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IMPROVED ESTIMATION OF THE SCALE 

PARAMETER FOR LOG-LOGISTIC DISTRIBUTION 

USING BALANCED RANKED SET SAMPLING 

Housila P. Singh1, Vishal Mehta2 

ABSTRACT 

In this article we have suggested some improved estimators of a scale parameter 

of log-logistic distribution (LLD) under a situation where the units in a sample 

can be ordered by judgement method without any error. We have also suggested 

some linear shrinkage estimator of a scale parameter of LLD. Efficiency 

comparisons are also made in this work.  

Key words: minimum mean squared error estimator, shrinkage estimator, log-

logistic distribution, best linear unbiased estimator, median ranked set sample.  

AMS Subject Classification: 62G30; 62H12. 

1. Introduction  

Ranked set sampling (RSS) is a method of sampling that can be advantageous 

when quantification of all sampling units is costly but a small set of units can be 

easily ranked, according to the character under investigation, without actual 

quantification. The technique was first introduced by McIntyre (1952) for 

estimating means pasture and forage yields. The theory and application of ranked 

set sampling given by Chen et al. (2004).  

A random variable X  is said to have a log-logistic distribution with the scale 

parameter   and the shape parameter   if its cumulative distribution function 

(CDF) and probability density function (PDF) are respectively given as (see, 

Lesitha and Thomas (2012)) 
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Also, the kth moment of (2) exists only when k  and is given by 

  











k

1,
k

1BXE kk
,                                         (3) 

where B denotes beta function.    

The applications of log-logistic distribution are well known in a survival 

analysis of data sets such as survival times of cancer patients in which the hazard 

rate increases initially and decreases later (for example, see Bennett (1983)). In 

economic studies of distributions of wealth or income, it is known as Fisk 

distribution (see Fisk (1961)) and is considered as an equivalent alternative to a 

lognormal distribution. For further details on the importance and applications of a 

log-logistic distribution one may refer to Shoukri et al. (1988), Geskus (2001), 

Robson and Reed (1999) and Ahmad et al. (1988). For current reference in this 

context the reader is referred to Singh and Mehta (2013; 2014, a, b, 2015, 2016 a, 

b, c), Mehta and Singh (2014) and Mehta (2015). 

 

If 
n:nn:2n:1 X,...,X,X  are the order statistics of a random sample of size n

drawn from (1) then 

n,...,2,1r,
X

Y n:r
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
,                                    (4) 

are distributed as order statistics of the same sample size drawn from a 

 ,1LLD with PDF given by 
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For a detailed description of various properties of order statistics arising from 

a  ,1LLD  one may refer to Ragab and Green (1984). Balakrishnan and Malik 

(1987) have given some recurrence relations on the single and product moments 

of order statistics arising from a  ,1LLD . Suppose 

  n,...,2,1r,YE n:rn:r  ,                                         (6) 

  nsr1,Y,YCov n:sn:rn:s,r                                           (7) 

and 

  nr1,YVar n:rn:r,r  .                                           (8) 
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By using (4) in (6)-(8) we have 

  nr1,XE n:rn:r                                             (9) 

  nsr1,X,XCov n:s,r

2

n:sn:r                                 (10) 

  nr1,XVar n:r,r

2

n:r   .                                      (11) 

Lesitha and Thomas (2012) have computed the values of 
n:r and 

ns,r1,n:s,r  independently for 8)1(2n   and for 0.5)5.0(5.2  using 

Mathcad software so as to use those values for the computation of BLUE of   

based on order statistics. If  'n:nn:2n:1 X,...,X,XX then the mean vector  XE

and dispersion matrix  XD of X are 

  XE  

and 

  GD 2X , 

where  'n:nn:2n:1 ,...,,   and   n:sr,σG . 

 

Thus, by Gauss-Markov theorem Lesitha and Thomas (2012) gives the BLUE 

̂  based on order statistics of a random sample of size n  as: 
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where   11'

1 GV
  . 

Lesitha and Thomas (2012) further estimate   based on the mean of 

unbiased estimators of  defined from each individual observations in the 

balanced ranked set sampling as: 
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Lesitha and Thomas (2012) also estimate   based on BLUE in the balanced 

ranked set sampling as: 
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where  'n:nn:2n:1 ,...,,   ,  n:n,nn:2,2n:1,11 ,...,,σdiagG  and 
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When n is small the estimators *  and ** may not be acceptable for the 

expected level of precision. In such situations Lesitha and Thomas (2012) makes 

N cycles of RSS. For details see Chen et al. (2004). Suppose 
*

i  and 
**

i denote 

the estimators of   corresponding to * and **  respectively, based on the ith 

cycle. Then, estimators of   based on N  cycles are given by: 
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Median ranked set sampling (MRSS) was first introduced by Muttlak (1997) 

to estimate the mean of a normal distribution. In general, MRSS is applied as a 

modification of RSS when one is interested in estimating a parameter associated 

with the central tendency of a distribution. The procedures of MRSS are given as: 

Select n independent samples each with n  units as in the case of RSS. Then rank 

the units in each sample either by judgement method or by using some 

inexpensive means without having actual measurement on the unit. Lesitha and 

Thomas (2012) used MRSS method to estimate   as: 
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with 

 

 
4

2

2
1

1

1

2

'

1

2

2

:

:,

4

2
;

2

1
;

1

V

evenisnand
n

mwhenG

oddisnand
n

mwhen
ntVar nm

nmm







































,   

(15) 
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2. Improved estimation of the scale parameter α   

Let 4,3,2,1, iti
be an unbiased estimator of the parameter  , then we 

define a class of estimators for   as 

4,3,2,1,  itAT iii
, 

where 4,3,2,1,' isAi  
are suitably chosen constants such that mean 

squared error of the estimators 4,3,2,1,' isTi
 is minimum.   

The biases and mean squared errors (MSEs) of 4,3,2,1, iTi
 are respectively 

given by 

   1 ii ATB   , 

and  

        1211 22222  iiiiiii AVAAtVarATMSE  . 

The   4,3,2,1, iTMSE i  is minimized for 

  4,3,2,1,1
1




iVA ii . 

Thus, the resulting minimum MSE estimator of   is given by 

  4,3,2,1,1
1

0 


iVtT iii . 
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The biases and MSEs of 4,3,2,1,0 iT i
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We have from (12) - (15) and (17) that 

    
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It follows from (18) that the proposed MMSE estimators 4,3,2,1,'0 isT i
 are 

better than the corresponding usual unbiased estimators 4,3,2,1,' isti
. 

