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ESTIMATION OF THE CENTRAL MOMENTS OF  

A RANDOM VECTOR BASED ON THE DEFINITION OF 

THE POWER OF A VECTOR 

Katarzyna Budny1 

ABSTRACT 

The moments of a random vector based on the definition of the power of a vector, 

proposed by J. Tatar, are scalar and vector characteristics of a multivariate 

distribution. Analogously to the univariate case, we distinguish the uncorrected 

and the central moments of a random vector. Other characteristics of a 

multivariate distribution, i.e. an index of skewness and kurtosis, have been 

introduced by using the central moments of a random vector. For the application 

of the mentioned quantities for the analysis of multivariate empirical data, it 

appears desirable to construct their respective estimators.  

This paper presents the consistent estimators of the central moments of a random 

vector, for which essential characteristics have been found, such as a mean vector 

and a mean squared error. In these formulas, the relevant orders of approximation 

have been taken into account.  

Key words: central moment of a random vector, estimator, multivariate 

distribution, power of a vector. 

1. Introduction 

One of the fundamental characteristics of the univariate random variable is the 

ordinary (raw, uncorrected) and the central moments (e.g. Shao, 2003, 

Jakubowski and Sztencel, 2004). Even order moments are measures of dispersion 

of the distribution of the random variable, the moments of odd order characterize 

their location. In the analysis of multivariate distributions the product moments 

(about zero), the central mixed moments or collections thereof, e.g. mean vector, 

covariance matrix, are considered as classical generalizations of the above 

quantities (e.g. Johnson, Kotz and Kemp, 1992; Fujikoshi, Ulyanov and Shimizu, 

2010). The uncorrected and central moments of a random vector are also 

considered as the expectations of relevant Kronecker products of a random vector 

(e.g. Holmquist, 1988). Thus, from this definition, they are size vector quantities 
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(collections of product moments (about zero) and central mixed moments of the 

corresponding orders). 

On the basis of the definition of the power of a vector, Tatar (1996, 1999) 

suggested multivariate generalizations of the uncorrected and the central moments 

of a random variable, which are different from the above. Let us recall the basic 

definitions. 

Definition 1.1. [Tatar 1996, 1999] Let  ,,, RH  be a Hilbert space with the inner 

product , . For any vector Hv  and for any number  0 NNr   
 the r -

th power of the vector v  is defined as follows: 

Rvo 1      and 
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kL  be a space of random vectors whose absolute value raised to the r-

th power has finite integral, that is:
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In the literature, the measure   


 dPE
rr

XX  is sometimes called the 

moment of the order r  of a random vector X  and designated as  rE X
 
(see 

Bilodeau and Brenner, 1999). Tatar (2002), however, by analogy with the 

univariate case, defines this expression as the absolute moment of order r  of a 

random vector X . In this study, we will also regard these values as the absolute 

moments of a random vector. 

Therefore, let us assume that for the vector 
kR:X  an absolute moment 

of order r  exists. 

Definition 1.2. [Tatar 1996, 1999] The ordinary (raw, uncorrected) moment of 

order r  of the random vector 
kR:X  is defined as 

 r
kr E X, .                                                    1.1  

Let us note that the uncorrected moment of the first order is the mean vector, 

that is: 

XEmk ,1 . 

The definition and basic properties of the central moments of a random vector 

based on the definition of the power of a vector will be presented in the next 

section. 
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2. The central moments of a random vector 

Definition 2.1. [Tatar 1996, 1999] The central moment of order r  of a random 

vector 
kR:X , for which the absolute moment of order r  exists, is given as  

  r

kr EE XX , .                                                   1.2  

Remark 2.1. According to the concept of the power of the vector, if r  is an even 

number, then Rkrkr ,, , , which means they are scalar quantities. However, 

 if r  is an odd number, then k
krkr R,, , , so we obtain vectors.  

Ordinary and central moments of a random vector based on the definition of 

the power of the vector are defined at an arbitrarily fixed inner product in the 

 kR  space. In the following part of the paper we will consider the Hilbert space 

kR  where we define the Euclidean inner product 



k

i

iiwvwv
1

,  where 

),,...,( 1 kvvv   k
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Remark 2.2. Let us observe that from the basic properties of the power of a 

vector and multinomial theorem we get the following formulas: 
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  is a multinomial coefficient. 

By this inner product, the second order central moment is called the total 

variance of the random vector (see Bilodeau and Brenner, 1999) or the variance of 

the random vector (see Tatar 1996, 1999). According to these terms, X
2D  will 

denote the central moment of the second order of a random vector. 

