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BAYESIAN ACCELERATED FAILURE TIME
AND ITS APPLICATION IN CHEMOTHERAPY

DRUG TREATMENT TRIAL

Kumar Prabhash1, Vijay M Patil2, Vanita Noronha3, Amit
Joshi4, Atanu Bhattacharjee5

ABSTRACT

The Cox proportional hazards model (CPH) is normally applied in clinical
trial data analysis, but it can generate severe problems with breaking the
proportion hazard assumption. An accelerated failure time (AFT) is consid-
ered as an alternative to the proportional hazard model. The model can be
used through consideration of different covariates of interest and random ef-
fects in each section. The model is simple to fit by using OpenBugs software
and is revealed to be a good fit to the Chemotherapy data.

Key words: Survival Analysis, Faliure Time, Metronomic, Cisplatin.

1. Introduction

Accelerated Failure Time (AFT) models for time to event data give the scope

to work with a parametric form of the hazard function. It is possible to ac-

cumulate random effects as frailty part, and they can be easily fitted with

statistical software. However, standard statistical methods for survival anal-

ysis are dependent on asymptotic statistical inference. Bayesian methods

can be an alternative choice for survival data analysis. This work was influ-

enced by the analysis of data for drug treatment effect, comparison among

chemotherapeutic patient on a duration of survival. This primary application

is then applied to illustrate the methodology in this paper, but the illustrated

approach is also appropriate to other types of study. The paper is organized

as follows. A discussion of accelerated failure time models is given in sec-

tion 3. The models are then illustrated in the Chemotherapy data and their

fitness evaluated in different sections. The Data methodology is explained
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in section 4. Section 5 provides the data modelling problem. Availability of

different methods and their extension are detailed in section 6. Data analy-

sis and results are provided in section 7. Section 8 gives the discussion and

concluding remarks.

2. Accelerated Failure Time (AFT) Model

An Accelerated Failure Time (AFT) is a parametric model to give the al-

ternative of the proportional hazard model. In the case of the proportional

hazard model the effect of covariates is measured in terms of multiplication by

a constant. In contrast to the proportional hazards model, the AFT model

measured the effect of covariates with positive or negative terms by some

constant discussed by David (2003). Let the S1(t) and S2(t) be the survival

function in treatment Group-I and Group-II respectively. The AFT defines

that φ > 0 and

S1(t) = S2(φ t) (1)

The interpretation as follows : the percentage of individuals in the treatment

Group-I that lives longer than time-(t) equal the percentage of individuals

in the Group-II that lives longer than φ t. Now the survival time t can be

replaced by M1t and M2t as median survival time for treatment Group-I and

Group-II. Now we have the hypothesis

S1(M1t) = S2(M2t) = 0.5 (2)

and

φM1t = M2t (3)

The AFT is an extension over limited application of the Proportional Hazard

(PH) model. The parameters of interest in regression analysis become more

robust in AFT than PH models, especially for ignored covariates (Hougaard

(1994). In this paper, we propose an AFT regression model by adding a

random effect to explore the influencing factor for survival duration among

chemotherapy-treated patients. The aim of this work is to explore the treat-

ment effect of Metronomic chemotherapy in comparison with Cisplatin chemo-

therapy. Three methods are applied to compare the treatment effective-

ness,i.e (I) AFT regression with right-censored observation (II) AFT through

consideration of Correlation Structure and (III) Bayesian extension of AFT

models. The data are analyzed using OpenBugs code. The DIC value is used

to select the best fit parametric model ( Spiegelhalte 2002).
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3. Data Motivation