3. Improved estimation of the scale parameter α with prior 

information  

Let 4,3,2,1, iti
 be an unbiased estimator of the parameter  , then we 

define a class of estimators of   
using the prior point estimate 

0  of    as 

 4,3,2,1,01  itBT iii  ,                                        (19) 

where 4,3,2,1,' isBi
 are suitably chosen constants such that mean squared 

error of the estimators  4,3,2,1,'1 isT i
 are minimum.   

The biases and mean squared errors (MSEs) of 4,3,2,1,1 iT i
 are 

respectively given by 

   ii BTB  1
 , 

and  
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The   4,3,2,1,1 iTMSE i
 is minimized for 

   4,3,2,1,1
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The value of 4,3,2,1, iBi
 at (20) depends on the unknown parameter  , so 

an estimate of 4,3,2,1, iBi
 based on sample data is given by 
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Putting 4,3,2,1,* iBi  in (19), we get a shrinkage estimator of 

4,3,2,1,' isti
 as 
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The biases and mean squared errors (MSEs) of the estimators 

4,3,2,1,'*

1 isT i  are respectively given by 
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Comparisons of the proposed shrinkage estimators 4,3,2,1,'*

1 isT i  with that 

of corresponding usual unbiased estimators 4,3,2,1,' isti
 are given in the 

following Theorem 1. 

Theorem 1: The proposed shrinkage estimators 4,3,2,1,'*

1 isT i  are better than 

the corresponding usual unbiased estimators 4,3,2,1,' isti
 if 
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Proof: From (12) - (15) and (23), we have that 
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Since    021  iV  and   /0  cannot be negative therefore (24) 

reduces to 

              iV 210   , 

or 
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Hence the theorem.   

 

Further, we have compared the proposed shrinkage estimators 

4,3,2,1,'*

1 isT i  with that of corresponding MMSE estimators 4,3,2,1,'0 isT i

and the results are presented in Theorem 2.  

Theorem 2: The proposed shrinkage estimators 4,3,2,1,'*

1 isT i  are better than 

the corresponding MMSE estimators 4,3,2,1,'0 isT i
 if 
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 i.e. if    
 
 
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
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i

i

V

V
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 i.e. if    12  , 
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 i.e. if   20   , 

 or         20 0  , 
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2

0 . 

Hence the theorem.  

4. Relative efficiencies  

We have computed the relative efficiencies of various suggested estimators to 

usual estimators by using the formulae: 

  11011 1, VtTREe  ; 

  22022 1, VtTREe  ; 

  33033 1, VtTREe  ; 

  44044 1, VtTREe  ; 

 
 
 14

41
01045

V1V

V1V
T,TREe




 ; 

 
 
 24

42
02046

V1V

V1V
T,TREe




 ; 

 
 
 34

43
03047

V1V

V1V
T,TREe




 ; 

   
 1
1

,
1

2

2

1
1

*

118





V

V
tTREe


; 

         
 1V

V1
T,TREe

1

2

1
01

*

119






; 

   
 1
1

,
2

2

2

2
2

*

1210





V

V
tTREe


; 

   
 1V

V1
T,TREe

2

2

2
02

*

1211






; 

   
 1
1

,
3

2

2

3

3

*

1312





V

V
tTREe


; 

   
 1V

V1
T,TREe

3

2

3
03

*

1313






; 

   
 1
1

,
4

2

2

4
4

*

1414





V

V
tTREe


; 

and 

   
 1V

V1
T,TREe

4

2

4
04

*

1415






. 

 

 The values of 7,...,2,1i,ei    are shown in Table 1 for 8)1(2n    and 

5)5.0(5.2 . 

 The values of 15,...,9,8i,ei   are shown in Tables 2 to 5 for ;8)1(2n 

5)5.0(5.2  and different values of 



 0 . 
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Table 1. The values of 7,...,2,1,' isei
. 