Let us recall that the variance of a random vector was used to present 

multivariate generalization of Chebyshev's inequality (see Osiewalski and Tatar, 

1999). 

By using the central moments, characteristics of a multivariate distribution 

such as index of skewness and kurtosis have also been introduced. 



4                                                                              K. Budny: Estimation of the central … 

 

 

Definition 2.2. [Tatar, 2000] The index of skewness of a random vector 
kR:X  , for which there is an absolute moment of third order, is called 
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Definition 2.3. [Budny and Tatar, 2009, Budny, 2009] Kurtosis of a random 

vector 
kR:X , for which an absolute moment of fourth order exists, is a quantity 

defined as 
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Assuming further that the random vector 
kR:N  has a multivariate 

normal distribution, we obtain the form 
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 N .                                 4.2  

 

The formula  4.2  was determined (Budny, 2012) using Isserlis theorem 

(Isserlis, 1919), setting the algorithm for determination of the central mixed 

moments of the normally distributed random vector. 

For the application of the central moments for the analysis of multivariate, 

empirical data, it appears desirable to construct their respective estimators. The 

next section will present their form along with a discussion of basic properties. 

3. The multivariate sample central moments 

3.1. Construction and basic properties 

At the beginning let us recall the form of multivariate sample raw moments 

with their basic properties useful in the next part of this paper (Budny, 2014). 

Suppose that 
kR:1

X ,…,
kn R:X  is a random sample from 

multivariate distribution, i.e. a set of n  independent, identically distributed (i.i.d.) 

random vectors, with a finite thr absolute moment. 
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Definition 3.1.1. The multivariate sample raw moment of order r  (the estimator 

of the thr  raw moment of a random vector) is called: 

 

n
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n

i

ri

kr


 1

,

X

.                                                  1.1.3
 

Multivariate sample raw moments are consistent and unbiased estimators, and 

their central moments satisfy the condition 

    ss

krkr nOaE 
2

,,  ,                                        2.1.3  

for all Nsr , . 

Let us therefore proceed to formulate the forms of estimators of the central 

moments of a random vector. 

Definition 3.1.2. The multivariate sample central moment of order r  (the 

estimator of the thr  central moment of a random vector) is defined as 
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Remark 3.1.1. According to the definition of the power of a vector: if r is an 

even number, then krm ,  is a univariate random variable, and if r  is an odd 

number, then a random vector is obtained as krm ,  . 

Remark 3.2.1. In the following discussion, while examining the properties of 

multivariate sample central moments, we will assume, without loss of generality, 

that the mean vector is a zero vector, i.e. 0,1  mk . 

We will begin the analysis of the properties of estimators of the central 

moments of a random vector by determining the form of their expected values. To 

do this, we will first introduce some forms of multivariate sample central 

moments, useful in further considerations.  

Theorem 3.1.1. Multivariate sample central moments can be represented as 

follows: 
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 estimator of central moments of odd order: 

 ksm ,12
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 5.1.3  

Proof: It is easily seen that from the definition of the power of a vector, we get 

above formulas. 

The computation leading to explicit forms of the expected value of 

multivariate sample central moments is tedious and does not bring any relevant 

elements for further consideration. So, the next theorem will present their form 

with appropriate order of approximation (for univariate case - see Cramer 1958, p. 

336). Prior to the formulation of this result, let us consider the following lemma. 

Lemma 3.1.1. Assume that  0\Nr . Let us consider a multivariate distribution 

(in population) for which the absolute moment of order r2  exists. Then, for every 

 1,...1  rt  we get 
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where the operator ""  is defined (Tatar, 2008) as follows:  
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Proof: see Appendix. 

Property  6.1.3  will play a key role in the study of property of unbiasedness 

of multivariate sample central moments. It will be used in the proof of the 

theorem, which presents forms of their expected values with the relevant order of 

approximation. 

Theorem 3.1.2. Under the assumptions of Lemma 3.1.1. 

   1
,,

 nOmE krkr  .                                            7.1.3  
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Proof: First, let us consider multivariate sample central moments of even orders. 