Conventional MTD based chemotherapy dosing approach has lead to un-

satisfactory efficacy results with excess of toxicity in comparison with new

modality of drug administration termed as metronomic chemotherapy. It

is an alternative to the traditional chemotherapeutic treatments ( Hanahan

2000). The experimental work of metronomic chemotherapy was done by

Folkman and his colleagues (Folkman 1971 and Hanahan 1996). The efficacy

of metronomic chemotherapy on tumor with lack of toxicity of metronomic

chemotherapy in mouse model was encouraging ( Klement 2002). Multiple

clinical studies in different tumors at different body sites have confirmed the

efficacy of metronomic chemotherapy. In head and neck cancers too; metro-

nomic chemotherapy in a palliative setting has shown a promise. The stan-

dard Cisplatin based palliative chemotherapy in head and neck cancers leads

to a marginal improvement in overall survival. This improvement comes at a

cost of severe side effects; Cisplatin in high dose causes emesis, nephrotoxicity,

electrolyte disturbances and neurotoxicity. Hence an alternative treatment

strategy was warranted in this situation. The proposed study was conducted

in the department of Medical Oncology. Tata Memorial Hospital (TMH),

Mumbai between 2011 to 2013, India. Patients attending the outpatient de-

partment of Medical Oncology (TMH) were selected for the present study

subject to fulfillment of the selection criteria. Patients warranting palliative

chemotherapy in head and neck cancers were randomized into 2 arms. One

arm received 3 weekly Cisplatin for 6 cycles and another arm received oral

metronomic chemotherapy untill progression. These patients were followed

untill death. In this study, we were interested in the survival disparities be-

tween Metronomic and Cisplatin. The duration of survival was of two types:

Overall survival and Progression Free Survival. The individual-specific infor-

mation for a patient that is used in this study is age (age of the patient at

diagnosis in complete years), Overall survival time, Progression-free survival

time, Previous treatment and type of treatment (Metronomic or Cisplatin).

We have 110 patients of chemotherapeutic effect, 57 patients from Metro-

nomic and 53 patients from Cisplatin therapeutic groups. Table 1 provides

a summary of the characteristics of the chemotherapeutic patients included

in this study. In Figure 1, we plot the median duration estimates for both

Metronomic, and Cisplatin groups of overall survival and progression-free

survival.
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4. Modeling Problems

The PH and AFT models are two attractive choices for survival analysis.

The non-parametric Kaplan-Meier (K-M) curve can be used as the pointer

for selection of suitable models. Figure 1 reveals the comparison of treatment

groups in terms of survival duration. The graphical exploration of K-M curve

and cumulative survival function are given in Figure 2. As basic assumption

about proportional hazards, it is expected that the difference between the two

functions will be constant. But Figure 2 does not give the strong evidence

about the pattern of such expectation. We find that the survival rate does

alter noticeably with the duration and it emerges that the metronomic group

tends to have higher survival rates than the Cisplatin therapeutic group. So,

considering random effects in survival models should develop the estimates of

the contributing factors. Instead, the both functions are nearly same for the

initial few days of time, almost up to the 50 days and then differentiate. It

gives an idea about the possible violation of the proportional hazard model’s

assumptions. It is reasonable that the hazard functions are nontrivial but

identical at any time t=0 through gradual difference with the increment of t.

However, it breaks the assumptions about constant hazard ratio assumption

for the proportional hazard model. In the presence of non-proportionality

occurrences, the accelerated failure time model is applicable into two sam-

ple frameworks. It assumes the equality about scale change in the hazard

function over the period.

5. Methods

5.1. Regression with Right-Censored Observations

Let T be the follow-up times, C is the censoring indicator and X is the baseline

covariates. The actual survival time is defined as Z ∼Weibull(γ,λ ). The

density and hazard fnction of Z is denoted as

f0(z) = λγzγ−1exp(−λ zγ),h0 = λγzγ−1 (4)

Further, the hazard function is defined with

h(z|X) = exp(β
T X)h0(z) = exp(β

T X)λγzγ−1 (5)

It is possible to formulate the AFT from Weibull distribution through con-
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sideration of −µ/σ , as Intercept, α as a regression parameter by

γ = σ
−1,λ = exp(−µ/σ),β =−α/σ (6)

5.1.1 Maximum Likelihood Estimation of Parameters

The aim is to estimate the parameter vector (γ,λ ,β ) based on this data

through maximum likelihood. The corresponding likelihood function is de-

fined as ,

L1(γ,λ ,β ) =
n

∏
i=1

h(Ti|X)ciS(Ti|X) (7)

