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TRANSMUTED  KUMARASWAMY  DISTRIBUTION 

Muhammad Shuaib Khan1, Robert King2, Irene Lena Hudson3 

ABSTRACT 

The Kumaraswamy distribution is the most widely applied statistical distribution 

in hydrological problems and many natural phenomena. We propose a 

generalization of the Kumaraswamy distribution referred to as the transmuted 

Kumaraswamy (𝑇𝐾𝑤) distribution. The new transmuted distribution is developed 

using the quadratic rank transmutation map studied by Shaw et al. (2009). 

A comprehensive account of the mathematical properties of the new distribution 

is provided. Explicit expressions are derived for the moments, moment generating 

function, entropy, mean deviation, Bonferroni and Lorenz curves, and formulated 

moments for order statistics. The 𝑇𝐾𝑤 distribution parameters are estimated by 

using the method of maximum likelihood. Monte Carlo simulation is performed 

in order to investigate the performance of MLEs. The flood data and HIV/ AIDS 

data applications illustrate the usefulness of the proposed model.  

Key words: Kumaraswamy distribution, moments, order statistics, parameter 

estimation, maximum likelihood estimation. 

1. Introduction 

The Kumaraswamy probability distribution was originally proposed by 

Poondi Kumaraswamy (1980) for double bounded random processes for 

hydrological applications. The Kumaraswamy double bounded distribution 

denoted by 𝐾𝑤(𝛼, 𝜃) distribution is a family of continuous probability 

distributions defined on the interval [0,1] with cumulative distribution function 

given by  

𝐺𝐾𝑤(𝑥; 𝛼, 𝜃) = 1 − (1 − 𝑥𝛼)𝜃 ,                                           (1) 

and probability density function (pdf ) corresponding to (1) given by 

  𝑔𝐾𝑤(𝑥; 𝛼, 𝜃) = 𝛼𝜃𝑥𝛼−1(1 − 𝑥𝛼)𝜃−1 ,                                 (2) 

                                                           
1 School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 

2308, Australia. E-mail: Muhammad.S.Khan@newcastle.edu.au. 
2 School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 

2308, Australia. E-mail: robert.king@newcastle.edu.au. 
3 School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 

2308, Australia. E-mails: Irene.Hudson@newcastle.edu.au, Irenelena.hudson@gmail.com. 



184                                 M. S. Khan, R. King, I. L. Hudson: Transmuted Kumaraswamy … 

 

 

where α > 0 and  θ > 0 are the shape parameters. The Kw probability density 

function has the same basic properties as the beta distribution. According to Jones 

(2009) and Cordeiro et al. (2010, 2012) it depends in the same way as the beta 

distribution on the values of its parameters: it is unimodal for 𝛼 > 1 and  𝜃 > 1; 

uniantimodal for 𝛼 < 1 and  𝜃 < 1; increasing for 𝛼 > 1 and  𝜃 ≤ 1; decreasing 

for 𝛼 ≤ 1 and  𝜃 > 1 and constant for  𝛼 = 𝜃 = 1 . Jones (2009) investigated not 

only properties of the Kumaraswamy distribution but also some similarities and 

differences between the beta and Kw distributions. According to Jones (2009) the 

Kumaraswamy distribution has several advantages over the beta distribution, such 

as a simple normalizing constant, simple explicit formulae for the distribution and 

quantile functions which do not involve any special functions, a simple formula 

for random variable generation, explicit formulae for L-moments and simpler 

formulae for moments of order statistics. On the other hand, the beta distribution 

has simpler formulae for moments and the moment generating function, a one-

parameter sub-family of symmetric distributions, simpler moment estimation and 

more ways of generating the distribution through physical processes. 

The Kw distribution is applicable to a number of hydrological problems and 

many natural phenomena whose process values are bounded on both sides.  

Cordeiro and de Castro (2009) studied a new class of the Kumaraswamy 

generalized distributions (denoted by the Kw–G distribution) based on the 

Kumaraswamy distribution (denoted by Kw distribution). They derived almost all 

formulas for the probability characteristics of the Kw–G distribution. In hydrology 

and related areas, the Kw distribution has received considerable interest, see 

Cordeiro  et al. (2010, 2012), Fletcher and Ponnambalam (1996),  Ganji et al. 

