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EFFICIENT FAMILY OF RATIO-TYPE ESTIMATORS
FOR MEAN ESTIMATION IN SUCCESSIVE
SAMPLING ON TWO OCCASIONS USING

AUXILIARY INFORMATION

Nazeema T. Beevi1, C. Chandran

ABSTRACT

In this paper, we proposed an efficient family of ratio-type estimators using one

auxiliary variable for the estimation of the current population mean under succes-

sive sampling scheme. This family of estimators have been studied by Ray and

Sahai (1980) under simple random sampling using one auxiliary variable for es-

timation of the population mean. Using these estimators in successive sampling,

the expression for bias and mean squared error of the proposed estimators are ob-

tained up to the first order of approximation. Usual ratio estimator is identified as a

particular case of the suggested estimators. Optimum replacement strategy is also

discussed. The proposed family of estimators at optimum condition is compared

with the simple mean per unit estimator, Cochran (1977) estimator and existing

other members of the family. Expressions of optimization are derived and results

have been justified through numerical study interpretation.

Key words: auxiliary information, bias, mean square error, optimum replacement.

1. Introduction

Nowadays, it is often seen that sample surveys are not limited to one-time inquiries.

A survey carried out on a finite population is subject to change over time if the

value of a study character of a finite population is subject to (dynamic) change over

time. A survey carried out on a single occasion will provide information about the

characteristics of the surveyed population for the given occasion only and can not

give any information on the nature or the rate of change of the characteristics over

different occasions and the average value of the characteristics over all occasions or

the most recent occasion. A part of the sample is retained being replaced for the

next occasion (or sampling on successive occasions, which is also called successive

sampling or rotation sampling).

The successive method of sampling consists of selecting sample units on differ-

ent occasions such that some units are common with samples selected on previous
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occasions. If sampling on successive occasions is done according to a specific rule,

with replacement of sampling units, it is known as successive sampling. Replace-

ment policy was examined by Jessen (1942), who examined the problem of sam-

pling on two occasions, without or with replacement of part of the sample in which

what fraction of the sample on the first occasion should be replaced in order that

the estimator of Ȳ may have maximum precision. Yates (1949) extended Jessen’s

scheme to the situation where the population mean of a character is estimated on

each of (h > 2) occasions from a rotation sample design. These results were gen-

eralized by Patterson (1950) and Narain (1953), among others. Rao and Mudhdkar

(1967) and Das (1982), used the information collected on the previous occasions

for improving the current estimate. Data regarding changing properties of the pop-

ulation of cities or counties and unemployment statistics are collected regularly on

a sample basis to estimate the changes from one occasion to the next or to estimate

the average over a certain period. An important aspect of continuous surveys is the

structure of the sample on each occasion. To meet these requirements, successive

sampling provides a strong tool for generating the reliable estimates at different

occasions.

Biradar and Singh (2001) proposed an estimator for the population mean on the

second of two successive occasions on an auxiliary variate with an unknown popula-

tion mean. Singh (2005) developed ratio estimators for the population mean on the

current occasion using the information for all the units in successive sampling over

two occasions. In many situations, information on an auxiliary variate may be read-

ily available on the first as well as the second occasions; for example, tonnage (or

seat capacity) of each vehicle or ship is known in survey sampling of transportation

and the number of beds in hospital surveys.

Ray and Sahai (1980) have proposed two parameter family of estimators under

SRSWOR scheme using auxiliary variate for estimating the population mean Ȳ and

assuming population mean X̄ of auxiliary variate to be known. The objective of this

paper is to develop a two parameter family of estimators that estimate the population

mean on the current occasion in successive sampling using auxiliary variables on

both occasions.

The paper is divided into nine sections. Sample structure and notations have

been discussed in section 2 and section 3 respectively. In section 4, the proposed

estimators have been formulated. Optimal choice and minimum mean square error

of proposed estimator is derived in section 5 and section 6 respectively. In section 7,

the optimum replacement policy is discussed and efficiency comparisons are made

in section 8. In secection 9, the results have been justified through real data study

with interpretation and we give interpretation and conclusion in section 10.