In order to account for X1i potentially being censored, make additional as-

sumptions and modify the likelihood function as follows: first, we explicitly

specify a distribution for X1i by specifying the density fθ where θ ∈ Rd indi-

cates the parameterization of f , for d ≥ 1. Note that they assume the same

distribution for all observations. Often it seems sensible to assume fθ = fµ,σ2

as Normal, maybe after taking the logarithm of X1i. Define for each obser-

vation the binary random variable Ri = 1{X1i ≥ ci} that indicates the status

of the observation, i.e. whether it is observed or left-censored. The proba-

bility mass function pRi of Ri is a simple Bernoulli distribution with success

probability πi = P(X1i > ci) =
∫

∞

ci
fθ (x)dx that X1i is observed.

5.2. AFT through consideration of Correlation Structure

Let Ti,Ci and Xi be the failure time, censoring time and p× 1 covariate for

the ith subject. Further, Ti is conditionally not dependent on Ci|Xi. The

semi-parametric AFT model is defined with

Ti = XT
i β + εi, i = 1, ..n (8)

The term β is a regression parameter, εi(error) is identically distributed with

random variables. It is assumed that εi are free from Xi. The ith individu-

als observed data is defined as Yi = min(Ci,Ti). The matrix representation of

Xi is very crucial for estimation of regression coefficients. There are several

features that may occur about the representation of Xi like margin-specific

regression coefficient, identical regression coefficient or mixture of margin-

specific regression and identical regression. The presence of correlations be-

tween measurements is a natural problem for estimation procedures. In this

work the εi are assumed to have I.I.D and correlation structure without spec-
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ification and correlation with ”Exchangeable” are considered to perform this

analysis. The general extension of Generalized Estimating Equation (GEE)

is applied in this work to carry the algorithm. ( Chiou 2014a, Chiou 2014b).

5.3. Bayesian Modeling

The AFT model is defined as

log(ti j) = α + xi jβ + Ωi j + σεi j (9)

The term α + xi jβ is the linear predictor of a subset of intercept and linear

dependence of regression predictor and parameters. The term Ωi j effects

model and εi is the error term. Now, we can write

f (t0/λit) =
1

σt0
f0(

log(t0)−λ0

σ
) (10)

S(t0|λ0) = S0(
log(ti j)−λi j

σ
) (11)

h(t0|λi j) =
1

σti j
h0(

log(ti j)−λi j

σ
) (12)

The terms f0(.) and s0(.) are the base failure distribution and correspond-

ing survival function. In case of logistic model, it can be defined with

Vi j = α + xi jβ + Ωi j (13)

S0(ε) =
1

1 + exp(ε)
(14)

and

S(t0/Vi j) = S0(
log(ti j)−Vi j

σ
) (15)

S(t0/Vi j) =
1

1 +[ti jexp(−Vi j)]1/σ
(16)

f (ti j|Vi j) = S0(
log(ti j)−Vi j

σ
)2exp(

log(ti j)−Vi j

σ
) (17)

It is assumed that S0(.) is following logistic distribution. Further, the

Likelihood is defined as

L2 =
n

∏
i=1

ni

∏
j=1

[
1

σti j
f0(

log(ti j)−Vi j

σ
)]ViS0(

log(ti j)−Vi j

σ
)1−ci j (18)
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Let p(a) gives the prior distribution for the parameter a and p(b) for the

parameter b. The posterior distribution can be stated as

p(b,V,a/t) ∝ L(t|b,V )p(W/a)p(b)p(a) (19)

In Model1, it is assumed that ti ∼ weibull(ρ,λi). The rate is defined as

log(λi) = β0 + µ j(i∈ j),( j = 1,2) (20)

The terms β0 , µ j and log(ρ) are assumed to have prior distributions with

N(0,σ2
β
),N(0,σ2

µ) and N(0,σ2
ρ ) respectively.