Towards  4.1.3  we get: 
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By the assumption 0,1  mk , an easy computation shows that 
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Note that for each  ni ,...,1  and Nt   we obtain the following property  
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Indeed, due to Minkowski's inequality in the  tL1 , Schwarz's inequality in 

 2
1L  and property  2.1.3 , applied to the coordinates of univariate sample mean 

(Cramer, 1958, p. 332), we get: 
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Let us also note that by Jensen's inequality and Hölder's inequality, after 

taking into account properties  2.1.3  and  8.1.3  we have: 
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Clearly, this leads to the conclusion that 
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Finally, the use of the properties in the following order: unbiasedness of 

multivariate sample raw moments,  6.1.3 ,  9.1.3  and  2.1.3 , to the equation 

 8.1.3  implies  
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In order to determine the form of the expected value of the multivariate 

sample central moments of odd orders, let us note that 
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At the beginning we shall show that for each  ni ,...,1 ,  sp ,...,2  and 
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Indeed, Jensen's and Hölder's inequalities, the properties  2.1.3  and  11.1.3  

imply 
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Note that the reasoning analogous to the one carried out above leads to 

another property expressed as 
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The proof of the theorem will be completed by determining the order of 

approximation of a quantity  XksmE ,2
, that takes the form  
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which, together with  10.1.3  leads to the property  

   1
,2

 nOmE ks X                                          21.1.3  

Finally, after the consecutive application of unbiasedness of multivariate 

sample raw moments and the forms  6.1.3 ,  19.1.3 ,  16.1.3  and  21.1.3  to the 

equation  14.3  we get 

   1
,12,12


  nOmE ksks  ,                                          22.1.3  

which completes the proof of the theorem. 

Corollary 3.1.1 Multivariate sample central moments are asymptotically unbiased 

estimators of the central moments of a random vector. 

3.2. Consistency of the multivariate sample central moments 

Our considerations in this section will focus on finding orders of 

approximations of mean squared errors of multivariate sample central moments, 

i.e. quantities of the form   2

,, krkrmE  . 
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At the beginning we will take into account even-order sample central 

moments. Let us note that the expression   2

,2,2 ksksmE   from the formula 

 4.1.3  can be presented in the following form:  
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Property  3.2.3  leads to condition 
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 6.2.3  

Taking into account the form  1.2.3  and the properties  2.2.3 ,  4.2.3  and 

 6.2.3  we get 
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Moving on to determine the order of approximation of the expected values of 

these components, we note that 

    12

,12,12


  nOaE ksks  .                                      8.2.3  
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Indeed, Jensen's inequality implies  

     2

,12,12

2

,12,12 ksksksks aEaE    , 

so the property  2.1.3  leads to  8.2.3 . 

Carrying out further analysis we, in turn, apply Jensen's, Schwarz's and 

Hölder's inequalities and, thanks to them, we obtain  

     












2
122

,12,12 ,,
psi

lp
il

ksksaE XXXX  

      







 




242
42

,12,12 ,
psi

lp
il

ksksaE XXXX  

       
 

 
 

d

ps
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lp

d
id

l
d

dd

ksks EEEaE

12

22
2

2
1

2

,12,12 ,



 


























 XXXX , 

where  lpsd  22 . 

This estimation, after taking into account the properties  2.1.3 ,  .11.1.3  and 

the fact that 0,1  km   leads to  
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122

,12,12 ,,
psi

lp
il
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12

,2
3

2

2

1

1  , 

which is equivalent to the property 
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1
122

,12,12 ,,

lp
psi

lp
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ksks nOaE XXXX , 

for each  ni ,...,1 ,  sp ,...,1 ,  pl ,...,0 . 

A slight change in the proof above shows that 
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ksks nOaE XXXX , 

for each  ni ,...,1 ,  sp ,...,1 ,  pl ,...,0  and 
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1
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for each  nii ,...,1, 21  ,  spp ,...,1, 21  ,  11 ,...,0 pl  ,  22 ,...,0 pl  . 
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The above properties leads, thus, to  

    12

,12,12


  nOmE ksks  .                                9.2.3  
 

The next theorem will include the summary of the above consideration.  

Theorem 3.2.1. Assume that for any natural numbers 2r , a quantity 

  2

,, krkrmE   exists. Then, the mean squared error of the multivariate sample 

central moment of order r  is of the form 

    12

,,,MSE  nOmEm krkrkr  . 

From this theorem and multivariate generalization of Chebyshev's inequality 

(Osiewalski and Tatar, 1999) we obtain a very important corollary.  

Corollary 3.2.1 The multivariate sample central moments are consistent 

estimators of the central moments of a random vector. 

4. Numerical illustration 

Multivariate sample central moments, and also their respective functions, can 

be useful tools for the analysis of multivariate empirical data, for instance for the 

multivariate financial items, which have been considered in Budny and Tatar 

(2014).  

Budny, Szklarska and Tatar (2014) have presented an analysis of socio-

demographic conditions of Poland taking into account the multivariate (four-

dimensional) data from the Central Statistical Office of Poland from 2012, and 

administrative division of the country into counties (powiats). The coordinates of 

the data are: the total marriage rate, the total divorce rate, the total fertility rate 

and the total mortality rate.  

