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INFORMATIVE VERSUS NON-INFORMATIVE PRIOR 

DISTRIBUTIONS AND THEIR IMPACT ON THE 

ACCURACY OF BAYESIAN INFERENCE 

Wioletta Grzenda1 

ABSTRACT 

In this study the benefits arising from the use of the Bayesian approach to 

predictive modelling will be outlined and exemplified by a linear regression 

model and a logistic regression model. The impact of informative and non-

informative prior on model accuracy will be examined and compared. The data 

from the Central Statistical Office of Poland describing unemployment in 

individual districts in Poland will be used. Markov Chain Monte Carlo methods 

(MCMC) will be employed in modelling. 

Key words: Bayesian approach, regression models, a priori information, MCMC. 

1. Introduction 

For data mining techniques, classification and regression methods play an 

important role. The choice of an appropriate model is the basis of data analyses. 

The key advantage of the Bayesian approach is the ability to include additional 

information that is external to the sample in the modelling process (Lancaster, 

2004). In Bayesian analysis, statistical inference is based on posterior 

distributions, which combine prior information with sample-based information. 

The impact of prior information on estimation model parameters in the parametric 

survival models has been investigated in (Grzenda, 2013), among others. In 

modelling, taking into account prior information has also an influence on the 

predictive power of a model. 

The Bayesian model selection criteria frequently correspond to finding a 

model, which is characterised by a maximum posterior probability while 

considering model selection in the context of decision problems. The primary 

objective of this paper is to analyse the impact of prior information on the 

predictive power of a model using selected measures assessing the accuracy of 

prediction. Particular attention is paid to the selection of informative versus non-
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informative prior distribution. This is because the appropriate selection of a priori 

distribution may result in more accurate models.  

Moreover, in this paper, the impact of informative and non-informative prior 

distributions on the accuracy of both classification and regression have been 

investigated. What should be emphasised in this context is that in Bayesian 

methods (Congdon, 2006; Gelman et al., 2000) parameters of a model are treated 

as random variables. Let    denote the estimated parameter, and x  observed 

data. The initial knowledge about the parameter  is represented by prior 

distribution  p . The Bayesian inference approach is based on posterior 

distribution, which is determined in the following way (Bolstad, 2007): 

 
   

   







dpp

pp
p

|

|
|

x

x
x . 

This equation is expressed in an equivalent proportional form: 

      ppp || xx  . 

In Bayesian approach, posterior distribution includes all available knowledge 

about the unknown parameter. This is prior information and information derived 

from data. The posterior distribution can be summarized by one statistic. Most 

frequently, this is the posterior mean as it minimizes a posterior mean square 

error. It is given by the formula: 

     dpE xx ||  . 

Frequently, instead of a single parameter  , the parameter vector 

 Tk ,,1 θ is considered. The inference about any element of vector θ  is 

performed using marginal distribution, which is obtained by integrating the joint 

posterior distribution over the remaining coordinates. Given the complexity of 

calculations, the Markov chain Monte Carlo methods (MCMC) are used in 

practice (Congdon, 2006). The most famous algorithm among these methods is 

the Metropolis algorithm. In this paper the adaptive rejection Metropolis sampling 

algorithm (ARMS), which is a generalization of the Metropolis algorithm, has 

been used. 

In this study, multiple regression models and logistic regression models have 

been estimated with informative and non-informative prior distributions. Based 

on obtained posterior distributions of model parameters, the posterior means have 

been calculated. These posterior means have been used as estimates for unknown 

parameters of the model (Lancaster, 2004). Next, the selected measures for model 

accuracy have been determined and compared. Many statistics can be used to 

measure the accuracy of models (Japkowicz and Shah, 2011; Provost and 

Fawcett, 2013). In the case of classification, the key measures are the incorrect 
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classification rate and confusion matrix, while in the case of regression the mean 

square error, median square error and maximum absolute error are frequently 

used. The predictive power of competing models can be compared based on Lift 

and ROC curves. 

