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BAYESIAN INFERENCE FOR
STATE SPACE MODEL WITH PANEL DATA

Ranjita Pandey!, Anoop Chaturvedi?

ABSTRACT

The present work explores panel data set-up in a Bayesian state space model. The
conditional posterior densities of parameters are utilized to determine the
marginal posterior densities using the Gibbs sampler. An efficient one step ahead
predictive density mechanism is developed to further the state of art in prediction-
based decision making.

Key words: Bayesian analysis, Gibbs sampler, conditional posterior densities,
predictive distribution.

1. Introduction

The importance of panel data stems from its ability for addressing questions
of economic and social behaviour which cannot be easily answered by using the
usual cross section or time series data. The panel data consists of the observations
on the same cross section of units under study at different and usually successive
time periods. The longitudinal nature of panel data allows for the use of simple
techniques to solve otherwise complicated problems and permits cross section
and/or time heterogeneity. Tiwari, Yang and Zalkikar (1996) have studied the
level of water pollution by recording biochemical oxygen demand (BOD) and
dissolved oxygen (DO), at a selected point along the stream at different time
points. The present paper adapts and extends their concept to a multiple point
scenario. The situation could be visualized in a comprehensive manner, if the
BOD and DO measurements are taken at more than one selected point along the
length of the stream, at successive time periods. The resulting longitudinal data
accounts for the individual effects at the various locations as well as considers
impact of other relatively slowly changing left-out variables. Panel data-based
studies have been undertaken by Maddala (1971), Mundlak (1978), Hausman
(1978), Hausman and Taylor (1981) and Chamberlain (1982) in various fields.
Baltagi (2008) advocates the use of panel data for controlling individual
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heterogeneity and to incorporate dynamic adjustment in the model while
elaborating that the panel data structure gives more informative data, more
variability, less collinearity among the variables, more degrees of freedom and
more efficiency compared to the classical cross sectional model-based study.

2. Model with panel data and assumptions

The variables involved in the model are denoted by
yit : observed value of the dependent variable for unit i at time point t.

Xjt : p*1 vector of observations on p explanatory variable corresponding to the
i-thunitattimet, i=1,...n,t=1,..,7T)

The state space model for panel data is given by
Yie = X + & (2.1)
The dynamics of the system as it evolves through time is represented by
G=Gt 1+t (2.2)
Gt is a known pxp transition matrix, & is a px1 unknown parameter vector, &
denotes the initial state of the system, 11 is the systems error, &jt is the observation
error. We write &t as
&t = di + it (2.3)
We also assume that ¢j, njt and v are all independently distributed. Hence,
equation (2.1) may be rewritten as

Vi = X0, + o + 1y, (2.4)
We further assume that
o) )
-~ N(O,—“ foralli 25
al 2 ) ( )
2
o
7, ~ N(O,—/{lj forall i and t (2.6)
V|4 ~N(0,A7'%) forallt 2.7)
(a, b
A~G =2 ,—0) 2.8
5 (2.8)
G| A ~ N(my, A7Z,) (2.9)

Thus, 6,|6,_,,4 ~ N(G,0_,,A"%) (2.10)
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where 2'is a known pxp positive definite matrix. We can write the model (2.1) as

Ve=Xt &+ a (2.11)
and a=a+n (2.12)
, [x;, ]
where V= (y“,...,ym) inx1, X = LMJ Tnxp
x,,

a= (..., an) 0L, 7t = (... ) XL, & = (el ant)  : nx1

The distributions of « and 7t are given by

o’ )
~Np|0,—%7 ,(2.13
o n [ ) ﬁ, n)( )
O_Z
nt~Np (O,—; I,J (2.14)

3. Conditional Posterior densities

In the posterior analysis of the model we treat « as an unknown parameter and
derive its conditional posterior density also along with the conditional posterior
densities of other parameters, and utilize these conditional posterior densities in
employing Gibbs sampler. Under model specifications and the underlying
assumptions, we have

n

. r 22 [ 2 1
L0} d)=—= | =57 01 =K~ a0~ X~ ) CRY)
(27[)2 o.’"] n

nT
T

. B [ ]
so that /" (1{0},_- . 2) =%Texpt— Y0 X0~ @0 - X4 - @) |
@en)? o) o

7 t=1

(3.2)

The joint density of (Y, a,4, 6,.{83}._,), obtained by combining expressions
(2.8), (2.9), (2.10), (2.13) and (3.2), is given as follows
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fyadb ol __ 22 [42 xtat—aﬂyt—xtet—m}x
v o

oT

7 _ 1
L eXpL 22(9 GO.)'T (0,-Gh) |
(275) ZZ
2 r 7
A2 A -
—1€XPL 5(90 _mo)'zol(eo_ mo)J 8
2n)? 2
) o P [ ‘o) ]
(bzojz o 1 X 12 1exp|:_tg’ﬂ><:| /1_” e@t‘%[iﬁJJ
{7 T
(3.3
We define
[
IZ_I +GY7 G , fort=0
42714'_ X'X +Gt,+1 271 Gt+1 5 for ¢t = 1,2,,,.,T—1 (34)
B
|Z*‘+—1X'X ,for t=T
L 62 T“*T
n

[

| G'Y "6 +X, m,

| ,fort=0
|
={X'Go._,+G, 30, ?(X,'yt—X,’a)  forr=12,...T—-1 35
| n
|LZ‘G 6T1+62(X}yT X/ ) for t=T

n

6% =1{6,Y , for t#s (3.6)

Theorem 1: The conditional posterior density of & given (9(5), a, A) is normal
with mean vector Bg bg and covariance matrix A1 Bs.
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Proof: . Utilizing (3.3), the conditional posterior density of & is obtained as