n  β  
1e  

2e  
3e  4e  5e  

6e  7e  

2 2.5 1.3371 1.4025 1.2799 1.2799 1.1530 1.3124 1.0000 

 3.0 1.2158 1.1978 1.1674 1.1674 1.2381 1.1516 1.0000 

 3.5 1.1514 1.1254 1.1135 1.1135 1.2901 1.0932 1.0000 

 4.0 1.1126 1.0885 1.0827 1.0827 1.3242 1.0643 1.0000 

 4.5 1.0872 1.0665 1.0633 1.0633 1.3476 1.0474 1.0000 

 5.0 1.0697 1.0521 1.0501 1.0501 1.3644 1.0368 1.0000 

3 2.5 1.2011 1.1904 1.1180 1.0832 2.1798 2.0828 1.3740 

 3.0 1.1308 1.0970 1.0752 1.0543 2.2446 1.7159 1.3572 

 3.5 1.0937 1.0626 1.0526 1.0385 2.3093 1.5893 1.3475 

 4.0 1.0706 1.0447 1.0391 1.0288 2.3527 1.5272 1.3422 

 4.5 1.0552 1.0338 1.0303 1.0224 2.3815 1.4910 1.3382 

 5.0 1.0443 1.0266 1.0242 1.0180 2.4033 1.4675 1.3356 

4 2.5 1.1392 1.1118 1.0648 1.0477 2.6846 2.2089 1.3376 

 3.0 1.0939 1.0582 1.0424 1.0317 2.7929 1.7903 1.3246 

 3.5 1.0678 1.0380 1.0301 1.0227 2.8598 1.6495 1.3176 

 4.0 1.0514 1.0273 1.0226 1.0171 2.9034 1.5803 1.3126 

 4.5 1.0413 1.0208 1.0176 1.0134 3.0062 1.5408 1.3102 

 5.0 1.0324 1.0164 1.0141 1.0107 2.9570 1.5158 1.3085 

5 2.5 1.1078 1.0740 1.0409 1.0278 3.5999 2.5482 1.4547 

 3.0 1.0733 1.0391 1.0272 1.0187 3.7126 2.0476 1.4397 

 3.5 1.0531 1.0257 1.0195 1.0135 3.7819 1.8805 1.4317 

 4.0 1.0403 1.0186 1.0147 1.0101 3.8704 1.8188 1.4421 

 4.5 1.0316 1.0141 1.0115 1.0080 3.8489 1.7503 1.4223 

 5.0 1.0256 1.0112 1.0092 1.0065 3.8785 1.7199 1.4196 

6 2.5 1.0880 1.0528 1.0282 1.0196 4.2168 2.6150 1.4288 

 3.0 1.0600 1.0282 1.0189 1.0133 4.3313 2.0988 1.4170 

 3.5 1.0437 1.0187 1.0136 1.0096 4.3995 1.9265 1.4101 

 4.0 1.0332 1.0135 1.0103 1.0073 4.4473 1.8430 1.4065 

 4.5 1.0261 1.0103 1.0080 1.0057 4.4756 1.7943 1.4024 

 5.0 1.0211 1.0082 1.0065 1.0046 4.5010 1.7638 1.4009 

7 2.5 1.0735 1.0397 1.0206 1.0138 5.0286 2.8038 1.4800 

 3.0 1.0509 1.0214 1.0139 1.0094 5.1991 2.2498 1.4690 

 3.5 1.0372 1.0147 1.0106 1.0068 5.2926 2.1298 1.5419 

 4.0 1.0282 1.0103 1.0076 1.0052 5.3054 1.9708 1.4542 

 4.5 1.0222 1.0079 1.0060 1.0041 5.3447 1.9217 1.4556 

 5.0 1.0179 1.0062 1.0048 1.0033 5.3582 1.8854 1.4494 

8 2.5 1.0643 1.0310 1.0157 1.0107 5.7315 2.8525 1.4632 

 3.0 1.0444 1.0168 1.0106 1.0073 5.8758 2.2888 1.4526 

 3.5 1.0329 1.0112 1.0077 1.0053 6.0530 2.1067 1.4484 

 4.0 1.0245 1.0081 1.0058 1.0040 5.9651 2.0116 1.4441 

 4.5 1.0190 1.0062 1.0046 1.0032 5.9067 1.9593 1.4396 

 5.0 1.0156 1.0049 1.0037 1.0025 6.0905 1.9479 1.4568 

 

 



STATISTICS IN TRANSITION new series, March 2017 

 

63 

Table 2. The values of 
ie  for 98 andi   

n  β  

 
1

t,RE8e
*
11T  

Range of 

λ in 

which 
*
11T  

is efficient 

 to 
1

t  

1.00λ   

 

1.25λ   

and 

0.75λ   

1.50λ   

and 

0.50λ   

1.75λ   

and 

0.25λ   

2.00λ   2.25λ   

2 2.5 1.7878 1.7509 1.6489 1.5028 1.3371 1.1710 (0,2.53) 
 3.0 1.4782 1.4586 1.4026 1.3182 1.2158 1.1054 (0,2.49) 
 3.5 1.3257 1.3133 1.2773 1.2217 1.1514 1.0721 (0,2.47) 
 4.0 1.2378 1.2292 1.2039 1.1641 1.1126 1.0527 (0,2.45) 
 4.5 1.1820 1.1756 1.1568 1.1268 1.0872 1.0403 (0,2.44) 
 5.0 1.1442 1.1392 1.1246 1.1010 1.0697 1.0319 (0,2.44) 
3 2.5 1.4426 1.4247 1.3735 1.2960 1.2011 1.0977 (0,2.48) 
 3.0 1.2786 1.2683 1.2382 1.1910 1.1308 1.0617 (0,2.46) 
 3.5 1.1961 1.1892 1.1688 1.1363 1.0937 1.0434 (0,2.45) 
 4.0 1.1461 1.1411 1.1263 1.1024 1.0706 1.0323 (0,2.44) 
 4.5 1.1133 1.1095 1.0982 1.0798 1.0552 1.0250 (0,2.43) 
 5.0 1.0906 1.0876 1.0787 1.0641 1.0443 1.0200 (0,2.43) 
4 2.5 1.2977 1.2865 1.2541 1.2035 1.1392 1.0659 (0,2.46) 
 3.0 1.1966 1.1896 1.1692 1.1366 1.0939 1.0435 (0,2.45) 
 3.5 1.1402 1.1354 1.1212 1.0983 1.0678 1.0310 (0,2.44) 
 4.0 1.1053 1.1018 1.0913 1.0743 1.0514 1.0232 (0,2.43) 
 4.5 1.0843 1.0815 1.0732 1.0597 1.0413 1.0186 (0,2.43) 
 5.0 1.0659 1.0638 1.0574 1.0468 1.0324 1.0145 (0,2.43) 
5 2.5 1.2272 1.2190 1.1950 1.1570 1.1078 1.0503 (0,2.45) 
 3.0 1.1519 1.1466 1.1312 1.1063 1.0733 1.0336 (0,2.44) 
 3.5 1.1091 1.1054 1.0945 1.0769 1.0531 1.0241 (0,2.43) 
 4.0 1.0823 1.0796 1.0715 1.0583 1.0403 1.0181 (0,2.43) 
 4.5 1.0643 1.0622 1.0559 1.0457 1.0316 1.0141 (0,2.43) 
 5.0 1.0518 1.0501 1.0451 1.0369 1.0256 1.0114 (0,2.42) 
6 2.5 1.1837 1.1772 1.1582 1.1279 1.0880 1.0406 (0,2.44) 
 3.0 1.1237 1.1195 1.1071 1.0870 1.0600 1.0273 (0,2.44) 
 3.5 1.0892 1.0863 1.0775 1.0631 1.0437 1.0197 (0,2.43) 
 4.0 1.0675 1.0653 1.0587 1.0479 1.0332 1.0149 (0,2.43) 
 4.5 1.0529 1.0512 1.0461 1.0377 1.0261 1.0116 (0,2.42) 
 5.0 1.0426 1.0413 1.0372 1.0304 1.0211 1.0094 (0,2.42) 
7 2.5 1.1524 1.1471 1.1316 1.1066 1.0735 1.0337 (0,2.44) 
 3.0 1.1043 1.1008 1.0905 1.0736 1.0509 1.0230 (0,2.43) 
 3.5 1.0759 1.0734 1.0659 1.0538 1.0372 1.0167 (0,2.43) 
 4.0 1.0572 1.0554 1.0498 1.0407 1.0282 1.0126 (0,2.42) 
 4.5 1.0449 1.0434 1.0391 1.0320 1.0222 1.0099 (0,2.42) 
 5.0 1.0362 1.0350 1.0316 1.0258 1.0179 1.0079 (0,2.42) 
8 2.5 1.1327 1.1282 1.1148 1.0932 1.0643 1.0293 (0,2.44) 
 3.0 1.0907 1.0877 1.0787 1.0641 1.0444 1.0200 (0,2.43) 
 3.5 1.0669 1.0647 1.0582 1.0475 1.0329 1.0147 (0,2.43) 
 4.0 1.0497 1.0481 1.0433 1.0354 1.0245 1.0109 (0,2.42) 
 4.5 1.0384 1.0372 1.0335 1.0274 1.0190 1.0084 (0,2.42) 
 5.0 1.0315 1.0305 1.0275 1.0225 1.0156 1.0069 (0,2.42) 
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Table 2. The values of 
ie  for 98 andi    (cont.) 