The Model2, is defined as

log(λi) = β0 + µ j(i∈ j) + vi,( j = 1,2) (21)

and vi is enclosed to take care about random effect. The prior distribution

of vi is obtained through vi ∼ N(0,σ2
v ),τv = σ2

v ,σv ∼U(0,3).

In Model3, the shape parameter is attached for individual specific ob-

servation through ti ∼Weibull(ρi,λi). The prior distribution of ρi is assumed

through log(ρi)∼N(0,σ2
ρ ) The individual specific random effect has not been

considered in this model.

The model performance is observed through pD,D̄ and DIC respectively. The

model with the smallest DIC value is considered as suitably fitted in this sce-

nario. The posterior mean estimates observed from three models are given in

Table 2 and the corresponding pD,D̄ and DIC values of the model parameters

are detailed in Table 4.

6. Data Analysis and Results

Based on the two retrospective data and related studies the predicted PFS for

Arm B and Arm A were assumed with 5 months and 2.5 months respectively.

Power of 80% was adopted and a total of 33% increment of PFS by the

metronomic arm over cisplatin was expected. A type one error of 0.05 was

taken; with a 2 tailed p value of 0.05% considered as significant. A total

sample size was calculated as 110. The intention to treat the patients was

adopted to conduct the primary endpoint analysis. The PFS between both

the arms were compared by Kaplan-Meier curve, with the unstratified log-

rank test. The multivariate Cox proportional hazard was carried on PFS and

OS. The covariates were selected through forward LR method. The hazard
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Table 1: Demographic, baseline characteristics and important prognostic de-
tails according to the arm

Parameters Cisplatin=53 Metronomic=57

Median 45(29-70) 48(31-69)
M:F ratio 44.9 49.8

Median monthly Income (USD) 30.7 (7.7-461.5) 38.4 (7.7-461.5)
Localization

Local 11 (20.7%) 13(22.8%)
Regional 22(41.5%) 21(36.8%)
National 20(37.8%) 23(40.4%)

Tobacco chewer 39(73.6%) 36 (63.2%)
Cigarette smoker 17 (32.1%) 16 (28.1%)
Median pack years 20 (1-30) 20 (2-80)
Subsite of tumour

Oral cavity 41(77.4%) 43 (75.4%)
Oropharynx 8(15.1%) 10 (17.5%)

Larynx 3(05.7%) 1 (01.8%)
Hypopharynx 1(01.8%) 3 (05.3%)

Locally advanced disease/relapse 50(94.3%) 54 (94.7%)
Metastatic disease 03(05.7%) 03 (05.3%)

ratio with 95% confidence interval was documented.

The median duration of PFS was higher in Arm B (i.e. median 101

days, 95% CI: 58.2-143.7 days) in comparison with Arm A(i.e. median 66

days, 95% CI; 55.8-76.1 days). The log-rank test shows there is a signifi-

cant difference between both the arms (p = 0.014). The factors [age(0.07)

and arm(0.015)] influencing the better PFS were obtained through Cox PH

model. The hazard ratio in Arm A was 1.58 (95% CI,1.09,2.38). The me-

dian OS was significantly higher in Arm B (i.e. median 249 days , 95% CI:

222.48-275.52 days) ) in comparison to Arm A( i.e. median OS 152 days

(134.19-247.81 days). The log-rank test also confirms a significant difference

between both the arms (p = 0.02). The only factor arm was found influencing

for better OS and it was obtained through Cox PH model. The hazard ratio

not in favor of Arm A was 1.63 (95% CI, 1.05, 2.50). The goal of this work

is to explore whether Metronomic therapy provides more survival duration

of cancer patients. Table 3 gives the estimates of λ and γ for PFS and OS

separately. The Hazard Ratio(HR) and Event Time Ratio(ETR) estimates
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Table 2: Posterior Mean estimates of parameters based on 20,000 MCMC
runs

Parameters Model1

Mean(SD) (2.5%,97.5%)