2. The scope of research 

In this paper data from the Central Statistical Office of Poland, describing the 

districts in Poland, has been used. The object of this study is unemployment rate 

in districts in Poland in the year 2014. The characteristics of posterior distribution 

obtained for the previous year have been suggested as prior information for 

modelling data for the next year. Therefore, two sets of data have been created to 

model the unemployment rate in two successive years: 2013 and 2014. The 

number of observations in both data sets is the same, namely 380. 

The examined feature is the unemployment rate in districts in Poland; in 

August 2013 the average was 15.92%, whereas in August of the next year the 

average was 14.32%. Moreover, for the purpose of this research, i.e. the 

investigation of classification accuracy, a binary variable unemployment has been 

created based on the continuous variable unemployment_rate. The variable 

unemployment differentiates the districts into those with low unemployment 

below 10% and the remaining ones. In 2013 there were 61 (16.05%) districts with 

the unemployment rate below 10%, whereas in 2014 there were 93 districts 

(24.47%). The unemployment may be defined and explored in many ways, but it 

is worth emphasising that a significant spatial diversity of the unemployment rate 

is observed in Poland (Gołata, 2004). The subject matter of this study is registered 

unemployment, including the unemployed registered in the district labour offices 

and seeking employment through these offices. 

The preliminary data analysis including variable significance assessment, 

model adjustment to fit the observed data, model correctness verification and 

predictive power assessment (Lancaster, 2004) reduced the initially proposed set 

of variables to the following variables: 

 salary – the amount of average monthly gross wages and salaries in 

thousand zlotys (mean=3.42, min=2.54, max=6.81); 

 number_children – the number of children aged 3-5 per one place in 

nursery school (mean=1.48, min=0.77, max=5.11); 

 flats – the number of flats ready for occupancy per 1000 residents 

(mean=2.92, min=0.16, max=15.26); 

 EU_funds  – the total value of contracts signed for financing in million 

zlotys per 1000 residents (mean=10.5, min=1.83, max=107.74); 

 farm – the average area of individual farm (farms over 1 hectare have 

been investigated): 1 - less than 10 hectares (49.21%), 2 - from 10 to 15 

hectares (30.79%), 3 - 15 hectares and over (20%); 
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 innovation – the average share of innovative companies in the total 

number of companies in %: 1 - less than 13% (35.26%), 2 - from 13 to 

15% (49.21%), 3 - 15% and over (15.53%). 

Variable characteristics for 2014 have been given in parentheses. The 

characteristics of the districts such as education, road infrastructure or population 

density, which were investigated in other studies such as (Gołata, 2004) have 

turned out to be statistically insignificant. 

3. The multiple regression models 

3.1.  Bayesian multiple regression model 

Let  Tnyy ,,1 y be the vector of observed values of the dependent 

variable X , ( kn ) be a matrix of independent variables, and 

 Tk ,,, 10 β
 
be a vector of regression coefficients. The classical linear 

regression model can be expressed as follows (Draper and Smith, 1981):  

εXβy  , 

where ε  denotes an error vector,  Iε
2,0~ N .  

In Bayesian approach (Gelman et al., 2000; Gill, 2008), the regression 

coefficients  Tk ,,, 10 β
 

are random variables. Let  βp denote their 

joint prior distribution and let us assume that the elements of vector β  are 

independent. Then, we have the following the likelihood function: 

       










XβyXβyyXβ

T
n

L
2

2
22

2

1
exp2,|,


 . 

Then, based on Bayes' theorem, posterior distribution is given by: 

       222 ,|,,|,  ppLp βyXβyXβ  . 