n  β  

 
01

T
*
11T ,RE9e   

Range of λ in 

which 
*
11T  is 

efficient  

to 
01

T  
1.00λ   

1.25λ   

and 

0.75λ   

1.50λ   

and 

0.50λ   

1.75λ   

and 

0.25λ   

2.00λ   

and 

0.00λ   

2 2.5 1.3371 1.3095 1.2332 1.1240 1.0000 [0,2] 
 3.0 1.2158 1.1996 1.1536 1.0842 1.0000 [0,2] 
 3.5 1.1514 1.1406 1.1094 1.0610 1.0000 [0,2] 
 4.0 1.1126 1.1048 1.0821 1.0463 1.0000 [0,2] 
 4.5 1.0872 1.0813 1.0640 1.0364 1.0000 [0,2] 
 5.0 1.0697 1.0650 1.0514 1.0293 1.0000 [0,2] 
3 2.5 1.2011 1.1862 1.1436 1.0790 1.0000 [0,2] 
 3.0 1.1308 1.1216 1.0950 1.0533 1.0000 [0,2] 
 3.5 1.0937 1.0873 1.0687 1.0389 1.0000 [0,2] 
 4.0 1.0706 1.0659 1.0520 1.0297 1.0000 [0,2] 
 4.5 1.0552 1.0515 1.0408 1.0234 1.0000 [0,2] 
 5.0 1.0443 1.0414 1.0329 1.0189 1.0000 [0,2] 
4 2.5 1.1392 1.1294 1.1009 1.0565 1.0000 [0,2] 
 3.0 1.0939 1.0875 1.0688 1.0390 1.0000 [0,2] 
 3.5 1.0678 1.0633 1.0500 1.0286 1.0000 [0,2] 
 4.0 1.0514 1.0480 1.0380 1.0218 1.0000 [0,2] 
 4.5 1.0413 1.0386 1.0307 1.0177 1.0000 [0,2] 
 5.0 1.0324 1.0304 1.0241 1.0139 1.0000 [0,2] 
5 2.5 1.1078 1.1004 1.0787 1.0445 1.0000 [0,2] 
 3.0 1.0733 1.0684 1.0540 1.0308 1.0000 [0,2] 
 3.5 1.0531 1.0496 1.0393 1.0226 1.0000 [0,2] 
 4.0 1.0403 1.0377 1.0300 1.0173 1.0000 [0,2] 
 4.5 1.0316 1.0296 1.0235 1.0136 1.0000 [0,2] 
 5.0 1.0256 1.0239 1.0191 1.0110 1.0000 [0,2] 
6 2.5 1.0880 1.0820 1.0646 1.0367 1.0000 [0,2] 
 3.0 1.0600 1.0561 1.0444 1.0254 1.0000 [0,2] 
 3.5 1.0437 1.0408 1.0324 1.0186 1.0000 [0,2] 
 4.0 1.0332 1.0311 1.0247 1.0143 1.0000 [0,2] 
 4.5 1.0261 1.0244 1.0195 1.0113 1.0000 [0,2] 
 5.0 1.0211 1.0197 1.0157 1.0091 1.0000 [0,2] 
7 2.5 1.0735 1.0686 1.0541 1.0309 1.0000 [0,2] 
 3.0 1.0509 1.0475 1.0377 1.0216 1.0000 [0,2] 
 3.5 1.0372 1.0348 1.0277 1.0160 1.0000 [0,2] 
 4.0 1.0282 1.0264 1.0210 1.0122 1.0000 [0,2] 
 4.5 1.0222 1.0208 1.0166 1.0096 1.0000 [0,2] 
 5.0 1.0179 1.0168 1.0134 1.0078 1.0000 [0,2] 
8 2.5 1.0643 1.0600 1.0474 1.0271 1.0000 [0,2] 
 3.0 1.0444 1.0415 1.0329 1.0189 1.0000 [0,2] 
 3.5 1.0329 1.0308 1.0245 1.0141 1.0000 [0,2] 
 4.0 1.0245 1.0230 1.0183 1.0106 1.0000 [0,2] 
 4.5 1.0190 1.0178 1.0142 1.0082 1.0000 [0,2] 
 5.0 1.0156 1.0146 1.0117 1.0068 1.0000 [0,2] 
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Table 3. The values of 
ie  for 1110 andi   

n  β  

 
2

t,RE10e
*
12T  

Range of 

λ in 

which 
*
12T  is 

efficient 

to 
2

t  

1.00λ   

1.25λ   

and 

0.75λ   

1.50λ   

and 

0.50λ   

1.75λ   

and 

0.25λ   

2.00λ   2.25λ   

2 2.5 1.9669 1.9186 1.7871 1.6038 1.4025 1.2075 (0,2.55) 
 3.0 1.4347 1.4171 1.3671 1.2910 1.1978 1.0960 (0,2.48) 
 3.5 1.2665 1.2566 1.2280 1.1830 1.1254 1.0590 (0,2.46) 
 4.0 1.1849 1.1784 1.1592 1.1287 1.0885 1.0409 (0,2.45) 
 4.5 1.1374 1.1327 1.1188 1.0964 1.0665 1.0304 (0,2.44) 
 5.0 1.1069 1.1033 1.0926 1.0754 1.0521 1.0236 (0,2.43) 
3 2.5 1.4171 1.4004 1.3527 1.2800 1.1904 1.0922 (0,2.48) 
 3.0 1.2034 1.1961 1.1749 1.1411 1.0970 1.0450 (0,2.45) 
 3.5 1.1292 1.1248 1.1118 1.0908 1.0626 1.0285 (0,2.44) 
 4.0 1.0914 1.0884 1.0794 1.0646 1.0447 1.0202 (0,2.43) 
 4.5 1.0688 1.0665 1.0598 1.0488 1.0338 1.0151 (0,2.43) 
 5.0 1.0539 1.0522 1.0470 1.0384 1.0266 1.0119 (0,2.42) 
4 2.5 1.2360 1.2274 1.2024 1.1629 1.1118 1.0523 (0,2.45) 
 3.0 1.1199 1.1158 1.1038 1.0843 1.0582 1.0265 (0,2.43) 
 3.5 1.0775 1.0749 1.0673 1.0549 1.0380 1.0171 (0,2.43) 
 4.0 1.0554 1.0536 1.0482 1.0394 1.0273 1.0122 (0,2.42) 
 4.5 1.0419 1.0406 1.0366 1.0299 1.0208 1.0092 (0,2.42) 
 5.0 1.0330 1.0320 1.0288 1.0236 1.0164 1.0072 (0,2.42) 
5 2.5 1.1534 1.1481 1.1325 1.1073 1.0740 1.0339 (0,2.44) 
 3.0 1.0798 1.0771 1.0693 1.0565 1.0391 1.0176 (0,2.43) 
 3.5 1.0521 1.0504 1.0454 1.0371 1.0257 1.0115 (0,2.42) 
 4.0 1.0375 1.0363 1.0327 1.0267 1.0186 1.0082 (0,2.42) 
 4.5 1.0285 1.0276 1.0249 1.0204 1.0141 1.0062 (0,2.42) 
 5.0 1.0225 1.0218 1.0196 1.0161 1.0112 1.0049 (0,2.42) 
6 2.5 1.1084 1.1047 1.0939 1.0764 1.0528 1.0239 (0,2.43 ) 
 3.0 1.0572 1.0554 1.0498 1.0407 1.0282 1.0126 (0,2.42) 
 3.5 1.0377 1.0365 1.0328 1.0269 1.0187 1.0083 (0,2.42) 
 4.0 1.0272 1.0263 1.0237 1.0194 1.0135 1.0060 (0,2.42) 
 4.5 1.0207 1.0201 1.0181 1.0148 1.0103 1.0045 (0,2.42) 
 5.0 1.0164 1.0159 1.0143 1.0117 1.0082 1.0036 (0,2.42) 
7 2.5 1.0809 1.0783 1.0703 1.0573 1.0397 1.0178 (0,2.43) 
 3.0 1.0433 1.0419 1.0377 1.0308 1.0214 1.0095 (0,2.42) 
 3.5 1.0295 1.0286 1.0258 1.0211 1.0147 1.0065 (0,2.42) 
 4.0 1.0207 1.0200 1.0181 1.0148 1.0103 1.0045 (0,2.42) 
 4.5 1.0158 1.0153 1.0138 1.0113 1.0079 1.0035 (0,2.42) 
 5.0 1.0125 1.0121 1.0109 1.0090 1.0062 1.0027 (0,2.42) 
8 2.5 1.0629 1.0609 1.0548 1.0447 1.0310 1.0138 (0,2.43) 
 3.0 1.0339 1.0328 1.0296 1.0242 1.0168 1.0074 (0,2.42) 
 3.5 1.0225 1.0218 1.0197 1.0161 1.0112 1.0049 (0,2.42) 
 4.0 1.0163 1.0158 1.0143 1.0117 1.0081 1.0036 (0,2.42) 
 4.5 1.0125 1.0121 1.0109 1.0090 1.0062 1.0027 (0,2.42) 
 5.0 1.0099 1.0096 1.0087 1.0071 1.0049 1.0022 (0,2.42) 
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Table 3. The values of 
ie  for 1110 andi    (cont.) 