2. Selection of the sample

Consider a finite population U = (U1,U2 . . .UN) which has been sampled over

two occasions. Let x and y be the study variables on the first and second occasions

respectively. We further assumed that the information on the auxiliary variable z1

and z2, whose population means are known, which is closely related to x and y on

the first and second occasions respectively is available on the first as well as on

the second occasion. For convenience, it is assumed that the population under con-

sideration is large enough. Allowing SRSWOR (Simple Random Sampling without

Replacement) design in each occasions, the successive sampling scheme is proposed

as follows:

• We have n units which constitutes the sample on the first occasion. A random

sub sample of nm = nλ (0 < λ < 1) units is retained (matched) for use on the

second occasion, where λ is the fraction of matched sample on the current

occasion.

• In the second occasion nu = nμ (= n−nm) (0 < μ < 1) units are drawn from

the remaining (N−n) units of the population, where μ is the fraction of fresh

sample on the current occasion.

Therfore the sample size on the second occasion is also n (= nλ +nμ).

3. Description of Notations

We use the following notations in this paper.

X̄ : The population mean of the study variable on the first occasion.

Ȳ : The population mean of the study variable on the second occasion.

Z̄1: The population mean of the auxiliary variable on the first occasion.

Z̄2: The population mean of the auxiliary variable on the second occasion.

S2
y : Population variance of y.

S2
x : Population variance of x.

S2
z1

: Population variance of z1.

S2
z2

: Population variance of z2.

nm: The sample size observed on the second occasion and common with the first

occasion.

nu: The sample size of the sample drawn afresh on the second occasion.

n: Total sample size.



z̄n: The sample mean of the auxiliary variable based on n units drawn on the

first occasion.

z̄nu : The sample mean of the auxiliary variable based on nu units drawn on the

second occasion.

x̄n: The sample mean of the study variable based on n units drawn on the first

occasion.

ȳnu : The sample mean of the study variable based on nu units drawn afresh on

the second occasion.

ȳnm : The sample mean of the study variable based on nm units common to both

occasions and observed on the first occasion.

ρyx: The correlation coefficient between the variables y on x.

ρxz1
: The correlation coefficient between the variables x on z1.

ρyz2
: The correlation coefficient between the variables y on z2.

4. Proposed Family of Estimators in Successive sampling

Ray and Sahai (1980) have proposed a two parameter family of estimators under

SRSWOR scheme using auxiliary variate for estimating the population mean Ȳ .
The objective of this paper is to develop a two parameter family of estimators that

estimate the population mean on the current occasion in successive sampling using

auxiliary variables on the both occasions and it is known. To estimate the population

mean Ȳ on the second occasion, two different estimators are suggested. The first

estimator is a family of estimators based on sample of size nu(= nμ) drawn afresh

on the second occasion given by:

t(RKθ)
nu = ȳnu

[
KZ̄2 +θ z̄2

z̄2 +(K +θ −1)Z̄2

]
(1)

The second estimator is a family of estimators based on the sample of size nm(= nλ )
common with both the occasions defined as

t(RKθ)
nm = ȳnm

[
Kx̄n +θ x̄nm

x̄nm +(K +θ −1)x̄n

][
KZ̄2 +θ z̄2

z̄2 +(K +θ −1)Z̄2

]
, (2)

where K is a non-negative constant and 0 ≤ θ ≤ 1. Combining the estimators tnu

and tnm , we have the final estimator tRKθ as follows

tRKθ = ψtnu +(1−ψ)tnm , (3)

where ψ is an unknown constant to be determined such that MSE(tRKθ ) is mini-

mum. We prove theoretically that the estimator is more efficient than the proposed



estimator by Cochran (1977) when no auxiliary variables are used at any occasion.

Cochran’s classical difference estimator is a widely used estimator to estimate the

population mean Ȳ , in successive sampling. It is given by

ȳ′2 = φ2ȳ′2u +(1−φ2)ȳ′2m,

where φ2 is an unknown constant to be determined such that V ( ˆ̄Y )opt is minimum

and ¯y2u
′ = ¯y2u is the sample mean of the unmatched portion of the sample on the

second occasion and ȳ′2m = ȳ2m + b(ȳ1 − ȳ1m) is based on matched portion. The

variance for large N of this estimator is

Var( ˆ̄Y )opt = [1+
√

(1−ρ2)]
S2

y

2n
.

