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KERNEL ESTIMATION OF CUMULATIVE 

DISTRIBUTION FUNCTION OF A RANDOM VARIABLE 

WITH BOUNDED SUPPORT 

Aleksandra Baszczyńska1 

ABSTRACT 

In the paper methods of reducing the so-called boundary effects, which appear in 

the estimation of certain functional characteristics of a random variable with 

bounded support, are discussed. The methods of the cumulative distribution 

function estimation, in particular the kernel method, as well as the phenomenon 

of increased bias estimation in boundary region are presented. Using simulation 

methods, the properties of the modified kernel estimator of the distribution 

function are investigated and an attempt to compare the classical and the modified 

estimators is made. 

Key words: boundary effects, cumulative distribution function, kernel method, 

bounded support. 

1. Introduction 

Nonparametric methods are becoming increasingly popular in statistical 

analysis of economic problems. In most cases, this is caused by the lack of 

information, especially historical data, about the economic variable being 

analysed. Smoothing methods  concerning functions, such as density or 

cumulative distribution, play a special role in a nonparametric analysis of 

economic phenomena. Knowledge of density function or cumulative distribution 

function, or their estimates, allows one to characterize the random variable more 

completely.  

Estimation of functional characteristics of random variables can be carried out 

using kernel methods. The properties of the classical kernel methods are 

satisfactory, but when the support of the variable is bounded, kernel estimates 

may suffer from boundary effects. Therefore, the so-called boundary correction is 

needed in kernel estimation.   

                                                           
1 Department of Statistical Methods, University of Łódź. E-mail: albasz@uni.lodz.pl. 



542                                                      A. Baszczyńska: Kernel estimation of cumulative … 

 

 

Kernel estimator of cumulative distribution function has to be modified when 

the support of the variable is defined as  ,a ,  b,  or  ba, . Such a situation 

is frequently observed in an economic analysis, for example, when data are 

considered only on the positive real line (e.g.: arable land, energy use, CO2 

emission, external debts stocks, current account balance, total reserves, etc.). Near 

zero, the classical kernel distribution function estimator is poor because of its 

considerable bias. The bias comes from the behaviour of kernel estimator, which 

has no knowledge of the boundary and assigns probability on the negative real 

line. A range of boundary correction methods for kernel distribution function 

estimator is present in the literature. They are addressed  mainly to boundary 

kernels (Tenreiro, 2013; Tenreiro, 2015) and reflection method (Koláček, 

Karunamuni, 2009; Koláček, Karunamuni, 2012).  

In Section 2 we introduce the kernel method, which for the first time was 

implemented  in density estimation in the late 1950s. The properties of the kernel 

density estimator, as well as the modifications, are presented taking into account 

the boundary effects reduction of classical kernel density estimator. In Section 3 

some selected methods of distribution function estimation are presented, 

including the kernel method. Some methods of choosing the smoothing parameter 

of kernel method and properties of estimator are shown, and methods of boundary 

correction are used in the case of cumulative distribution function estimation. In 

Section 4 the results of a simulation study are given and an attempt to compare 

the considered estimators is made. In addition, the comparison of the values of 

smoothing parameters is presented. The simulations and the plots were carried out 

using MATLAB software.  

The aim of the paper is to give a detailed presentation of methods of the 

modified kernel distribution function estimation and to compare the considered 

methods. The simulation shows that when boundary correction is used in kernel 

estimation of distribution function, the estimator has better properties.     

2. Kernel method 

The kernel method originated from the idea of  Rosenblatt and Parzen 

dedicated to density estimation. The Rosenblatt-Parzen kernel density estimator is 

as follows (cf.: Härdle, 1994; Wand, Jones, 1995; Silverman 1996; Domański et 

al., 2014):  



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where: nXXX ,...,, 21 is the random sample from the population with unknown 

density function  xf ; n is the sample size; nh  is  the smoothing parameter, 

which controls the smoothness of the estimator ( 0lim 


h
n

, 


nh
n
lim ). 
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Throughout this paper the notation nhh   will be used.  uK  is the weighting 

function called the kernel function. When  uK  is symmetric and unimodal 

function and the following conditions are fulfilled:  
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the kernel function is called the second order kernel function (or classical kernel 

function).  