For model parameters, various prior distributions can be selected. The 

Bayesian approach with an informative prior allows us to incorporate additional 

information. If we do not have such information, then a non-informative prior can 

be selected. For regression coefficients β , the most frequent normal prior 

distribution is selected:  Σββ ,~ 0N . Assuming that the average equals 0 and 

there is a suitably small variation, a non-informative prior distribution is obtained: 

 I0β
610,~ N . For the parameter 

2 , inverse gamma distribution is selected 

most frequently. 
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3.2.  Key accuracy indicators of multiple regression models 

While examining the accuracy of the model it is important to determine how 

the estimated values differ from actual values present in the training data. There 

are many ways to calculate the error, i.e. the difference between the estimated and 

actual values. The most natural one (Provost and Fawcett, 2013) is determining 

the absolute error: 

ii yyAE ˆ .  

The maximum absolute error is a useful measure of prediction accuracy in the 

case of extreme values: 

ii
i

yyMAE ˆmax  .  

The sum of the squares error is a commonly used criterion for model 

accuracy. It is a natural consequence of estimating parameters of the classical 

regression model using least squares methods. This measure expresses the total 

value of the estimate error when the regression equation is used: 

  
i

ii yySSE
2

ˆ .  

The degree of regression fit as an approximate linear relationship between the 

dependent variable and the explanatory is given by the coefficient of 

determination: 

SST

SSR
R 2

, 

where   
i

i yySSR
2

ˆ denotes the sum of squares regression and 

SST=SSR+SSE the sum of squares total, respectively.  Finally, the mean squared 

error is defined as: 

1


mn

SSE
MSE , 

where n is the number of observations, and m is the number of explanatory 

variables. 

3.3.  The specification and estimation of Bayesian multiple regression  models 

In this section, the multiple regression models with informative and non-

informative prior distributions are discussed. In the first model developed for data 

from 2014, a priori distribution that has a minimal impact on posterior distribution 

has been used for all model parameters (Gelman et al., 2000). Therefore, non-

informative independent normal prior distributions with mean equalling 0 and 
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variance 106 for regression coefficients, as well as inverse gamma distribution for 

the parameter
2 , have been used. In all investigated models, the number of burn-

in samples is assumed to be 2000 and posterior samples equals 10000 in order to 

minimize the effect of initial values on posterior inference. The highest posterior 

density (HPD) intervals for all parameters in all models have been determined for 

α=0.05. The characteristics of prior distributions and posterior distributions of the 

first model parameters for data from 2014 are presented in Table 1. 

Table 1. The prior and posterior distributions 

Parameter 

Model 1 

Prior distributions Posterior distributions 

Mean 
Standard 

dev. 
Mean 

Standard 

dev. 
HPD 

Intercept 0 106 25.7691 2.5752 20.4681 30.5697 

Salary 0 106 -2.8037 0.5352 -3.8700 -1.7685 

Number_children 0 106 3.3589 0.4622 2.4530 4.2562 

EU_funds 0 106 -0.1090 0.0286 -0.1643 -0.0521 

Farm1 0 106 -3.7221 0.6291 -4.9466 -2.4826 

Farm2 0 106 -5.2634 0.9361 -7.1080 -3.4612 

Innovation1 0 106 -2.1867 0.8343 -3.8149 -0.5576 

Innovation2 0 106 -2.9499 1.0464 -5.0837 -0.9786 

Dispersion IG 21.1553 1.5442 18.2595 24.2207 

 

Based on the highest posterior density intervals (Bolstad, 2007), all variables 

are statistically significant for α=0.05. The convergence of generated Markov 

chain has been verified by several tests and graphically. The result of Geweke's 

test (Geweke, 1992) is included in Table 2. The graphs for generated chains are 

presented in the Figures 1-9. The results show no indication that the Markov 

chain has not converged for all the parameters of the investigated model at any 

significant level. Moreover, the Monte Carlo standard error (MCSE ) is presented. 
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Table 2. Geweke convergence diagnostics and MCSE 