Similarly, the variance for large N of the mean per unit estimator is given by

Var(ȳ) =
S2

y

n
.

4.1. Properties of tRKθ

Since tnu and tnm both are biased estimators of tRKθ , therefore, resulting estimator

tRKθ is also a biased estimator. The bias and MSE up to the first order of approxi-

mation are derived as using large sample approximation given below:

ȳnu = Ȳ (1+ eȳnu
), ȳnm = Ȳ (1+ eȳnm

),

x̄nm = X̄(1+ ex̄nm
), x̄n = X̄(1+ ex̄n),

z̄1 = Z̄1(1+ ez̄1
), z̄2 = Z̄2(1+ ez̄2

)
where eȳnu

,eȳnm
,ex̄nm

,ex̄n ,ez̄1
and ez̄2

are sampling errors and they are of very small

quantities. We assume that

E(eȳnu
) = E(eȳnm

) = E(ex̄nm
) = E(ex̄n) = E(ez̄1

) = E(ez̄2
) = 0. Then, for sim-

ple random sampling without replacement for both the first and second occasions,

we write using the occasion wise operation of expectation as:

E(e2
ȳnu

) =
(

1
nu
− 1

N

)
S2

y ,E(e
2
ȳnm

) =
(

1
nm

− 1
N

)
S2

y ,

E(e2
x̄nm

) =
(

1
nm

− 1
n

)
S2

x ,E(e
2
x̄n
) =

(
1
n − 1

N

)
S2

x ,

E(e2
z̄1
) =

(
1
m − 1

n

)
S2

z2
,



E(e ¯ynu
ez̄2

) =
(

1
nu
− 1

N

)
Syz2

, E(eȳnm
ex̄n) =

(
1

nm
− 1

n

)
Syx,

E(eȳnm
ex̄nm

) =
(

1
nm

− 1
n

)
Syx, E(eȳnm

ex̄n) =
(

1
n − 1

N

)
Syx,

E(eȳnm
ez̄1

) =
(

1
m − 1

n

)
Syz1

, E(ex̄nm
ex̄n) =

(
1
n − 1

N

)
S2

x ,

E(ex̄nm
ez̄1

) =
(

1
m − 1

n

)
Sxz1

, E(ex̄nez̄1
) =

(
1
n − 1

N

)
Sxz1

E(ez̄1
ez̄2

) =
(

1
n − 1

N

)
S2

z .
We derive the bias of tnu and tnm in lemma 4.3 and lemma 4.5 respectively.

4.2. Lemma

The bias of tnu denoted by B(tnu) is given by

B(tnu) = Ȳ
(

1
nu
− 1

N

)[
Q
(
S2

z2
(K +θ)−1 −ρyz2

SySz2

)]
,

where Q =
[

1−θ
K+θ

]
, K is a non-negative constant and 0 ≤ θ ≤ 1.

Expressing (1) in terms of e′s, we have

tnu = Ȳ (1+ eȳnu
)

[
KZ̄2 +θ(1+ ez̄2

)Z̄2

Z̄2(1+ ez̄2
)+(K +θ −1)Z̄2

]
,

tnu = Ȳ (1+ eȳnu
)

[
1+

θ
a

ez̄2

][
1+

ez̄2

a

]−1

, (4)

where a = K +θ .
Taking expectation of (4) on both sides, we get

E(tnu − Ȳ ) = Ȳ E

(
eȳnu

+
θ
a

ez̄2
− ez̄2

a
+

e2
z̄2

a2
− θ

a2
e2

z̄2
+

θ
a

eȳnu
ez̄2

− eȳnu
ez̄2

a

)

B(tnu) = Ȳ
(

1
nu
− 1

N

)[
Q
(
S2

z2
(K +θ)−1 −ρyz2

SySz2

)]
,

where Q =
[

1−θ
K+θ

]
, K is a non-negative constant and 0 ≤ θ ≤ 1.

4.3. Remark

The bias of estimator B(tnu) is the same as the bias of B(tRS) proposed by Ray and

Sahai (1980).