The most frequently used Gaussian kernel function   







 2

2

1
exp

2

1
uuK


 

is a  function belonging to this group, although its support is unbounded. It stands 

in contrast to other kernel functions fulfilling conditions (2), like functions 

presented in Table 1, for which support is bounded. The indicator function 

 1uI  is defined as follows:    11 uI for 1u  ,   01 uI  for 1u . 

Table 1. Kernel functions 

Kernel function   uK  

Uniform 
  1

2

1
uI  

Triangle     11  uIu  

Epanechnikov 
    11

4

3 2  uIu  

Quartic 
    11

16

15 22  uIu  

Triweight 
    11

32

35 32  uIu  

Cosine 
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Higher order kernel functions (the order of the kernel is the order of the first 

nonzero moment) can be used, especially in reducing the mean squared error of 

the estimator. But the higher order kernels properties may sometimes be 

unacceptable because they may result in taking negative values for the density 

function estimators. 

When the support of random variable is, for example, left-bounded (support 

of random variable is  ,0 ), the properties of the estimator (1) may differ in 

boundary region  h,0  and in inner region  ,h (cf.: Jones, 1993; Jones, Foster, 

1996; Li, Racine, 2007). The estimator (1) is not consistent in boundary region. 

As a result, the support of the kernel density estimator may differ from the 

support of the random variable and the estimator may be non-zero for negative 

values of random variable. Moreover, this situation may appear when the kernel 

function has unbounded as well as bounded support. Removing boundary effects 

can be done in various ways. The best known and most often used method is the 

reflection method, which is characterized by both simplicity and best properties.  

Assuming that the support of random variable is  ,0 , the reflection kernel 

density estimator, based on reflecting data about zero, has the following form (cf. 

Kulczycki, 2005):  
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The estimator (3) is a consistent estimator of unknown density function f . 

Moreover, it integrates to unity and for x  close to zero the bias is of order )(hO .  

The analysis of the properties of this estimator is presented in Baszczyńska 

(2015), among others. 

3. Distribution function estimation 

Let nXXX ,...,, 21  denote independent random variables with a density 

function f and a cumulative distribution function F . One can estimate the 

cumulative distribution function (CDF) by: 

    



n

i

ixn XI
n

xF
1

,

1ˆ ,                                               (4) 

where AI  is the indicator function of the set  A: 1)( xI A  for Ax , 0)( xI A  

for Ax . 

The empirical distribution function defined by (4) is not smooth, at each point 

nn xXxXxX  ,...,, 2211  it jumps by 
n

1
. 
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The smoothed version of the empirical distribution estimator is the Nadaraya 

kernel estimator of CDF: 
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where h  is a smoothing parameter such as 0lim 
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)()( . Assuming that function 0)( xK is a unimodal, symmetric 

kernel function of the second order with support  1,1  (examples of these kernels 

are presented in Table 1), the properties of function )(xW are the following: 
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Function )(xW is a cumulative distribution function because )(xK is a 

probability density function. For example, when the kernel function is 

Epanechnikov kernel, the function  )(xW has the form:   
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Assuming additionally that )(xF is twice continuously differentiable, the 

mean integrated squared error (MISE) of kernel distribution estimator (5) is as 

follows: 
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 sF  denotes the sth derivative of the cumulative distribution function.  