1G]y a2) exp{— % 0,25 + G276, 9, — 20, (25'm, + G,z 6, )}}

[ 2 | {
oceXpL—E(OO ~b,B,) B,'(6, —bOBO)J (3.7)
We now write expression (3.7) as

. A L
f (90|Jfa a,A)=C, eXp[—E (‘90 - Bb,)' B, (6, - Bobo)}

where Cq is the normalizing constant. Its value is obtained as

g1

_ [ 2 . ] 2m)%|B,]

C' = J.eXp —=(6,—b,B,) B,'(6, - b,B,) deoz_ﬁo
) | 2

R?P

For s=1,..., T—1, We have

[
[6]y.a,2,67) exp{—; 10; XS XX+ G Gj 0,

o,

n

1 1
—295(—2 (Xy,-Xa)+G, 2" 0.,+XG, Q_ljh
(o}

oc exp[—%(@ —~Bb,)B.'(6,— Bb,) (3.8)

We now write expression (3.8) as

f*(gs‘yaa’ﬂ’s H(S)) = Cv exp[—% (95 - B.vbs)'B;I(‘?s _Bsbs)}

where Cg is evaluated as

21
21)2|B |2
C.;1 = J‘expr_i (65 - Bsbs),Bsil(es _Bsbs)?ﬂes = ( )I7| sl
wo L2 3
A
7—1)

Finally, for s= T we have f~ (HT|y, @240}

r 1
oc expt—i {9} [Zl +_12 X;er 0, -2 0}[_12 (X;yr - X}a)"' X GT@T—IJ }J
2 o o

n n
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o« eXp[‘%(er - BTbT)’B;l(gT - BTbT)_ b;'BTbT}
o eXp[‘%(QT - BTbT)'B;l(eT - BTbT)} (3.9)

We now write equation (3.9) as

:

. _ A _
f (0T|.)N/: a:/lv{et}trz(; ): G expl__g(er - BTbT)’BTl (6, _BTbT)—|

|

where CT is the normalizing constant, which is obtained as

2 1
) [ 2 o 1 2n)?|B,[2
G, = '[eXpL_E (6, = B;b,) B, (6, _BTbT)Jder = 7 -
R? 22
Thus, the theorem is proved.
Let us write
T 1 1
:_2"'_2,‘]:_2[)’;_)(;6’;] (310)
0, O n
and a*=nT+pT+p+aO+n

« 1< . . o .
b (a):_ZZ(yt - Xt‘gt _a) (yt - Xtet —Ot) +Z(‘9t _Gtet—l) ) 1(91 _Gt‘gt—l)

p t=l t=1

!

_ oo
+(0, — my) X3 (0, — my)+ by + — (3.11)

a

Theorem 2: The conditional posterior of « is given by normal distribution with
mean Q—1q and variance covariance matrix A-1Q-1.

Proof : From equation (3.3) we obtain

[ A r 1 2a' ]
P CRSRORTA expp{a{—z +—2ja——2 o, —X;ea} |
~ o, o, o,

o exp[—% {a-0"9y0a- qu)}} (312)
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We rewrite expression (3.12) as follows
* T r ﬂd _1 ' —1 _]
£ (@l 2.0.16, ., ) K, oxp =5 {a- 07970~ 0"9)}
where the normalizing constant K 4 is obtained as

w2 {a-0 900 e o)

7 1]
Seard
o, O,
which establishes the theorem.
Theorem 3: The conditional posterior of A is given by
a2
f(/ll)@a{e}z 0)= Kﬂz eXPL——bJ (3.13)

Proof: We obtain the following from expression (5.3.3)

A(nT+pT+p+ay+n A
e ( { Z(y, x,0,-a)(y,-x,0,-a)

;,tl

S Ay adgyly) o 7 P =5

+ZT:{(Q B G’Q”')'zil(er - Gtetfl)}-i'(eo - mo)'zal(e —my)+ by + = a}]
t=1 .

a

ar b
cl? e 2
B)
2) Lk
or f(ily,a{ﬁ}t D=7 A e’
r[“—\
2)

Thus, the theorem is proved.

4. Implementation of Gibbs Sampler

Let the generated Gibbs sample be denoted by ({ (k) A0, ”‘)) j=1,

2,...,N, where N is the total number of replications. Then, by employing the
Gibbs sampler, posterior density of 65 given Y can be estimated as

G ——Zf (6,165,605, A4y, a”) (4.2)
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fors =0, 1,......, T. Notice that the estimated posterior density of & in (4.1)
depends on the two values adjacent to 8,. Hence, anestimate of 6, is the
mean of the estimated density (4.1) which is obtained as

( Zb(")j (4.2)

where k is the number of iterations during implementation of the Gibbs sampler.
b is the value of bs based on ({ ov o f=s—1 s+ 1). Then the fitted value

of yt for our model is

X9

abs

(4.3)

Similarly, by employing the Gibbs sampler posterior density of « given y can
be estimated as

faly) = Zf(|{ oYLy @)
1 N
Further, an estimator of ais a = — Z&;")
Nj=1
I,

where a ( k)) ) Q(k) (

5. Conclusion

The state space model is utilized to obtain Bayesian estimators for the
parameters which can improve panel data-based prediction wherein the
observations are available on the behaviour of a ‘panel’ of decision units at
multiple successive time epochs. The use of panel data has become increasingly
popular in econometrics in recent years. This analysis provides an elaborate
theoretical framework and is therefore expected to contribute effectively to
improved and more precise panel data-based prediction for applied researchers
and practitioners.
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