4.4. Lemma

The bias of tnm denoted by B(tnm) is given by

B(tnm) = Ȳ
[(

1

nm
− 1

n

)[
Q
(
S2

x(K +θ)−1 −ρyxSySx
)]

+

(
1

n
− 1

N

)[
Q
(
S2

z1
(K +θ)−1 −ρyz1

SySz1

)]]
,

where Q =
[

1−θ
K+θ

]
, K is a non-negative constant and 0 ≤ θ ≤ 1.

Expressing (2) in terms of e′s, we have

tnm = Ȳ (1+ eȳnm
)

[
K(1+ ex̄n)X̄ +θ(1+ ex̄nm

)X̄
(1+ ex̄nm

)X̄ +(K +θ −1)(1+ ex̄n)X̄

]

[
KZ̄1 +θ(1+ ez̄1

)Z̄1

(1+ ez̄1
)Z̄1 +(K +θ −1)Z̄1

]
,

= Ȳ (1+ eȳnm
)

[
a+Kex̄nm

+θex̄nm

a+(a−1)ex̄n + ex̄nm

][
a+θez̄1

a+ ez̄1

]
,

= Ȳ (1+ eȳnm
)

[
1+ K

a ex̄nm
+ θ

a ex̄nm

1+ a−1
a ex̄n +

ex̄nm
a

][
1+ θ

a ez̄1

1+
ez̄1

a

]
,

tnm = Ȳ (1+ eȳnm
)

[
1+

K
a

ex̄n +
θ
a

ex̄nm

]

[
1+

a−1

a
ex̄n +

ex̄nm

a

]−1

[1+
θ
a

ez̄1
][1+

ez̄1

a
]−1. (5)

Expanding (5) the right hand side and neglecting higher terms, we get

tnm = Ȳ
[(

1+
K
a

ex̄n +
θ
a

ex̄nm
− ex̄nm

a
− a−1

a
ex̄n



+
e2

x̄nm

a2
+2

a−1

a2
ex̄nm

ex̄n +(
a−1

a
)2 − K

a2
ex̄nm

ex̄n −K
a−1

a2
e2

x̄n

− θ
a2

e2
x̄nm

− a−1

a2
θex̄nex̄nm

)(
1+

θ
a

ez̄1
− ez̄1

a
+

e2
z̄1

a2
− θ

a2
e2

z̄1

)]
. (6)

Taking expectation of (6) on both sides, we get

E(tnm − Ȳ ) = Ȳ
[(

K
a

ex̄n +
θ
a

ex̄nm
− ex̄nm

a
− a−1

a
ex̄n

+
e2

x̄nm

a2
+2

a−1

a2
ex̄nm

ex̄n +(
a−1

a
)2 − K

a2
ex̄nm

ex̄n −K
a−1

a2
e2

x̄n

− θ
a2

e2
x̄nm

− a−1

a2
θex̄nex̄nm

)(
1+

θ
a

ez̄1
− ez̄1

a
+

e2
z̄1

a2
− θ

a2
ez̄2

1

)]

B(tnm) = Ȳ
[(

1

nm
− 1

n

)[
Q
(
S2

x(K +θ)−1 −ρyxSySx
)]

+

(
1

n
− 1

N

)[
Q
(
S2

z1
(K +θ)−1 −ρyz1

SySz1

)]]
,

where Q =
[

1−θ
K+θ

]
. K is a non-negative constant and 0 ≤ θ ≤ 1.

Using lemma 4.3 and 4.5, the bias of the estimator tRKθ can be derived as follows.

4.5. Theorem

The bias of the estimator tRKθ to the first order approximation is,

B(tRKθ ) = ψB(tnu)+(1−ψ)B(tnm), (7)

where

B(tnu) = Ȳ
(

1

nu
− 1

N

)[
Q
(
S2

z2
(K +θ)−1 −ρyzSySz2

)]
,



and

B(tnm) = Ȳ
[(

1

nm
− 1

n

)[
Q
(
S2

x(K +θ)−1 −ρyxSySx
)]

+

(
1

n
− 1

N

)[
Q
(
S2

z2
(K +θ)−1 −ρyzSySz2

)]]
,

where

Q =
[

1−θ
K+θ

]
, K is a non-negative constant and 0 ≤ θ ≤ 1.