n  β  

 
02

T
*
12T ,RE11e   

Range of λ in 

which 
*
12T  is 

efficient to  

02
T  

1.00λ   

1.25λ   

and 

0.75λ   

1.50λ   

and 

0.50λ   

1.75λ   

and 

0.25λ   

2.00λ   

and 

0.00λ   

2 2.5 1.4025 1.3680 1.2743 1.1436 1.0000 [0,2] 
 3.0 1.1978 1.1831 1.1413 1.0779 1.0000 [0,2] 
 3.5 1.1254 1.1166 1.0912 1.0512 1.0000 [0,2] 
 4.0 1.0885 1.0825 1.0650 1.0369 1.0000 [0,2] 
 4.5 1.0665 1.0621 1.0491 1.0280 1.0000 [0,2] 
 5.0 1.0521 1.0487 1.0386 1.0221 1.0000 [0,2] 
3 2.5 1.1904 1.1764 1.1363 1.0752 1.0000 [0,2] 
 3.0 1.0970 1.0904 1.0710 1.0402 1.0000 [0,2] 
 3.5 1.0626 1.0585 1.0463 1.0265 1.0000 [0,2] 
 4.0 1.0447 1.0418 1.0332 1.0191 1.0000 [0,2] 
 4.5 1.0338 1.0316 1.0252 1.0145 1.0000 [0,2] 
 5.0 1.0266 1.0249 1.0198 1.0115 1.0000 [0,2] 
4 2.5 1.1118 1.1040 1.0815 1.0460 1.0000 [0,2] 
 3.0 1.0582 1.0544 1.0430 1.0247 1.0000 [0,2] 
 3.5 1.0380 1.0356 1.0282 1.0163 1.0000 [0,2] 
 4.0 1.0273 1.0256 1.0203 1.0118 1.0000 [0,2] 
 4.5 1.0208 1.0194 1.0155 1.0090 1.0000 [0,2] 
 5.0 1.0164 1.0153 1.0122 1.0071 1.0000 [0,2] 
5 2.5 1.0740 1.0690 1.0545 1.0311 1.0000 [0,2] 
 3.0 1.0391 1.0366 1.0291 1.0167 1.0000 [0,2] 
 3.5 1.0257 1.0241 1.0192 1.0111 1.0000 [0,2] 
 4.0 1.0186 1.0174 1.0139 1.0080 1.0000 [0,2] 
 4.5 1.0141 1.0132 1.0106 1.0061 1.0000 [0,2] 
 5.0 1.0112 1.0105 1.0084 1.0049 1.0000 [0,2] 
6 2.5 1.0528 1.0493 1.0391 1.0224 1.0000 [0,2] 
 3.0 1.0282 1.0264 1.0210 1.0122 1.0000 [0,2] 
 3.5 1.0187 1.0175 1.0139 1.0081 1.0000 [0,2] 
 4.0 1.0135 1.0126 1.0101 1.0059 1.0000 [0,2] 
 4.5 1.0103 1.0097 1.0077 1.0045 1.0000 [0,2] 
 5.0 1.0082 1.0076 1.0061 1.0036 1.0000 [0,2] 
7 2.5 1.0397 1.0371 1.0295 1.0170 1.0000 [0,2] 
 3.0 1.0214 1.0200 1.0160 1.0093 1.0000 [0,2] 
 3.5 1.0147 1.0137 1.0110 1.0064 1.0000 [0,2] 
 4.0 1.0103 1.0097 1.0077 1.0045 1.0000 [0,2] 
 4.5 1.0079 1.0074 1.0059 1.0034 1.0000 [0,2] 
 5.0 1.0062 1.0058 1.0047 1.0027 1.0000 [0,2] 
8 2.5 1.0310 1.0290 1.0231 1.0133 1.0000 [0,2] 
 3.0 1.0168 1.0158 1.0126 1.0073 1.0000 [0,2] 
 3.5 1.0112 1.0105 1.0084 1.0049 1.0000 [0,2] 
 4.0 1.0081 1.0076 1.0061 1.0035 1.0000 [0,2] 
 4.5 1.0062 1.0058 1.0047 1.0027 1.0000 [0,2] 
 5.0 1.0049 1.0046 1.0037 1.0022 1.0000 [0,2] 
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Table 4. The values of 
ie  for 1312 andi   

n  β  

 
3

t,RE12e
*
13T  

Range of 

λ in 

which 
*
13T  is 

efficient 

to 
3t  

1.00λ   

 