Parameter 

Model 1 

Geweke diagnostics 

MCSE 

z p-value 

Intercept 1.6547 0.0980 0.0969 

Salary -0.8009 0.4232 0.0078 

Number_children -0.7595 0.4475 0.0052 

EU_funds -0.9591 0.3375 0.0003 

Farm1 -0.3756 0.7072 0.0176 

Farm2 -1.4492 0.1473 0.0469 

Innovation1 -1.9345 0.0531 0.0399 

Innovation2 -1.7811 0.0749 0.0568 

Dispersion 1.8983 0.0577 0.0162 

 

 

Figure 1. Trace Plots for Inercept  Figure 2. Trace Plots for Salary 

 

 

Figure 3. Trace Plots for Number_children Figure 4. Trace Plots for EU_funds 
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Figure 5. Trace Plots for Farm1  Figure 6. Trace Plots for Farm2 

 

 

 

Figure 7. Trace Plots for Innovation1  Figure 8. Trace Plots for Innovation2 

 

 

 

Figure 9. Trace Plots for Dispersion 

 

 

Next, the multiple regression models for data from 2013 have been estimated. 

In order to obtain objectively correct results, non-informative prior distributions 

have been assumed in the model for data from 2013, as in the previous model. 

The obtained characteristics of posterior samples for data from 2013 have been 

used as prior information for the regression coefficients in the model for data 

from 2014. The prior and posterior distributions for second model parameters for 

data from 2014 are given in Table 3. All variables are again statistically 

significant for α=0.05. 
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Table 3. The prior and posterior distributions 

Parameter 

Model 2 

Prior distributions Posterior distributions 

Mean 
Standard 

dev. 
Mean 

Standard 

dev. 

HPD 

Intercept 26.8856 2.3281 25.5936 1.2719 23.2001 28.2022 

Salary -3.0471 0.5471 -2.9138 0.3281 -3.5662 -2.2840 

Number_children 3.2935 0.4026 3.3003 0.2926 2.7320 3.8825 

EU_funds -0.1058 0.0283 -0.1099 0.0197 -0.1479 -0.0711 

Farm1 -5.6123 0.6687 -4.5617 0.4342 -5.4003 -3.7021 

Farm2 -4.6628 0.7196 -4.8026 0.4872 -5.7637 -3.8706 

Innovation1 -2.7432 0.7040 -1.7124 0.4616 -2.6566 -0.8517 

Innovation2 -0.3766 0.5933 -1.3999 0.4505 -2.2689 -0.5033 

Dispersion IG 21.2691 1.5815 18.2931 24.4650 

 

The result of Geweke's test (Geweke, 1992) and the Monte Carlo standard 

error are included in Table 4. The results show no indication that the Markov 

chain has not converged for all the parameters of the investigated model at the 

significance level 0.01. The values of Monte Carlo standard errors for all model 2 

parameters have been lower than in model 1. 

 

Table 4. Geweke convergence diagnostics and MCSE 

Parameter 

Model 2 

Geweke diagnostics 
MCSE 

z p-value 

Intercept 0.5981 0.5498 0.0154 

Salary 0.1330 0.8942 0.0034 

Number_children -0.6970 0.4858 0.0029 

EU_funds -0.2500 0.8026 0.0002 

Farm1 -2.1693 0.0301 0.0078 

Farm2 -0.7126 0.4761 0.0095 

Innovation1 0.4638 0.6428 0.0087 

Innovation2 0.3302 0.7412 0.0096 

Dispersion 1.6572 0.0975 0.0161 
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For both models, a deviance information criterion (DIC) has been calculated. 

For the first model DIC is 2245.575, for the second one it is 2244.557, the results 

do not differ significantly.  

The estimated posterior means have been selected as estimation for the 

unknown model parameters for both models. With these assumptions, selected 

measures of model accuracy have been calculated (Table 5). 