The bias of the estimator tRKθ is given by

B(tRKθ ) = E(tRKθ − Ȳ )

B(tRKθ ) = ψE(tnu − Ȳ )+(1−ψ)E(tnm − Ȳ ), (8)

Using lemmas 4.3 and 4.5 into equation (8), we have the expression for the bias of

the estimator tRKθ as shown in (7).

We derive the MSE of tnu and tnm in lemma 4.7 and lemma 4.9 respectively.

4.6. Lemma

The mean square error of tnu denoted by M(tnu) is given by

MSE(tnu) = Ȳ 2

(
1

nu
− 1

N

)[
S2

y +Q2S2
z2
−2QρyzSySz2

]
,

where Q
[
= 1−θ

K+θ
]
, 0 ≤ θ ≤ 1.

Expressing (2) in terms of e′s, we have

tnu = Ȳ (1+ eȳnu
)

[
KZ̄2 +θ(1+ ez̄2

)Z̄2

Z̄2(1+ ez̄2
)+(K +θ −1)Z̄2

]
, (9)

where Q =
[

1−θ
K+θ

]
.

tnu = Ȳ (1+ eȳnu
) [KZ̄2 +θ(1+ ez̄2

)Z̄2]

[(1+ ez̄2
)Z̄2 +(K +θ −1)Z̄2]

−1
,



= Ȳ (1+ eȳnu
) [a+θez̄2

] [a+ ez̄2
]−1 ,

= Ȳ (1+ eȳnu
) [a+θez̄2

] [a− ez̄2
] . (10)

Squaring (10) and expectation, the right hand side and neglecting the terms with

power two or greater, we get

E(tnu − Ȳ )2 = Ȳ 2E
[

eȳnu
+

θ
a

ez̄2
− ez̄2

a

]2

.

MSE(tnu) = Ȳ 2

(
1

nu
− 1

N

)[
S2

y +Q2S2
z2
−2Qρyz2

SySz2

]
, (11)

where Q =
[

1−θ
K+θ

]
, 0 ≤ θ ≤ 1.

4.7. Remark

The mean square of estimator MSE(tnu) is the same as the mean square of MSE(tRS)

proposed by Ray and Sahai (1980).

4.8. Lemma

The mean square error of tnm denoted by MSE(tnm) is given by

MSE(tnm) = Ȳ 2

[(
1

nm
− 1

N

)
S2

y +

(
1

nm
− 1

n

)[
Q2Sx

2 −2QρyxSySx)
]
+(

1

n
− 1

N

)[
Q2S2

z1
−2Qρyz1

SySz1

]]
,

where Q =
[

1−θ
K+θ

]
, 0 ≤ θ ≤ 1.

Expressing (2) in terms of e’s, we have

tnm = Ȳ (1+ eȳnm
)

[
K(1+ ex̄n)X̄ +θ(1+ ex̄nm

)X̄
(1+ ex̄nm

)X̄ +(K +θ −1)(1+ ex̄n)X̄

]

[
KZ̄ +θ(1+ ez̄1

)Z̄
(1+ ez̄1n)Z̄ +(K +θ −1)Z̄

]
,



= Ȳ (1+ eȳnm
)

[
a+Kex̄n +θe ¯xnm

a+(a−1)ex̄n + e ¯xnm

][
a+θez̄1

a+ ez̄1

]
,

= Ȳ (1+ eȳnm
)

[
1+ K

a ex̄nm
+ θ

a ex̄nm

1+ a−1
a ex̄n +

ex̄nm
a

][
1+ θ

a ez̄1

1+
ez̄1

a

]
,

where

Q = 1−θ
K+θ .

tnm = Ȳ (1+ eȳnm
)

[
1+

K
a

ex̄n +
θ
a

ex̄nm

]

[
1− a−1

a
ex̄n −

ex̄nm

a

]
[1+

θ
a

ez̄1
][1− ez̄1

a
]. (12)

Expanding (12) to the right hand side and neglecting the higher terms, we get

tnm = Ȳ
[
1+ eȳnm

+Qex̄n −Qex̄nm
−Qeȳn

]
. (13)

Squaring and taking expectation (13), we get MSE of the estimator tnm up to first

order of approximation as,

E(tnm − Ȳ )2 = Ȳ E
[
1+ eȳnm

+Qex̄n −Qex̄nm
−Qez̄n

]2
, (14)