1.25λ   

and 

0.75λ   

1.50λ   

and 

0.50λ   

1.75λ   

and 

0.25λ   

2.00λ   2.25λ   

2 2.5 1.6380 1.6099 1.5309 1.4152 1.2799 1.1397 (0,2.51) 
 3.0 1.3628 1.3487 1.3080 1.2455 1.1674 1.0803 (0,2.47) 
 3.5 1.2398 1.2311 1.2056 1.1654 1.1135 1.0531 (0,2.45) 
 4.0 1.1723 1.1663 1.1485 1.1202 1.0827 1.0381 (0,2.44) 
 4.5 1.1306 1.1262 1.1130 1.0917 1.0633 1.0288 (0,2.44) 
 5.0 1.1028 1.0993 1.0891 1.0725 1.0501 1.0227 (0,2.43) 
3 2.5 1.2499 1.2407 1.2141 1.1721 1.1180 1.0553 (0,2.46) 
 3.0 1.1560 1.1506 1.1347 1.1091 1.0752 1.0345 (0,2.44) 
 3.5 1.1080 1.1044 1.0936 1.0761 1.0526 1.0238 (0,2.43) 
 4.0 1.0797 1.0771 1.0692 1.0565 1.0391 1.0176 (0,2.43) 
 4.5 1.0614 1.0594 1.0535 1.0437 1.0303 1.0135 (0,2.42) 
 5.0 1.0489 1.0473 1.0426 1.0348 1.0242 1.0107 (0,2.42) 
4 2.5 1.1338 1.1293 1.1158 1.0940 1.0648 1.0296 (0,2.44) 
 3.0 1.0867 1.0838 1.0753 1.0613 1.0424 1.0191 (0,2.43) 
 3.5 1.0612 1.0592 1.0533 1.0435 1.0301 1.0135 (0,2.42) 
 4.0 1.0457 1.0442 1.0398 1.0326 1.0226 1.0100 (0,2.42) 
 4.5 1.0355 1.0344 1.0310 1.0253 1.0176 1.0078 (0,2.42) 
 5.0 1.0284 1.0275 1.0248 1.0203 1.0141 1.0062 (0,2.42) 
5 2.5 1.0835 1.0808 1.0726 1.0592 1.0409 1.0184 (0,2.43) 
 3.0 1.0551 1.0533 1.0480 1.0392 1.0272 1.0121 (0,2.42) 
 3.5 1.0393 1.0381 1.0343 1.0281 1.0195 1.0086 (0,2.42) 
 4.0 1.0295 1.0286 1.0258 1.0211 1.0147 1.0065 (0,2.42) 
 4.5 1.0231 1.0223 1.0201 1.0165 1.0115 1.0051 (0,2.42) 
 5.0 1.0185 1.0179 1.0162 1.0133 1.0092 1.0041 (0,2.42) 
6 2.5 1.0571 1.0553 1.0497 1.0406 1.0282 1.0126 (0,2.42) 
 3.0 1.0381 1.0369 1.0332 1.0272 1.0189 1.0084 (0,2.42) 
 3.5 1.0274 1.0265 1.0239 1.0196 1.0136 1.0060 (0,2.42) 
 4.0 1.0206 1.0200 1.0180 1.0148 1.0103 1.0045 (0,2.42) 
 4.5 1.0161 1.0156 1.0141 1.0116 1.0080 1.0035 (0,2.42) 
 5.0 1.0130 1.0126 1.0113 1.0093 1.0065 1.0028 (0,2.42) 
7 2.5 1.0415 1.0402 1.0362 1.0296 1.0206 1.0091 (0,2.42) 
 3.0 1.0279 1.0270 1.0244 1.0200 1.0139 1.0061 (0,2.42) 
 3.5 1.0213 1.0206 1.0186 1.0152 1.0106 1.0047 (0,2.42) 
 4.0 1.0152 1.0147 1.0133 1.0109 1.0076 1.0033 (0,2.42) 
 4.5 1.0119 1.0116 1.0104 1.0086 1.0060 1.0026 (0,2.42) 
 5.0 1.0096 1.0093 1.0084 1.0069 1.0048 1.0021 (0,2.42) 
8 2.5 1.0316 1.0306 1.0275 1.0226 1.0157 1.0069 (0,2.42) 
 3.0 1.0213 1.0207 1.0186 1.0153 1.0106 1.0047 (0,2.42) 
 3.5 1.0154 1.0149 1.0135 1.0111 1.0077 1.0034 (0,2.42) 
 4.0 1.0117 1.0113 1.0102 1.0084 1.0058 1.0026 (0,2.42) 
 4.5 1.0092 1.0089 1.0080 1.0066 1.0046 1.0020 (0,2.42) 
 5.0 1.0074 1.0072 1.0065 1.0053 1.0037 1.0016 (0,2.42) 
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Table 4. The values of 
ie  for 1312 andi    (cont.) 

n  β  

 
03

T
*
13T ,RE13e   

Range of λ in 

which 
*
13T  is 

efficient to  

03
T  

1.00λ   

 