Table 5. Precision and accuracy of models 

Statistics 

Model 1 

Non-informative 

Priors 

Model 2 

Informative Priors 

Maximum Absolute Error MAE 21.621 20.816 

Sum of Squares Error SSE 16242.310 15487.660 

Sum of Squares Regression SSR 13205.760 12639.100 

Coefficient of Determination R2 0.448 0.449 

Mean Squared Error MSE 43.662 41.632 

 

The obtained results indicate that the model with informative prior is the one 

with greater prediction accuracy. Moreover, these results indicate that about 45% 

of unemployment_rate variable variance is explained by the estimated models. 

The estimated values of multiple regression models show that only the 

variable describing the number of children aged 3-5 per one place in nursery 

school has a positive impact on unemployment in the analysed districts. Thus, the 

greater the number of children per one place in nursery school, the higher the 

unemployment levels. The results also indicate that the lower salaries in districts, 

the higher unemployment. The unemployment rate in a given district also depends 

on the total value of EU contracts signed for financing – the smaller the value of 

grants, the higher unemployment. Moreover, the study found that the more 

fragmented farms and the lower the average share of innovative companies in the 

total number of companies, the higher the unemployment rates. 

4. The logistic regression models 

4.1. Bayesian logistic regression model 

The logistic regression models (Finney, 1972; Hosmer and Lemeshow, 2000) 

are very often used in the study of socio-economic phenomena when a binary 

dependent variable is considered. These models are also applied to estimate the 

probability of belonging to a given class in classification tasks (Japkowicz and 

Shah, 2011). 
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Let us consider a dependent variable that takes only two values. Let 1iy  

indicate the presence, and 0iy  the absence of the event, for ni ,,1 . 

Moreover, let 
ip denote the probability that 1iy ,  1 ii yPp . Let 

 Tikii xx ,,,1 1 x
 

be a vector of independent variables, and 

 k ,,, 10 β
 
be a vector of regression coefficients. Let   iip βxlogit , 

then the classical logistic regression model can be expressed as follows: 
 

 
 i

i

ip
βx

βx

exp1

exp


 . 

The likelihood function over a data set for n subjects is: 
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In this paper, Bayesian logistic regression models are investigated (Albert and 

Chib, 1993; Congdon, 2006; Gelman et al., 2000). Assuming normal prior 

distribution  2,~ jjj N 
 
for regression coefficients, and each of them being 

independent from the other, the posterior distribution is given by: 
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4.2. Key accuracy indicators of logistic regression models 

The evaluation of the accuracy of a logistic regression model can be 

performed in many ways (Hosmer and Lebeshow, 2000). If the purpose of the 

modelling is to obtain the best possible classification (Provost and Fawcett, 2013), 

the following measures are the most common: the confusion matrix or 

classification table, the accuracy rate or interchangeably misclassification error 

rate. Graphically, the classification accuracy can be verified with ROC curve and 

LIFT curve (Japkowicz and Shah, 2011). Models with good classification 

capacity should be characterized by a high accuracy and a low rate of 
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misclassification. The results for the logistic regression model can be summarized 

in a classification table: 

  Observed 

  POSITIVE NEGATIVE 

Predicted 

YES  True positive  False positive  

NO False negative True negative 

 

The basic measure for assessing the accuracy of the model in terms of 

classifying individual observations into the groups designated by the dependent 

variable is the accuracy of classification, i.e. the percentage of correct decisions: 

madedecisionsofnumberTotal

madedecisionscorrectofNumber
Accuracy   

Alternatively, the misclassification error rate is calculated: 

AccuracyMISC 1  

Based on the table such measures as sensitivity or true positive rate (TPR) and 

specificity or true negative rate (TNR) are often calculated: 

negativefalsepositivetrue

positivetrue
TPR


 , 

positivefalsenegativetrue

negativetrue
TNR


 . 

To determine the ROC curve, FPR (false positive rate) is calculated as 1-

TNR. The ROC curve is formed by presenting FPR values on the axis X, and TPR 

values on the axis Y. 

