parameter gamma distribution for . 
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Again, using the relationship between central moments and moments about 
origin, the central moments of TPWLD are obtained as 
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The expressions for coefficient of variation (C.V.), coefficient of skewness 

1 , coefficient of kurtosis 2 , and index of dispersion of TPWLD 

(2.1) are thus obtained as 
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The nature of the coefficient of variation, coefficient of skewness, coefficient 
of kurtosis and index of dispersion of TPWLD for varying values of the 
parameters have been shown in Figure 2. 
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Figure 2. Graphs of coefficient of variation, coefficient of skewness, coefficient 

of kurtosis and index of dispersion of TPWLD for varying values of the 
parameters 

4. Stochastic ordering 

The stochastic ordering of positive continuous random variables is an 
important tool for judging their comparative behaviour. A continuous random 
variable X is said to be smaller than a continuous  random variable in the  

(i) stochastic order stX Y if X YF x F x for all  

(ii) hazard rate order hrX Y if X Yh x h x  for all  

(iii) mean residual life order mrlX Y if X Ym x m x for all  

(iv) likelihood ratio order lrX Y if X

Y

f x
f x

 decreases in x . 

Y
x

x

x



 

The following stochastic ordering relationships due to Shaked and 
Shanthikumar (1994) are well known for establishing stochastic ordering of 
continuous distributions 

lr hr mrlX Y X Y X Y  

 

TPWLD is ordered with respect to the strongest ‘likelihood ratio’ ordering as 
shown in the following theorem: 
 
Theorem: Let X  TPWLD  1 1 1, ,  and Y  TPWLD 2 2 2, , . Then, 
the following results hold true 

(i) If 1 2 1 2 1 2, and  , then lrX Y , hrX Y , mrlX Y
and stX Y .  

(ii) If 1 2 1 2 1 2, and  , then lrX Y , hrX Y , mrlX Y
and stX Y .  

(iii) If 1 2 1 2 1 2, and  , then lrX Y , hrX Y , mrlX Y
and stX Y .  

(iv) If 1 2 1 2 1 2, and  , then lrX Y , hrX Y , mrlX Y
and stX Y .  

 
 
Proof: We have  
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This gives        1 2 2 1
1 2

1 2

log X
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d
dx x x x
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Thus for 1 2 1 2 1 2, and ,  log 0X

Y

f x
f x

d
dx

. This means that 

lrX Y and hence hrX Y , mrlX Y and stX Y , and thus (i) is verified.  
Similarly, (ii), (iii) and (iv) can easily be verified. 
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5. Hazard rate function and mean residual life function 

5.1. Hazard rate function 

Using the mixture representation (2.2), the survival (reliability) function of 
TPWLD can be obtained as 

 

 

               
, xx x e

                             (5.1.1) 

 where  , z is the upper incomplete gamma function defined in (1.3). 

The hazard (or failure) rate function, h x of TPWLD is thus obtained as 
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The shapes of the hazard rate function, h x  of TPWLD for varying values of 

the parameters are shown in Figure 3.  
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Figure 3. Graphs of the hazard rate function, h x  of TPWLD for varying values 
of the parameters 

 



 

5.2. Mean residual life function 

Using the mixture representation (2.2), the mean residual life function 
|m x E X x X x

 of TPWLD can be obtained as 

 1
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The shapes of the mean residual life function, m x  of TPWLD for varying 
values of the parameters are shown in Figure 4.  
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Figure 4. Graphs of the mean residual life function, m x  of TPWLD for varying 
values of the parameters 

6. Maximum likelihood estimation 

Let 1 2 3, , , ... , nx x x x  be a random sample of size n  from TPWLD (2.1). 
The likelihood function, L of TPWLD is given by 

       
1

1

1

1
n n

n x
i in

i

L x x e ; x  being the sample 

mean. 
 

The natural log likelihood function is thus obtained as 
 

 

The maximum likelihood estimates (MLEs) ˆ ˆˆ, ,  of parameters 

, ,  of TPWLD are the solution of the following nonlinear equations 
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where x  is the sample mean and lnd
d

 is the digamma function. 

It should be noted that the first equation gives the expression for the mean as 

. 

These three log likelihood equations do not seem to be solved directly. 
However, Fisher’s scoring method can be applied to solve these equations. We 
have  

 

 

  

  

  

 

where 
d

d
is the tri-gamma function. 

For the maximum likelihood estimates ˆ ˆˆ, , of , ,  of TPWLD 

(2.1), the following equations can be solved      
   

                            

0
0

0

2 2 2

2

02 2 2

02

2 2 2 0

2 ˆ
ˆ
ˆ

ln ln ln ln
ˆ

ln ln ln lnˆ
ˆ lnln ln ln

L L L L

L L L L

LL L L

  

1
x

2 2

22 2

1ln nL n

2

22

ln L n n

2 2

2 22
1

ln 1n

i i

L n
x

2

2
ln L n n

2

2
ln L n

2

2
ln L n



 

where 0 0 0, ,  are the initial values of , ,  respectively. These 
equations are solved iteratively using any numerical iterative methods until 
sufficiently close values of ˆ ˆˆ, ,  are obtained.  