= Ȳ 2E[e2
ȳnm

+Q2ex̄n +Q2e2
x̄nm

+Q2e2
z̄1
+2Qeȳnm

ex̄n

−2Qeȳnm
ex̄nm

−2Qeȳnm
ez̄n −2Q2ex̄neȳnm

−2Q2ex̄nez̄1
+2Q2ex̄nm

ez̄1
]

MSE(tnm) = Ȳ 2

[(
1

nm
− 1

N

)
S2

y +

(
1

nm
− 1

n

)[
Q2Sx

2 −2QρyxSySx)
]

+

(
1

n
− 1

N

)[
Q2S2

z1
−2QρyzSySz1

]]
, (15)

where Q =
[

1−θ
K+θ

]
, 0 ≤ θ ≤ 1.

Using lemma 4.7 and lemma 4.9, we derive the MSE of tRKθ .



4.9. Theorem

The estimators of tnu and tnm are based on two independent samples of sizes nu

and nm respectively. The mean square error of the estimator tRKθ to the first order

approximation is,

MSE(tRKθ ) = ψ2MSE(tnu)+(1−ψ)2MSE(tnm), (16)

where

MSE(tnu) = Ȳ 2

(
1

nu
− 1

N

)[
S2

y +Q2S2
z2
−2Qρyz2

SySz2

]
,

and

MSE(tnm) = Ȳ 2

[(
1

nm
− 1

N

)
S2

y +

(
1

nm
− 1

n

)[
Q2Sx

2 −2QρyxSySx)
]
+

(
1

n
− 1

N

)[
Q2S2

z1
−2Qρyz1

SySz1

]]
,

where Q =
[

1−θ
K+θ

]
, 0 ≤ θ ≤ 1.

The mean square error of the estimator tRKθ is given by

MSE(tRKθ ) = E(tRKθ − Ȳ )2

MSE(tRKθ ) = E[ψ(tnu − Ȳ )+(1−ψ)(tnm − Ȳ )]2, (17)

MSE(tRKθ ) = ψ2MSE(tnu)+(1−ψ)2MSE(tnm),

using lemma 4.7 and lemma 4.9 into the equation (17), we have the expression for

the MSE of the estimator tRKθ as shown in (16).

5. Optimal Choice for Proposed Family of Ratio-Type Estimators tRKθ

The mean square error of the tRKθ is a function of Q and also the function of K and

θ . We minimize for K and θ . We have
∂ (MSE(tRKθ ))

∂K = 0 and
∂ (MSE(tRKθ ))

∂θ = 0. This

gives Q = −U
V , assuming ∂Q

∂K �= 0 and ∂Q
∂θ �= 0. The differential equations are given



below:

∂ (MSE(tKRθ ))

∂K
= 0 ⇒ ψ2 ∂MSE(tnu)

∂K
+(1−ψ)2 ∂M(tnm)

∂K
= 0, (18)

∂ (MSE(tKRθ ))

∂θ
= 0 ⇒ ψ2 ∂MSE(tnu)

∂θ
+(1−ψ)2 ∂MSE(tnm)

∂θ
= 0, (19)

where ψ is an unknown constant. From (18) and (19), differentiate with respect to

K and θ , we get

K̂ =
1−θ(1+ρyz1

Sy
Sz1

)

ρyz1

Sy
Sz1

, θ f ixed.

θ̂ =
1−Kρyz1

Sy
Sz1

1+ρyz1

Sy
Sz1

, K f ixed.

6. Minimum Mean Square Error of tRKθ

To get the optimum value of ψ , we partially differentiate the expression (16)

with respect to ψ , and put it equal to zero and we get

ψopt =
MSE (tnm)

MSE (tnu)+MSE (tnm) .
(20)

Substituting the values of MSE (tnu)opt and MSE (tnm)opt from (11) and (15) in (20),

we get

ψopt =
(p1 +μ p2)

(p1 +μ2 p2)

=
μ[(p1 +μ p2)]

(p1 +μ2 p2).