 

Kernel distribution estimator (5) is a consistent estimator of the distribution 

function. The expectation value, bias and variance are, respectively: 
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The method of choosing the value of the smoothing parameter in kernel 

estimation of the cumulative distribution function is of crucial interest, as it is in 

kernel estimation of  the density function. Some procedures used frequently in 

CDF estimation are presented in Table 2.  
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Table 2.  Methods of choosing the smoothing parameter in kernel estimation of 

the cumulative distribution function  

Method  Smoothing parameter 

Cross-validation, CV 
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g is an initial smoothing parameter, 

 kL 2 is the 2kth derivative of the initial kernel function L  

Iteration, IM 
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gf  denotes convolution 

 

When the random variable has bounded support (without loss of generality 

one can take  ,0 ), as in the case of the kernel density estimation, the properties 

of the kernel distribution function get poorer, in comparison with the situation 

when the support is unbounded.  

For x in boundary region  hx ,0  , let hxc / , 10  c , the expectation 

value and the variance of estimator (5) are the following: 
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It is to note that in boundary region the estimator is not consistent, but 

variance is of the same order. 

The reflection kernel distribution estimator has the form (cf. Horovà et al., 

2012): 
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The generalized reflection kernel distribution estimator, improving the bias of 

the estimator and holding onto low variance, is the following (cf. Karunamuni, 

Alberts, 2005; Karunamuni, Zhang, 2008):  
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where 1g and 2g are cubic polynomials with such coefficients that the bias of the 

estimator is of order  2hO .  

In boundary region the expectation value and variance of the estimator (11) 

are, respectively: 
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4. Results of the simulation study 

The objective of the simulation study was to compare properties of chosen 

estimators of the distribution function. The estimators were considered in a 

special situation when the support of the random variable is bounded. The 

comparison was made through the graphical representation of the results of the 

estimation. This form of presenting the estimator is of crucial importance, 

especially from the user’s point of view. The graph provides a fast, 

comprehensive and readable form of presenting the functional characteristic of the 

random variable, even for inexperienced users.  

In the simulation study the following populations with Weibull distribution 

  ,,0W with different scale and shape parameters were examined:  

 1.0,1,01W , 

 5.0,1,02W , 

 1,1,03W , 

 2,1,04W , 

  4.3,1,05W , 

 5,1,06W , 

 1,4,07W , 

 2,4,08W . 

The use of a wide range of distribution parameters ensures that varied 

populations are considered  in the study. The difference between populations can 

be seen, for example, in location, dispersion, asymmetry and kurtosis.   

The samples nXXX ,...,, 21  of size 100,...,20,10n  were drawn from each 

population and the following estimators of the distribution function were 

calculated: empirical distribution function (4), kernel distribution function (5) and 

reflection kernel distribution function (11). For kernel estimators, Gaussian, 

Epanechnikov and quartic kernels were used, with Silverman’s practical rule 

(RR), maximal smoothing principle (MSP), plug-in method (PI) and iteration 

method (IM) used for choosing the smoothing parameter.  

Some results for medium size sample 50n drawn from selected populations, 

where Epanechnikov kernel and Silverman’s rule were used in kernel estimators, 

are presented in Figures 1-8.  
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Figure 1.  Empirical distribution function, sample size 50n  from  5.0,1,02W

population 
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Figure 2.  Kernel distri bution function estimators, sample size 50n  from 

 5.0,1,02W population 
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Figure 3.  Empirical distribution function, sample size 50n  from  1,1,03W  

 population 
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Figure 4.  Kernel distribution function estimators, sample size 50n  from 

  1,1,03W population 
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Figure 5.  Empirical distribution function, sample size 50n  from  4.3,1,05W  

 population 
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Figure 6.  Kernel distribution function estimators, sample size 50n  from 

  4.3,1,05W population 
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support of the kernel distribution function estimator. For high values of shape 

parameters (for example, in populations   2,1,04W –  5,1,06W ) the influence of 

boundary effects is almost imperceptible. When samples are drawn from 

populations with high values of shape parameters, kernel functions, used in 

constructing the distribution function estimator in observations near zero, do not 

extend beyond the support of the random variable.  