1.25λ   

and 

0.75λ   

1.50λ   

and 

0.50λ   

1.75λ   

and 

0.25λ   

2.00λ   

and 

0.00λ   

2 2.5 1.2799 1.2578 1.1962 1.1058 1.0000 [0,2] 
 3.0 1.1674 1.1553 1.1205 1.0669 1.0000 [0,2] 
 3.5 1.1135 1.1056 1.0828 1.0467 1.0000 [0,2] 
 4.0 1.0827 1.0772 1.0608 1.0346 1.0000 [0,2] 
 4.5 1.0633 1.0591 1.0467 1.0267 1.0000 [0,2] 
 5.0 1.0501 1.0469 1.0371 1.0213 1.0000 [0,2] 
3 2.5 1.1180 1.1098 1.0859 1.0484 1.0000 [0,2] 
 3.0 1.0752 1.0702 1.0553 1.0316 1.0000 [0,2] 
 3.5 1.0526 1.0492 1.0389 1.0224 1.0000 [0,2] 
 4.0 1.0391 1.0365 1.0290 1.0167 1.0000 [0,2] 
 4.5 1.0303 1.0283 1.0225 1.0130 1.0000 [0,2] 
 5.0 1.0242 1.0226 1.0180 1.0104 1.0000 [0,2] 
4 2.5 1.0648 1.0605 1.0478 1.0274 1.0000 [0,2] 
 3.0 1.0424 1.0397 1.0315 1.0181 1.0000 [0,2] 
 3.5 1.0301 1.0282 1.0224 1.0130 1.0000 [0,2] 
 4.0 1.0226 1.0211 1.0168 1.0098 1.0000 [0,2] 
 4.5 1.0176 1.0165 1.0131 1.0076 1.0000 [0,2] 
 5.0 1.0141 1.0132 1.0105 1.0061 1.0000 [0,2] 
5 2.5 1.0409 1.0383 1.0304 1.0175 1.0000 [0,2] 
 3.0 1.0272 1.0254 1.0203 1.0117 1.0000 [0,2] 
 3.5 1.0195 1.0182 1.0145 1.0084 1.0000 [0,2] 
 4.0 1.0147 1.0137 1.0110 1.0064 1.0000 [0,2] 
 4.5 1.0115 1.0107 1.0086 1.0050 1.0000 [0,2] 
 5.0 1.0092 1.0086 1.0069 1.0040 1.0000 [0,2] 
6 2.5 1.0282 1.0264 1.0210 1.0121 1.0000 [0,2] 
 3.0 1.0189 1.0177 1.0141 1.0082 1.0000 [0,2] 
 3.5 1.0136 1.0127 1.0102 1.0059 1.0000 [0,2] 
 4.0 1.0103 1.0096 1.0077 1.0045 1.0000 [0,2] 
 4.5 1.0080 1.0075 1.0060 1.0035 1.0000 [0,2] 
 5.0 1.0065 1.0061 1.0048 1.0028 1.0000 [0,2] 
7 2.5 1.0206 1.0193 1.0153 1.0089 1.0000 [0,2] 
 3.0 1.0139 1.0130 1.0104 1.0060 1.0000 [0,2] 
 3.5 1.0106 1.0099 1.0079 1.0046 1.0000 [0,2] 
 4.0 1.0076 1.0071 1.0057 1.0033 1.0000 [0,2] 
 4.5 1.0060 1.0056 1.0045 1.0026 1.0000 [0,2] 
 5.0 1.0048 1.0045 1.0036 1.0021 1.0000 [0,2] 
8 2.5 1.0157 1.0147 1.0117 1.0068 1.0000 [0,2] 
 3.0 1.0106 1.0099 1.0079 1.0046 1.0000 [0,2] 
 3.5 1.0077 1.0072 1.0057 1.0033 1.0000 [0,2] 
 4.0 1.0058 1.0055 1.0044 1.0025 1.0000 [0,2] 
 4.5 1.0046 1.0043 1.0034 1.0020 1.0000 [0,2] 
 5.0 1.0037 1.0035 1.0028 1.0016 1.0000 [0,2] 
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Table 5. The values of 
ie  for 1514 andi   

n  β  

 
4

t,RE14e
*
14T  

Range of 

λ in 

which 
*
14T  is 

efficient 

to 
4

t  

1.00λ   

 

1.25λ   

and 

0.75λ   

1.50λ   

and 

0.50λ   

1.75λ   

and 

0.25λ   

2.00λ   2.25λ   

2 2.5 1.6380 1.6099 1.5309 1.4152 1.2799 1.1397 (0,2.51) 
 3.0 1.3628 1.3487 1.3080 1.2455 1.1674 1.0803 (0,2.47) 
 3.5 1.2398 1.2311 1.2056 1.1654 1.1135 1.0531 (0,2.45) 
 4.0 1.1723 1.1663 1.1485 1.1202 1.0827 1.0381 (0,2.44) 
 4.5 1.1306 1.1262 1.1130 1.0917 1.0633 1.0288 (0,2.44) 
 5.0 1.1028 1.0993 1.0891 1.0725 1.0501 1.0227 (0,2.43) 
3 2.5 1.1733 1.1672 1.1494 1.1209 1.0832 1.0383 (0,2.44) 
 3.0 1.1116 1.1078 1.0967 1.0786 1.0543 1.0246 (0,2.43) 
 3.5 1.0785 1.0759 1.0682 1.0557 1.0385 1.0173 (0,2.43) 
 4.0 1.0585 1.0566 1.0509 1.0416 1.0288 1.0129 (0,2.42) 
 4.5 1.0454 1.0439 1.0396 1.0324 1.0224 1.0100 (0,2.42) 
 5.0 1.0363 1.0351 1.0316 1.0259 1.0180 1.0080 (0,2.42) 
4 2.5 1.0976 1.0944 1.0847 1.0690 1.0477 1.0215 (0,2.43) 
 3.0 1.0644 1.0623 1.0561 1.0458 1.0317 1.0142 (0,2.43) 
 3.5 1.0459 1.0445 1.0400 1.0327 1.0227 1.0101 (0,2.42) 
 4.0 1.0345 1.0334 1.0301 1.0247 1.0171 1.0076 (0,2.42) 
 4.5 1.0269 1.0261 1.0235 1.0193 1.0134 1.0059 (0,2.42) 
 5.0 1.0216 1.0209 1.0189 1.0155 1.0107 1.0047 (0,2.42) 
5 2.5 1.0563 1.0545 1.0490 1.0401 1.0278 1.0124 (0,2.42) 
 3.0 1.0378 1.0366 1.0330 1.0270 1.0187 1.0083 (0,2.42) 
 3.5 1.0272 1.0264 1.0238 1.0195 1.0135 1.0060 (0,2.42) 
 4.0 1.0203 1.0197 1.0178 1.0146 1.0101 1.0045 (0,2.42) 
 4.5 1.0161 1.0156 1.0141 1.0116 1.0080 1.0035 (0,2.42) 
 5.0 1.0130 1.0126 1.0113 1.0093 1.0065 1.0028 (0,2.42) 
6 2.5 1.0395 1.0382 1.0344 1.0282 1.0196 1.0087 (0,2.42) 
 3.0 1.0267 1.0258 1.0233 1.0191 1.0133 1.0059 (0,2.42) 
 3.5 1.0193 1.0187 1.0169 1.0138 1.0096 1.0042 (0,2.42) 
 4.0 1.0146 1.0142 1.0128 1.0105 1.0073 1.0032 (0,2.42) 
 4.5 1.0115 1.0111 1.0100 1.0082 1.0057 1.0025 (0,2.42) 
 5.0 1.0092 1.0090 1.0081 1.0066 1.0046 1.0020 (0,2.42) 
7 2.5 1.0278 1.0269 1.0243 1.0199 1.0138 1.0061 (0,2.42) 
 3.0 1.0189 1.0183 1.0165 1.0135 1.0094 1.0041 (0,2.42) 
 3.5 1.0137 1.0133 1.0120 1.0098 1.0068 1.0030 (0,2.42) 
 4.0 1.0104 1.0101 1.0091 1.0075 1.0052 1.0023 (0,2.42) 
 4.5 1.0082 1.0079 1.0071 1.0059 1.0041 1.0018 (0,2.42) 
 5.0 1.0066 1.0064 1.0058 1.0047 1.0033 1.0014 (0,2.42) 
8 2.5 1.0214 1.0207 1.0187 1.0153 1.0107 1.0047 (0,2.42) 
 3.0 1.0146 1.0142 1.0128 1.0105 1.0073 1.0032 (0,2.42) 
 3.5 1.0106 1.0103 1.0093 1.0076 1.0053 1.0023 (0,2.42) 
 4.0 1.0081 1.0078 1.0071 1.0058 1.0040 1.0018 (0,2.42) 
 4.5 1.0064 1.0062 1.0056 1.0046 1.0032 1.0014 (0,2.42) 
 5.0 1.0051 1.0049 1.0044 1.0036 1.0025 1.0011 (0,2.42) 
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Table 5. The values of 
ie  for 1514 andi    (cont.) 