Model adjustment in terms of data and the prognostic effectiveness of 

competing models can also be compared using the LIFT curve. For a given model 

the LIFT curve compares the predictive model to no model (pick randomly): 

ModelnoofpositiveTrue

ModelofpositiveTrue
. 
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4.3. The specification and estimation of Bayesian logistic regression models 

Similarly to multiple regression models, Bayesian logistic regression models 

with non-informative and informative prior distributions were compared. The 

general assumptions regarding Bayesian estimation for logistic regression models 

were the same as in the case of multiple regression models. A model for the data 

from the year 2014 has been estimated, using non-informative normal prior 

distribution for all regression coefficients (Model 3).  In Table 6, prior 

distribution settings and posterior distribution statistics for Model 3 are shown. 

For α=0.05, all variables are statistically significant except one level of Farm 

variable. 

Table 6. The prior and posterior distributions 

Parameter 

Model 3 

Prior distributions Posterior distributions 

Mean 
Standard 

dev. 
Mean 

Standard 

dev. 
HPD 

Intercept 0 106 -6.9112 1.7665 -10.5488 -3.6320 

Salary 0 106 1.2748 0.3379 0.6280 1.9384 

Number_children 0 106 -1.9011 0.4606 -2.8083 -1.0316 

Flats 0 106 0.2332 0.0856 0.0652 0.4013 

EU_funds 0 106 0.0535 0.0196 0.0170 0.0934 

Innovation1 0 106 1.4576 0.4885 0.5292 2.4134 

Innovation2 0 106 2.3524 0.6803 1.0295 3.6720 

Farm1 0 106 0.2196 0.4166 -0.5637 1.0672 

Farm2 0 106 2.3576 0.6328 1.0999 3.5671 

 

In Table 7, the results of Geweke's test (Geweke,1992) and the values of 

Monte Carlo standard error are shown. The study failed to reject the null 

hypothesis that the chains generated for individual model parameters converge at 

any level of significance. The figures depicting generated chains confirmed the 

inference regarding the convergence of these chains. 
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Table 7. Geweke convergence diagnostics and MCSE 

Parameter 

Model 3 

Geweke diagnostics 
MCSE 

z p-value 

Intercept 1.8952 0.0581 0.0764 

Salary -1.2440 0.2135 0.0060 

Number_children -0.0992 0.9210 0.0067 

Flats -0.6526 0.5140 0.0011 

EU_funds -1.4819 0.1384 0.0002 

Innovation1 -1.8530 0.0639 0.0244 

Innovation2 -1.7862 0.0741 0.0424 

Farm1 -1.0598 0.2892 0.0142 

Farm2 -1.5770 0.1148 0.0381 

 

Next, Bayesian logistic regression model has been estimated using 

informative prior distributions. The estimation was performed in the same way as 

for multiple regression models. The model is hereinafter referred to as Model 4. 

The results of the model estimation are provided in Table 8. 

 

Table 8. The prior and posterior distributions 

Parameter 

Model 4 

Prior distributions Posterior distributions 

Mean 
Standard 

dev. 
Mean 

Standard 

dev. 
HPD 

Intercept -5.3563 1.8043 -5.4033 0.9400 -7.2131 -3.5243 

Salary 1.0686 0.3208 1.0654 0.2048 0.6661 1.4633 

Number_children -2.9115 0.6143 -2.2641 0.3597 -2.9848 -1.5786 

Flats 0.3105 0.0949 0.2551 0.0629 0.1367 0.3831 

EU_funds 0.0516 0.0198 0.0520 0.0138 0.0244 0.0782 

Innovation1 1.8938 0.5578 1.3484 0.3230 0.7076 1.9705 

Innovation2 1.2809 0.5354 1.7586 0.3657 1.0718 2.5072 

Farm1 1.0792 0.6046 0.4214 0.3319 -0.2251 1.0632 

Farm2 1.7633 0.6238 2.0049 0.3765 1.2680 2.7459 
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Table 9 provides the results of Geweke's test and MCSE values for Model 4. 