σ0 1.63(0.32) (0.78,1.98)
σ1 1.02(0.60) (0.07,1.95)
µ1 0.78 (1.01) (0.06,0.56)
µ2 1.05 (1.03) (0.06,0.86)
β0 3.32(1.04) (0.61,4.64)

Parameters Model2

Mean(SD) (2.5%,97.5%)

σ0 2.27(1.25) (0.49,4.74)
σ1 3.22(0.96) (1.55,4.92)
µ1 3.94 (0.09) (0.01,3.92)
µ2 0.53 (0.03) (0.00,0.55)
β0 0.94(0.05) 0.80,0.996)

Parameters Model3

Mean(SD) (2.5%,97.5%)

σ0 1.67(0.28) (0.97,1.98)
σ1 0.91(0.58) (0.06,1.95)
µ1 0.55 (0.91) (0.05,0.29)
µ2 0.82 (0.92) (0.05,0.56)
β0 3.56(0.91) 3.83,4.68)

Table 3: Posterior Mean estimates of parameters based on 20,000 MCMC
runs

Parameters PFS OS
Estimate(SE) Estimate(SE)

λ 0.00(0.00) 0.00(0.00)
γ 1.16(0.09) 0.00(0.11)

Arm 0.63(0.21) 0.41(0.22)
Age -0.02(0.01) -0.01(0.01)
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Table 4: Bayesian Model goodness of fit with Model 1, Model2 and Model3
Model D̄ DIC pD

1 2183 2179 2.98
2 2185 2183 20.16
3 2178 2186 3.96

Table 5: HR estimates obtained through Cox PH and AFT Model

Parameters Cox PH
PFS OS

Age 0.61(0.35, 1.11) 0.63(.335,1.105)
Arm 1.58(1.09,2.38) 1.63(1.05,2.50)

Parameters AFT Model
PFS OS

Age 0.97(0.95,0.99) 0.48(0.96,1.00)
Arm 1.88(1.22,2.83) 1.51(0.98,2.34

Table 6: Estimates obtained through regression models

Parameters PFS OS
Estimate(SE) p-value Estimate(SE) p-value

Intercept 4.23(0.47) 0.00 5.18(0.43) 0.00
Arm -0.54 (0.19) 0.00 -0.30(0.16) 0.00
Age -0.02(0.00) 0.00 0.01(0.00) 0.00

Table 7: Estimates obtained through aftgee regression modeling

Parameters Model1 Model2
Estimate(SE) p-value Estimate(SE) p-value

Intercept 3.84(0.57) 0.00 3.84(0.48) 0.00
Age 0.01(0.01) 0.14 0.01(0.01) 0.09
Sex -0.05(0.26) 0.82 -0.05(0.28) 0.83
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Figure 1: Comparison of Treatment Groups in Terms of Survival Duration
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Figure 2: Treatment effect comparison
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Figure 3: Diagnostic Plot for PFS and OS
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obtained through regression models are detailed in Table 5. The mean and

median survival duration in days is compared. In both the tables, duration of

survival in Metronomic therapy is found better in comparison with Cisplatin.

Further, the work contributes to the exploration of the influence of factors for

the different survival between the groups. The work is carried out through

the model to try to explain the effect of therapy on the time of survival.

The coefficient of Arm is found to be significantly related to both models. It

provides that patients treated with Cisplatin are likely to have more hazard

in comparison with Metronomic arm(Table 5). The estimates of the regres-

sion coefficient of Arm and Age are observed with -.54(0.19) and -.02(0.00)

respectively (Table 5). The coefficient of Sex is found to be non-significantly

related to both models. It proposes that male and female patients are likely

to have equal recurrence durations (Table 7). The data analysis is carried out

through Bayesian approach. The prior distributional assumption is points for

each parameter of interest. We desired to dominate the data information for

posterior distribution value formulation. The non-informative prior is used

to dominate the data value for posterior distribution for all parameters. The

posterior sampling-based procedures Markov Chain Monte Carlo (MCMC) is

applied for model generation. Model 1 is observed with minimum DIC value,

i.e. 2179. It can be concluded that Model1 is more appropriate in this study

data.

