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BAYESIAN INFERENCE FOR  

STATE SPACE MODEL WITH PANEL DATA 

Ranjita Pandey1, Anoop Chaturvedi2 

ABSTRACT 

The present work explores panel data set-up in a Bayesian state space model. The 

conditional posterior densities of parameters are utilized to determine the 

marginal posterior densities using the Gibbs sampler. An efficient one step ahead 

predictive density mechanism is developed to further the state of art in prediction-

based decision making.  

Key words: Bayesian analysis, Gibbs sampler, conditional posterior densities, 

predictive distribution. 

1. Introduction 

The importance of panel data stems from its ability for addressing questions 

of economic and social behaviour which cannot be easily answered by using the 

usual cross section or time series data. The panel data consists of the observations 

on the same cross section of units under study at different and usually successive 

time periods. The longitudinal nature of panel data allows for the use of simple 

techniques to solve otherwise complicated problems and permits cross section 

and/or time heterogeneity. Tiwari, Yang and Zalkikar (1996) have studied the 

level of water pollution by recording biochemical oxygen demand (BOD) and 

dissolved oxygen (DO), at a selected point along the stream at different time 

points. The present paper adapts and extends their concept to a multiple point 

scenario. The situation could be visualized in a comprehensive manner, if the 

BOD and DO measurements are taken at more than one selected point along the 

length of the stream, at successive time periods. The resulting longitudinal data 

accounts for the individual effects at the various locations as well as considers 

impact of other relatively slowly changing left-out variables. Panel data-based 

studies have been undertaken by Maddala (1971), Mundlak (1978), Hausman 

(1978), Hausman and Taylor (1981) and Chamberlain (1982) in various fields. 

Baltagi (2008) advocates the use of panel data for controlling individual 
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heterogeneity and to incorporate dynamic adjustment in the model while 

elaborating  that the panel data structure gives more informative data, more 

variability, less collinearity among the variables, more degrees of freedom and 

more efficiency compared to the classical cross sectional model-based study. 

2. Model with panel data and assumptions 

The variables involved in the model are denoted by 

yit : observed value of the dependent variable for unit i at time point t. 

xit : p×1 vector of observations on p explanatory variable corresponding to the  

i-th unit at time t, (i = 1,…,n; t = 1,…,T) 

The state space model for panel data is given by 

yit  x it t   it           (2.1) 

The dynamics of the system as it evolves through time is represented by 

t = Gt t–1 + vt          (2.2) 

Gt is a known p×p transition matrix, t is a p×1 unknown parameter vector, 0 

denotes the initial state of the system, t is the systems error, it is the observation 

error. We write it as 

it = i + it           (2.3) 

We also assume that i, it and t are all independently distributed. Hence, 

equation (2.1) may be rewritten as 

yit  x it t  i   it          (2.4) 

We further assume that 

i ~ N 0,


2






 


   for all i           (2.5) 

it ~ N 0,


2






 


  for all  i  and  t       (2.6) 

vt | ~ N(0,
1
)    for all t        (2.7) 

 ~ G
a0
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b0
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           (2.8) 

0| ~ N(m0,
1
0 )           (2.9) 

    Thus,  t | t1, ~ N(Gtt1,
1
)                    (2.10) 
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where  is a known p×p positive definite matrix. We can write the model (2.1) as 

 yt = Xt t + t           (2.11) 

 

and      t =  + t             (2.12) 

where yt  y1t ,, ynt 

 : n 1, 

  

Xt 

x1t

'

M

xnt

'
















   : n×p  

 

 = (1,…, n)'   : n×1, t = (1t,…, nt)
'  : n×1, t = (1t,…, nt)

'   : n×1 

 

The distributions of  and t are given by 

  ~ Nn 0,
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 (2.13) 

 t ~ Nn 0,


2
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 (2.14) 

3. Conditional Posterior densities 

In the posterior analysis of the model we treat  as an unknown parameter and 

derive its conditional posterior density also along with the conditional posterior 

densities of other parameters, and utilize these conditional posterior densities in 

employing Gibbs sampler. Under model specifications and the underlying 

assumptions, we have  
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The joint density of (y
~
, , ,0 ,{t}t1

T
),  obtained by combining expressions 

(2.8), (2.9), (2.10), (2.13) and (3.2), is given as follows 
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Theorem 1: The conditional posterior density of s given ((s), , ) is normal 

with mean vector Bs bs and covariance matrix –1 Bs. 
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Proof: . Utilizing (3.3),  the conditional posterior density of 0 is obtained as 
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We now write expression (3.7) as 
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For     s = 1,…, T – 1, We have 
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We now write expression (3.8) as 
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Finally, for s= T we have f
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We now write equation (3.9) as 
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Thus, the theorem is proved. 
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Theorem 2: The conditional posterior of  is given by normal distribution with 

mean Q–1q and variance covariance matrix –1Q–1. 

 

Proof : From equation (3.3) we obtain  
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We rewrite expression (3.12) as follows 
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which establishes the theorem. 

 

Theorem 3: The conditional posterior of  is given by 
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Proof: We obtain the following from expression (5.3.3) 
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Thus, the theorem is proved. 

4. Implementation of Gibbs Sampler 

Let the generated Gibbs sample be denoted by  tj

(k ) 
t 0

T

, j

(k )
, j

(k )  ; j = 1, 

2,…,N , where N  is the total number of replications. Then, by employing the 

Gibbs sampler, posterior density of s  given y
~

 can be estimated as 
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for s = 0, 1,……, T. Notice that the estimated posterior density of s in (4.1) 

depends on the two values adjacent tos .  Hence,  an estimate of s/ T  is the 

mean of the estimated density  (4.1) which is obtained as 
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where k is the number of iterations during implementation of the Gibbs sampler. 
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 is the value of bs based on  tj
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,  t  s 1,  s 1 . Then the fitted value 

of yt for our model is  
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Further, an estimator of  is  
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5. Conclusion 

The state space model is utilized to obtain Bayesian estimators for the 

parameters which can improve panel data-based prediction wherein the 

observations are available on the behaviour of a ‘panel’ of decision units at 

multiple successive time epochs. The use of panel data has become increasingly 

popular in econometrics in recent years. This analysis provides an elaborate 

theoretical framework and is therefore expected to contribute effectively to 

improved and more precise panel data-based prediction for applied researchers 

and practitioners. 
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