Substitution of ψopt from (20) into (16) gives optimum value of MSE of tRKθ as:

MSE(tRKθ )opt =
MSE (tnm)MSE (tnu)

MSE (tnu)+MSE (tnm)
. (21)



Substituting the values of MSE(tnu) and MSE(tnm) from (11) and (15) in (21), we

get

MSE(tRKθ )opt =
1

n

[
p2

1 +μ p1 p2

p1 +μ2 p2

]
, (22)

where p1 = q1 + q3, p2 = q2 − q3, q1 = Sy
2, q2 = Q2 − 2QρyxSySx, q3 = Q2 −

2Qρyz1
SySz1

, and μ = nu
n .

7. Replacement Policy of tRKθ

In order to estimate tRKθ with maximum precision an optimum value of μ should

be determined so as to know what fraction of the sample on the first occasion should

be replaced. We minimize, MSE(tRKθ )opt in (22) with respect to μ , the optimum

value of μ is obtained as,

μ̂ =
−p1 ±

√
p2

1 + p1 p2

p2
, (23)

where p1 = q1 + q3, p2 = q2 − q3. From (23) it is obvious that for ρyz1
�= ρyx two

values of μ̂ are possible, therefore to choose the value of μ̂ , it should be remembered

that 0 ≤ μ̂ ≤ 1. All other values of μ̂ are inadmissible. If both the real values of μ̂
are admissible, the lowest one will be the best choice as it reduces the total cost of

the survey. Substituting the value of μ̂ from (23) in (22), we get

MSE(tR̂K̂θ )opt =
1

n

[
p2

1 + μ̂ p1 p2

p1 + μ̂2 p2

]
, (24)

μ is the fraction of fresh sample drawn on the current occasion. To estimate the

population mean on each occasion 1 is a better choice of μ . However, to estimate

the change in the mean from one occasion to the other, μ should be 0.

8. Efficiency Comparisons

In this section, to compare tRKθ with respect to ȳ, sample mean of y, when a sample

units are selected at second occasion without any matched portion. Since ȳ and is

unbiased estimators of Ȳ , its variance for large N is respectively given by

Var(ȳ) =
S2

y

n
,



The variance of Cochran’s (1977) estimator is

Var( ˆ̄Y )opt = [1+
√

1−ρ2
yx]

S2
y

2n
,

the mean square error of ratio estimator is

MSE(ȳR)opt =
1

n
Ȳ 2[S2

y +S2
x −2ρyxSySx].

and the variance of Biradar and Singh’s estimator is

V ( ˆ̄Y2)opt =
S2

y2

n1
[
(1−λρ2

x2,y2
)(1−μR2

y2.y1x1x2
)

1−μ2R2
y2.y1x1x2

−λ 2ρ2
x2.y2

].

The relative efficiencies of tRKθ with respect to ȳ, ˆ̄Y and ȳR are given by

R1 =
Var ¯(y)

MSE(tRKθ )opt
×100,

R2 =
Var ˆ̄(Y )opt

MSE(tRKθ )opt
×100

R3 =
MSE(ȳR)opt

MSE(tRKθ )opt
×100,

and

R4 =
V ( ˆ̄Y2)opt

MSE(tRKθ )opt
×100

the estimator tRKθ (at optimal conditions) is also compared with respect to the esti-

mator V (ȳ), where

MSE(tRKθ )opt =
1

n

[
p2

1 + μ̂ p1 p2

p1 + μ̂2 p2

]
(25)

and

μ̂ =
−p1 ±

√
p2

1 + p1 p2

p2
, (26)

where p1 = q1 +q3, p2 = q2 −q3.



8.1. Numerical Illustration

The results obtained in previous sections are examined with the help of two natural

population sets of data.

Population Source:1 [Free access to the data from the Statistical Abstracts of the

United States (htt ps : //www.census.gov/history/www/re f erence/publications
/statisticalabstracts.html).]
The first population presents N = 41 states of the United States. Let yi (study vari-

able on the second occasion) be the corn production (in million bushels) during

2009 in the ith state of the United States, xi (study variable on the first occasion) be

the corn production ( in million bushels) during 2008 in the ith state of the United

States and zi (auxiliary variable) be the corn production (in million bushels) during