 

 

Figure 7.  Empirical distribution function, sample size 50n  from  2,4,08W  

 population 
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Figure 8.  Kernel distribution function estimators, sample size 50n  from 

  2,4,08W population 
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It is worth stressing that when Gaussian kernel function was used in kernel 

estimator, the boundary effects were bigger, in comparison with other kernel 

functions. This results directly from the properties of Gaussian kernel which is the 

only one among the studied kernel functions that has unbounded support.  

The kernel distribution function estimators behave in a very similar way, even 

for very small samples (n=10, n=20). Hence, the sample size is not the essential 

factor in the occurrence of boundary effects. Taking into account the values of 

shape parameters and sample sizes, the same results were observed when for the 

same populations with bounded random variable, the kernel density function 

estimators were constructed (cf. Baszczyńska, 2015). However, it must be 

indicated that boundary effects influence the shape of estimators more strongly in 

the case of density estimator, in some cases even giving the wrong impression of 

multimodality.   

To extend the study, the dependence between kernel function and smoothing 

parameter was observed. The results are presented in Table 3.  

Table 3.  Values of smoothing parameters in kernel distribution function 

estimation for samples from Weibull distribution populations       

Population Kernel function 

Method of smoothing parameter choice 

RR MSP PI IM 

 1.0,1,01W  
Epanechnikov 0.8635 0.9224 0.2655  

quartic 1.0203 1.0899 0.3137  

 5.0,1,02W  
Epanechnikov  1.0958 1.1706 0.3878 0.1872 

quartic 1.2948 1.3832 0.4582 0.2638 

 1,1,03W  
Epanechnikov  0.5852 0.6251 0.4817 0.4974 

quartic  0.6914 0.7386 0.5692 0.5699 

 2,1,04W  
Epanechnikov  0.3792 0.4051 0.4105 0.4199 

quartic  0.4481 0.4787 0.4851 0.4885 

 4.3,1,05W  
Epanechnikov  0.2771 0.2961 0.3523 0.3267 

quartic  0.3275 0.3498 0.4162 0.3858 

 5,1,06W  
Epanechnikov  0.2265 0.2419 0.3178 0.2645 

quartic 0.2676 0.2859 0.3756 0.1986 

 1,4,07W  
Epanechnikov  3.0632 3.2722 0.7626 1.8332 

quartic 3.6195 3.8666 0.9011 2.1697 

 2,4,08W  
Epanechnikov  1.9802 2.1154 0.7755 1.6573 

quartic  2.3399 2.4996 0.9163 2.0212 
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In the procedure of kernel estimation of cumulative distribution function, two 

kernel functions: Gaussian and Epanechnikov functions, influence the kernel 

estimator in a very similar way. The application of these kernel functions is 

connected with almost the same values of smoothing parameters. It can indicate 

that Gaussian and Epanechnikov kernels have similar smoothing properties, 

although they are characterized by different support. When quartic kernel is used, 

the smoothing parameter is smaller in comparison with other kernel functions.  

For samples from populations with small shape parameter, the kernel 

distribution estimator with smaller smoothing parameters was used. The bigger 

the shape parameter, the bigger the smoothing parameter in kernel estimation. In 

general, using Silverman’s reference rule ensures smaller values of smoothing 

parameter. When the shape parameter of population distribution is small, the 

iterative method is rather poor, the smoothing parameter is unacceptably big, 

which is denoted by a grey spot in Table 3. 

5. Conclusion 

The kernel method is an intuitive, simple and useful procedure, especially in 

density and distribution function estimation. When the support of the random 

variable is bounded, this procedure needs modification. The modified kernel 

distribution function estimator ensures that the estimator is consistent, even in 

boundary region, and the support of the estimator is the same as the support of the 

random variable being analysed. In kernel method two parameters should be 

predetermined: kernel function and smoothing parameter. Quartic kernel function 

indicates higher values of smoothing parameter. Silverman’s reference rule, 

though based on the assumption that the population distribution is normal, gives 

smaller values of the smoothing parameter.  
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