For this data, the second, third and fourth multivariate sample central 

moments in selected regions of Poland are as follows. 

 North region (72 counties of the voivodeships: West Pomeranian, 

Kuyavian.  

Pomernian, Pomeranian, Warmian-Masurian, without city counties): 

4744,1,2 km ,      





















36230

01710

12270

00220

,3

.-

.

.-

.-

m k ,      5.3820,4 km . 

 East region (74 counties of the voivodeships: Podlaskie, Lublin, 

Subcarpathian. 
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Lesser Poland, without city counties): 

2.8700,2 km ,      





















34623

05310

29430

32860

,3

.

.-

.

.-

m k ,      27.7891,4 km . 

 West region (97 counties of the voivodeships: Greater Poland, Lubusz, 

Lower.  

Silesian, Silesian, Opole, without city counties): 

1.8058,2 km ,      





















1.1132

0.0448-

0.1702

0.2345-

,3 km ,      9.1024,4 km . 

 Central region (71 counties of the voivodeships: Masovian, 

Świętokrzyskie, Łódź, without city counties): 

2.3571,2 km ,      





















1.4188-

0.0188

0.1529

0.3748-

,3 km ,      14.0671,4 km . 

 City counties (65 counties):  

2.9811,2 km ,      





















0.69907

0.00003

0.0828-

0.0125-

,3 km ,      22.4378,4 km . 

Dispersion of the distribution of the vector of the socio-demographic situation 
of Poland is measured by the central moments of the even orders. Note that the 
highest dispersion of test vector was observed in city counties while the smallest 
in the counties of the northern region (see Budny, Szklarska, Tatar, 2014). Central 
moments of odd order of multivariate distribution are parameters of location. 
They can also be considered as a measure of the asymmetry (see Tatar, 2000) and 
as a vector measures indicate the direction of asymmetry. The above 
considerations can be supplemented (see Budny, Szklarska, Tatar, 2014) using the 
functions of the central moments of a random vector, e.g. index of skewness 
(Tatar 2000) and kurtosis (Budny, Tatar 2009, Budny 2009). Let us mention that 
the index of skewness shows the direction of asymmetry while its square informs 
also about the size of the asymmetry.  

The problem of estimation of this characteristics of multivariate distribution is 

left for further study. 
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5. Conclusions  

In this paper we have proposed consistent and asymptotically unbiased 

estimators of the central moments of a random vector based on the power of a 

vector. Essential characteristics such as mean vectors and mean squared errors 

with the relevant orders of approximation have been established for them. The 

central moments of even order are parameters of dispersion of the distribution of a 

random vector. The moments of odd order characterize its location. These 

quantities can be useful tools for the analysis of multivariate data. 
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APPENDIX 

Proof of lemma 3.11.: The property  6.1.3  will be proved by considering the 

cases of even and odd powers of random vectors. Reasoning (in each case) will be 

based on Schwarz's inequality considered in the relevant Hilbert's space  2

kL  or 

 2

1L . 

At the beginning, let sr 2  and 12  pt  where  sp ,...1 . It is, therefore, 

necessary to prove the property 

  




























2

1

12
,122 ,

p
p

kps nOaE X ,                                      1  

For the proof we will apply Schwarz's inequality in Hilbert's space  2
kL  

with the inner product  Y,X:Y,X 2 E
kL
  that leads to  

       242
,122

12
,122

2 , 



  p

kps
p

kps EaEaE XX . 

Let us note that       12

,,
22

, OaEaDaE krkrkr  . Thus, taking into account 

the property  2.1.3  we get 

     1212
,122

2 , 
  pp

kps nOaE X , 

which is equivalent to the condition  1 . 

Now, we consider the even numbers sr 2  and pt 2  where  1,...1  sp  

In view of this, the property  

   pp
kps nOaE 

 2
,22 X .                                            2  

requires the proof. 

Note that Schwarz's inequality in the space  2
1L  of the property  .2.1.3  

justifies the estimations 

     
p

p
kps

p
kps

n

C
EaEaE

2

42
,22

2
,22

2   XX , 

which obviously leads to  2 . 
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In turn, for odd natural numbers 12  sr  and 12  pt  where 

 1,...1  sp  it is necessary to prove the property 

 




























2

1

12
,22

p
p

kps nOaE X .                                           3  

For this proof, let us note that Jensen's inequality, Schwarz's inequality and 

the condition  2.1.3  imply a sequence of inequalities, respectively. 