7. Applications and goodness of fit 

In this section, the applications and goodness of fit of TPWLD has been 
discussed for several lifetime data and the fit is compared with a one-parameter 
Lindley distribution and a two-parameter WLD. In order to compare TPWLD, 
WLD and Lindley distribution, 2 ln L , AIC (Akaike information criterion), K-S 
Statistic ( Kolmogorov-Smirnov Statistic) and p-value for two data sets have been 
computed and presented in Table 1. The formulae for AIC and K-S Statistics are 
as follows:  2log 2AIC L k , and 0- Sup n

x
K S F x F x , where k is 

the number of parameters involved in the respective distributions, n  is the sample 
size and nF x is the empirical distribution function. The best distribution 
corresponds to the lower values of 2 ln L , AIC and K-S statistic and higher p- 
value.  

The goodness of fit of TPWLD, WLD, and Lindley distribution for data set 1 
and 2 are based on maximum likelihood estimates (MLE). The data sets 1 and 2 
are survival times of a group of patients suffering from head and neck cancer.  
 
Data Set 1: The data set reported by Efron (1988) represent the survival times of 
a group of patients suffering from Head and Neck cancer disease and treated 
using radiotherapy (RT) 

6.53 7 10.42 14.48 16.10 22.70 34 41.55 42 45.28 49.40 53.62 63 
64 83  84  91  108 112 129 133 133 139 140 140 146 149 154 
157 160 160 165 146 149 154 157 160 160 165 173 176 218 225 
241 248 273 277 297 405 417 420 440 523 583 594 1101  1146 

 1417 
 
Data Set 2: The data set reported by Efron (1988) represent the survival times 
of a group  of patients suffering from Head and Neck cancer disease and 
treated using a combination of radiotherapy and chemotherapy (RT+CT). 

12.20 23.56 23.74 25.87 31.98 37  41.35 47.38 55.46 58.36 
63.47 68.46 78.26 74.47 81.43 84  92  94  110 112 119 127 130 
133 140 146 155 159 173 179 194 195 209 249 281 319 339   
432 469 519 633 725 817 1776 

 
 



 

Table 1. MLE’s, S.E., -2ln L, AIC, K-S Statistic and p-values of the fitted 
distributions of data sets 1-2 

Data Model Parameter 
Estimate S.E. -2ln L AIC K-S 

Statistic p-value 

 1 TPWLD ˆ 0.0046940  
ˆ 0.05090197  
ˆ 0.0913944  

0.000599 
0.009192 
0.178881 

744.04 750.04 0.172 0.064 

WLD 
 
 

ˆ =0.0052993 

ˆ =0.2124576 

0.000797 
0.113080 

746.79 750.79 0.1826 0.042 

Lindley ˆ =0.008804 0.008060 763.74 765.74 0.246 0.002 

 2 TPWLD ˆ =0.0047801 

ˆ =0.0484017 
ˆ = -0.077115 

0.0007015 
0.0103219 
0.1822874 

563.45 569.45 0.146 0.281 

WLD ˆ = 0.0054135 

ˆ =0.2271618 

0.0009513 
0.1386034 

565.93 569.93 0.161 0.185 

Lindley ˆ =0.008905 0.0009409 579.16 581.16 0.219 0.024 

 
It is obvious from the goodness of fit in the above table that TPWLD gives 

much closer fit than the two-parameter WLD and the one-parameter Lindley 
distribution, and hence it can be considered as an important tool for modelling 
survival time data over these distributions.  

 
The fitted plots of TPWLD, WLD and Lindley distribution for data set 1 and 

2 are shown in the following Figure 4. 

 
Figure 4. Fitted plots of TPWLD, WLD and Lindley distribution for the data set 

1 and 2 



 

8. Concluding remarks 

A three-parameter weighted Lindley distribution (TPWLD), which includes 
two-parameter WLD and Lindley distribution as special cases, has been 
introduced. Its moments and moments-based expressions, including the 
coefficient of variation, skewness, kurtosis, and index of dispersion, have been 
derived and studied. The hazard rate function and the mean residual life function 
have been obtained and discussed. MLE has been used to estimate the parameters 
of the distribution. Goodness of fit of TPWLD has been discussed with some 
survival time data of a group of patients suffering from head and neck cancer and 
the fit shows a quite satisfactory fit over one-parameter Lindley distribution and 
two-parameter WLD. 
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