2006 in the ith state of the United States. Consider the population, N = 41 states

of sample size n = 30 states were selected using SRSWOR in the year 2008. From

each one of the sample drawn (matched samples), nm = 25 states were retained and

fresh sample (unmatched samples) nu = 5 states were selected from the remaining

N −n = 41−30 = 11 states using SRSWOR in the year 2009. The results in Table

6.9. show the comparison of the suggested estimator tRKθ with respect to the esti-

mators ȳ, ˆ̄Y and ȳR respectively for different selection of matched and unmatched

samples. For convenience, the different selections of nm and nu are considered as

different sets in the population, which are given below:

Population Source 2 [Free access data from the data.gov.in.(https://data.gov.in/)]

The population presents, N = 28 states in India. Let yi (study variable on the sec-

ond occasion) be the infant mortality rate (per 1000 live births) during 2011 in the ith

state in India, xi (study variable on the first occasion) be the infant mortality rate (per

1000 live births) during 2010 in the ith state in India and zi (auxiliary variable) be the

infant mortality rate (per 1000 live births) during 2009 in the ith state in India. Con-

sider the population, N = 28 states of sample size n = 20 states were selected using

SRSWOR in the year 2010. From each one of the sample drawn (matched samples),

nm = 17 states were retained and fresh sample (unmatched samples) nu = 3 states

were selected from remaining N − n = 28− 20 = 8 states using SRSWOR in the

year 2011. The results in Table 6.10. show the comparison of the suggested estima-

tor tRKθ with respect to the estimators ȳ, ˆ̄Y and ȳR respectively for different selection

of matched and unmatched samples. For convenience, the different selections of nm

and nu are considered as different sets in the population, which are given below:



Bias(tRK̂θ̂ ) MSE/Variance Relative Efficiencies

of tRKθ with respect to

ȳ, ˆ̄Y ȳR and ˆ̄Y2

n = 30,nm = 25,nu = 5, 1.0031 MSE(tRK̂θ̂ )=0.1197

K̂ = 1.5, θ̂ = 0.33 V (ȳ)= 35.03 R1 =292.64

V ( ˆ̄Y )opt= 33.97 R2 =283.79

MSE(ȳR)opt= 32.12 R3 =268.33

V ( ˆ̄Y2)opt = 15.02 R4 =125.73

n = 30,nm = 20,nu = 10 3.7410 MSE(tRK̂θ̂ )=0.2489

K̂ = 2.31, θ̂ = 0.17 V (ȳ)= 39.61 R1 =159.14

V ( ˆ̄Y )opt= 37.33 R2 =148.77

MSE(ȳR)opt= 36.19 R3 =145.39

V ( ˆ̄Y2)opt = 17.14 R4 =68.89

n = 30,nm = 17,nu = 13 3.9971 MSE(tRK̂θ̂ )=0.3141

K̂ = 2.84, θ̂ = 0.12 V (ȳ)= 40.73 R1 =129.67

V ( ˆ̄Y )opt= 39.88 R3 =126.96

MSE(ȳR)opt= 38.64 R3 =123.01

V ( ˆ̄Y2)opt = 19.25 R4 =61.29

Table 8.1. The suggested estimators, tRKθ is compared to ȳ, ˆ̄Y, ȳR and ˆ̄Y2 for the population
by using Real data results

9. Interpretations of Empirical Results of tRKθ

The following conclusions can be made from Table 8.1.

1. The values of R1, R2, R3 and R4are increasing while K is increasing with the

decreasing values of θ for fixed values of sample size n.

2. The values of R1, R2, R3 and μ are increasing with increasing values of ρyz.

The behaviour indicates that an agreement with the Sukhatme et.al (1984)

results, which explains that more the value of ρyx, more the fraction of fresh

sample is required at the second (current) occasion.

3. For the fixed values of ρyx, ρyz, K̂ and θ̂ there is an appreciable gain in the

performance of the proposed estimator tRKθ over ȳ and ˆ̄Y with the increasing

value of μ .



10. Conclusions

Tables 8.1. clearly indicates that the proposed estimators is more efficient than the

simple arithmetic mean estimator, Cochran (1977) estimator and ratio estimator.

The following conclusion can be drawn from Tables 8.1. For fixed K, θ , the values

of R1, R2, R3 and R4 are increasing. This phenomenon indicates that a smaller fresh

sample at current occasion is required if a highly positively correlated auxiliary

characters is available. This means the performance of the precision of the estimates

also reduces the cost of the survey.
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