7. Discussion and Conclusion

This study provides that PFS is better in a metronomic arm in comparison to

cisplatin arm. The result of cisplatin is similar with recently published studies

with single-agent platinum (morton 1985,wittes 1976,clavel 1994). The CPH

models are widely explored for censored regression modeling for covariates

of interest. Accelerated failure time (AFT) models are another and rarely

explored approaches for regression modeling for censored data model. The

CPH modeling (Cox 1972) and AFT modeling (Kalbeisch 2002) are available

methods for right-censored observations for survival data analysis. The frailty

effects are widely applied into PH model through consideration of paramet-

ric model or with arbitrary distribution (Klein 1999,Horowitz 1999,Anderson

1995,Walker 1997,Sargent 1998,Pickles 1995).Recently, the parametric and

non-parametric frailty distribution is applied through AFT (Sargent 1998).

The gamma frailty has also been explored into AFT models (Pan 2001).

The PH model is widely applicable tool for survival analysis. But expo-

sure to address different types of distribution is limited. The widely applied
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distributional assumption, i.e. Weilbull and Gompertz are only suited for

monotonically increase or decrease distribution. It is very difficult to avail

different types of distributional assumption through PH model. In contrast,

AFT is open to carry different distributional assumption into the model as-

sumptions (David 2003). Recently, Bayesian approach for AFT models has

been explored. A Bayesian Semi-parametric approach is elaborated to an

AFT model (Walker 1999). It also applied for an AFT model with interval-

censored and structured correlated data (Komarek 2007). The random effect

into AFT model is applied for multivariate doubly censored data for cluster

observations (Komarek 2008). Dirichlet process prior is used for mixing dis-

tribution to deal with Semi parametric regression model for censored data

(Ghosh 2006). A fully Bayesian approach for the median regression by Polya

tree prior is proposed (Walker 1999). An application of normal mixture prior

distribution has also been illustrated for AFT model (Komarek 2007,Ko-

marek 2005). The AFT can be directly linked with expected death time

to the covariates of interest through linear regression modeling. The semi

parametric extension of AFT is more appropriate for undetermined error

distributions. The rank-based approach ( Prentice 1978) and least squares

(Buckley 1979, Jin 2007) are two methods to handle the semi parametric

extension of AFT. The specified distribution for error is called as paramet-

ric AFT model(Tsiatis 1990,Therneau 2014). Failure to specify the proper

distribution for the error may generate the bias estimation about censored

data. The Buckley-James (BJ) estimator (Buckley 1979) is the tool to work

with parametric AFT.

In this paper, we examine the chemotherapeutic data by the Bayesian

parametric AFT model. The OS and PFS were observed separately for bet-

ter information about survival duration on chemotherapeutic effect. The

OpenBUGS is utilized for data analysis through parametric AFT models.

The DIC criterion is used to know the best fitted models. The K-M curve is

plotted for non-parametric statistical inference. It is found that the Bayesian

AFT model with random effect is suitable for analysis of chemotherapy data.

The results observed in this study shows that metronomic arm is having

significant influence on duration of survival on chemotherapeutic patients.

The model can be more robust by allowing other parametric assumption.

However, it can be difficult to carry the computational work ( Anderson

1995,Sargent 1998,Folkman 1971). The DIC is applied as diagnostic criteria

to test the model. The DIC is adopted to check the model fitting suitability.

It is avaliable in OpenBugs. However, other model comparision tools can be
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used to compare the models in different computational platforms. The para-

metric AFT model is applied to chemotherapeutic data. The computational

difficulties may be greater if we shift from parametric approach (Anderson

1995,Sargent 1998,Folkman 1971). Although, the semiparametric approach

can also be applied and it has been found successful in survival data analysis.

However, semi-parametric approach can also be applied to AFT model as an

extension of this work (Anderson 1995, Sargent 1998,Komarek 2007,Komarek

2005,Christensen 1988).
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