n  β  

 
04

T
*
14T ,RE15e   

Range of λ in 

which 
*
14T  is 

efficient to  

04
T  

1.00λ   

 

1.25λ   

and 

0.75λ   

1.50λ   

and 

0.50λ   

1.75λ   

and 

0.25λ   

2.00λ   

and 

0.00λ   

2 2.5 1.2799 1.2578 1.1962 1.1058 1.0000 [0,2] 
 3.0 1.1674 1.1553 1.1205 1.0669 1.0000 [0,2] 
 3.5 1.1135 1.1056 1.0828 1.0467 1.0000 [0,2] 
 4.0 1.0827 1.0772 1.0608 1.0346 1.0000 [0,2] 
 4.5 1.0633 1.0591 1.0467 1.0267 1.0000 [0,2] 
 5.0 1.0501 1.0469 1.0371 1.0213 1.0000 [0,2] 
3 2.5 1.0832 1.0776 1.0611 1.0348 1.0000 [0,2] 
 3.0 1.0543 1.0508 1.0402 1.0231 1.0000 [0,2] 
 3.5 1.0385 1.0360 1.0286 1.0165 1.0000 [0,2] 
 4.0 1.0288 1.0270 1.0215 1.0124 1.0000 [0,2] 
 4.5 1.0224 1.0210 1.0167 1.0097 1.0000 [0,2] 
 5.0 1.0180 1.0168 1.0134 1.0078 1.0000 [0,2] 
4 2.5 1.0477 1.0446 1.0353 1.0203 1.0000 [0,2] 
 3.0 1.0317 1.0297 1.0236 1.0136 1.0000 [0,2] 
 3.5 1.0227 1.0213 1.0169 1.0098 1.0000 [0,2] 
 4.0 1.0171 1.0160 1.0128 1.0074 1.0000 [0,2] 
 4.5 1.0134 1.0125 1.0100 1.0058 1.0000 [0,2] 
 5.0 1.0107 1.0101 1.0080 1.0047 1.0000 [0,2] 
5 2.5 1.0278 1.0260 1.0207 1.0120 1.0000 [0,2] 
 3.0 1.0187 1.0175 1.0140 1.0081 1.0000 [0,2] 
 3.5 1.0135 1.0127 1.0101 1.0059 1.0000 [0,2] 
 4.0 1.0101 1.0095 1.0076 1.0044 1.0000 [0,2] 
 4.5 1.0080 1.0075 1.0060 1.0035 1.0000 [0,2] 
 5.0 1.0065 1.0061 1.0048 1.0028 1.0000 [0,2] 
6 2.5 1.0196 1.0183 1.0146 1.0085 1.0000 [0,2] 
 3.0 1.0133 1.0124 1.0099 1.0058 1.0000 [0,2] 
 3.5 1.0096 1.0090 1.0072 1.0042 1.0000 [0,2] 
 4.0 1.0073 1.0068 1.0055 1.0032 1.0000 [0,2] 
 4.5 1.0057 1.0054 1.0043 1.0025 1.0000 [0,2] 
 5.0 1.0046 1.0043 1.0035 1.0020 1.0000 [0,2] 
7 2.5 1.0138 1.0129 1.0103 1.0060 1.0000 [0,2] 
 3.0 1.0094 1.0088 1.0070 1.0041 1.0000 [0,2] 
 3.5 1.0068 1.0064 1.0051 1.0030 1.0000 [0,2] 
 4.0 1.0052 1.0049 1.0039 1.0023 1.0000 [0,2] 
 4.5 1.0041 1.0038 1.0031 1.0018 1.0000 [0,2] 
 5.0 1.0033 1.0031 1.0025 1.0014 1.0000 [0,2] 
8 2.5 1.0107 1.0100 1.0080 1.0046 1.0000 [0,2] 
 3.0 1.0073 1.0068 1.0055 1.0032 1.0000 [0,2] 
 3.5 1.0053 1.0050 1.0040 1.0023 1.0000 [0,2] 
 4.0 1.0040 1.0038 1.0030 1.0018 1.0000 [0,2] 
 4.5 1.0032 1.0030 1.0024 1.0014 1.0000 [0,2] 
 5.0 1.0025 1.0024 1.0019 1.0011 1.0000 [0,2] 
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5. Conclusion  

It is observed from Table 1 that the values of the relative efficiencies 

721 ,...,,i,s'ei   of the proposed minimum mean squared error (MMSE) 

estimators 4,3,2,1,0 iT i
 with respect to  Lesitha and Thomas (2012) estimators 

4,3,2,1,' isti
 respectively are greater than ‘unity’. Thus, the proposed 

estimators 4,3,2,1,0 iT i
 are more efficient than the corresponding usual 

estimators 4,3,2,1,' isti
 respectively.  

It is further observed that the values of the relative efficiency 
5e  of 

04T  with 

respect to  
01T  are the largest among 721 ,...,,i,s'ei  , from which follows that 

the proposed MMSE estimator 
04T  is the best estimator among Lesitha and 

Thomas (2012) estimators 4,3,2,1,' isti
and MMSE estimators 43210 ,,,i,T i  . 

Tables 2 to 5 demonstrate that for fixed  ,n  the values of relative 

efficiencies 15,...,9,8,' isei
  increase as  increases up to 1, while it decreases 

if  goes beyond ‘unity’. When the value of   is unity (i.e. the guessed value 
0  

coincides with the true value  ) a higher gain in efficiency is seen. For fixed 

values of  ,n  the values of 15,...,9,8,' isei
 decrease as   increases. When 

  ,  are fixed the values of 15,...,9,8,' isei
 also decrease as sample size n

increases. A higher gain in efficiency is obtained when the sample size n  is 

small. In general, the estimators 4,3,2,1,*

1 iT i   are more efficient than Lesitha 

and Thomas (2012) estimators 4,3,2,1,' isti
 and MMSE estimators 

4,3,2,1,0 iT i
 respectively when  42.2,0 .  It is further observed that 

4,3,2,1,*

1 iT i  are respectively better than MMSE estimators 4,3,2,1,0 iT i
 

when  20, . 
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