The results show that the study failed to reject the null hypothesis that the chains 

generated for individual model parameters converge at any level of significance. 

The MCSE values for all parameters of Model 4 are lower than the corresponding 

values for Model 3. 

Table 9. Geweke convergence diagnostics and MCSE 

Parameter 

Model 3 

Geweke diagnostics 
MCSE 

z p-value 

Intercept 1.8952 0.0581 0.0139 

Salary -1.2440 0.2135 0.0021 

Number_children -0.0992 0.9210 0.0049 

Flats -0.6526 0.5140 0.0007 

EU_funds -1.4819 0.1384 0.0001 

Innovation1 -1.8530 0.0639 0.0076 

Innovation2 -1.7862 0.0741 0.0111 

Farm1 -1.0598 0.2892 0.0078 

Farm2 -1.5770 0.1148 0.0107 

 

For the third model, the DIC value equals 336.117, while the value of the 

same indicator for Model 4 is lower and equals 331.776. Therefore, Model 4 is a 

better model out of the two models. 

The average values of the posterior distributions of the third and fourth model 

were used as the estimation for unknown model parameters. Next, the 

performance indicators for both models were calculated and compared. The lower 

misclassification error rate observed in the case of the model with informative 

prior distribution indicates that it is a model of higher accuracy (Table 10).  

 

Table 10. Geweke convergence diagnostics and MCSE 

Statistics 

Model 3 

Noninformative 

Priors 

Model 4 

Informative Priors 

Accuracy Rate AR 67.11 70.53 

Misclassification Error Rate MICS 32.89 29.47 

True Positive Rate   TPR 0.495 0.516 

True Negative Rate  TNR 0.728 0.766 
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ROC curves for models with informative and non-informative prior 

distributions are provided in Figure 10. This confirms that the model based on 

informative prior distribution is a model with better classification properties. 
 

 

Figure 10. The ROC curve 
 

LIFT curves for the model with non-informative and the model with 
informative prior distributions are shown in Fig. 11. The LIFT trend indicates that 

a model matches well the data (Tufféry, 2011). For every decile, the LIFT curve 
developed for the model based on informative prior distributions is located above 
the curve formed for a model created with non-informative prior distributions. 
Therefore, the model using informative prior distributions demonstrates better 
classification capabilities. 

To sum up, all the analysed accuracy indicators show that the logistic 

regression model with informative prior distributions yields better classification 
capabilities.  

Moreover, the estimation of logistic regression parameters shows that larger 
values of all the variables except for number children increase the probability of 
the unemployment rate in the district being below 10%. The higher the salaries, 
the bigger the number of flats ready for occupancy, and the larger the EU funds, 

the higher the chances of a low unemployment rate in the district. Moreover, the 
less fragmented farms and the bigger proportion of innovative enterprises, the 
higher the probability of the unemployment level in the district being below 10%. 
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Figure 11. The LIFT curve 

5. Summary 

In this paper multiple regression models and logistic regression models have 

been investigated. Both categories of models are directly related and can be used 

for prediction, but they use different target variables. The primary objective of the 

study was to analyse how and to what extent prior information can influence the 

precision of regression and classification while using real data sets. First and 

foremost, the predictive analysis has been performed. This is because the 

outcomes of explanatory modelling cannot always be applied for predictive 

modelling (Provost and Fawcett, 2013). 

To sum up, the predictive accuracy of models developed with non-informative 

and informative a priori distributions has been compared. The impact of prior 

information on the values of selected performance indicators developed for the 

models estimated with non-informative and informative a priori distributions has 

been shown. These results indicate that the accuracy of models estimated with 

informative a priori distributions is higher. Therefore, when additional out-of-

sample knowledge is available, the appropriate selection of a priori distribution 

can improve the accuracy of regression and classification models. 
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