(2006), Ponnambalam et al. (2001), Sundar and Subbiah (1989) and Seifi et al. 

(2000). According to Nadarajah (2008), many papers in the hydrological literature 

have used this distribution because it is deemed to be a “better alternative” to the 

beta distribution; see, for example, Koutsoyiannis and Xanthopoulos (1989).  

This article introduces a new three-parameter distribution which is a 

generalized two-parameter Kumaraswamy distribution, called the transmuted 

Kumaraswamy distribution and denoted by 𝑇𝐾𝑤. Recently the generalization of 

parametric models by transforming an appropriate model, into a more general 

model, by adding a shape parameter has been intensively studied for many 

different families of lifetime distributions. Aryal and Tsokos et al. (2009, 2011) 

considered the following transmuted extreme value distributions: the transmuted 

Gumbel distribution to model climate data, the transmuted Weibull distribution 

and their applications to analyse real data sets. Recently Khan et al. (2013 a, b, c) 

developed the transmuted modified Weibull distribution, the transmuted 

generalized inverse Weibull distribution and the transmuted generalized 

exponential distribution. More recently Khan et al. (2014) studied the 

characteristics of the transmuted Inverse Weibull distribution. Ashour et al. 

(2013), Elbatal et al. (2013) and Aryal (2013) studied the transmuted Lomax 

distribution, the transmuted quasi Lindley distribution and the transmuted log-

logistic distribution with a discussion on some properties of this family. The most 
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recent families of the transmuted Rayleigh distribution, the transmuted 

generalized Rayleigh distribution and the transmuted Lindley distribution are 

derived in studies of Merovici (2013 a, b) & (2014). More recently Ahmad et al. 

(2015) also studied the transmuted Kumaraswamy distribution and discussed 

some mathematical results. 

Using the quadratic rank transmutation map proposed by Shaw et al. (2009), 

we develop the three-parameter 𝑇𝐾𝑤 distribution. According to this approach a 

random variable X is said to have a transmuted distribution if its cumulative 

distribution function (cdf) satisfies the relationship 

𝐹(𝑥) = (1 + 𝜆)𝐺(𝑥) − 𝜆[𝐺(𝑥)]2,             |𝜆| ≤ 1                              (3) 

and 

𝑓(𝑥) = 𝑔(𝑥)[(1 + 𝜆) − 2𝜆𝐺(𝑥)],                                                      (4) 

where 𝐺(𝑥) is the cdf of the base distribution, 𝑔(𝑥) and 𝑓(𝑥) are the 

corresponding probability density functions (pdf) associated with 𝐺(𝑥) and 𝐹(𝑥), 

respectively. It is important to note that at λ = 0  we have the distribution of the 

base random variable. 

The paper is organized as follows. In Section 2, we present the analytical 

shapes of the probability density and hazard functions of the model under study. 

A range of mathematical properties are considered in Section 3, specifically we 

demonstrate the quantile functions, moment estimation and moment generating 

function. Maximum likelihood estimates (MLEs) of the unknown parameters are 

discussed in Section 4. Entropy and mean deviations are derived in Section 5 and 

6. The probability density function (pdf) of order statistics and their moments are 

derived in Section 7. In Section 8 we evaluate the performance of MLEs using 

Simulation. Two applications of the 𝑇𝐾𝑤 distribution to the flood data and HIV/ 

AIDS data are illustrated in Section 9. In Section 10, concluding remarks are 

addressed. 

2. Transmuted Kumaraswamy distribution 

A random variable X is said to have transmuted 𝐾𝑤 probability distribution 

denoted by 𝑇𝐾𝑤(𝑥; 𝛼, 𝜃, 𝜆) with parameters 𝛼, 𝜃 > 0 and −1 ≤ λ ≤ 1, 𝑥 ∈ (0,1), 

if its pdf and cdf are given by 

𝑓𝑇𝐾𝑤(𝑥; 𝛼, 𝜃, 𝜆) = 𝛼𝜃𝑥𝛼−1(1 − 𝑥𝛼)𝜃−1{1 − 𝜆 + 2𝜆(1 − 𝑥𝛼)𝜃},             (5) 

and 

𝐹𝑇𝐾𝑤(𝑥; 𝛼, 𝜃, 𝜆) = [1 − (1 − 𝑥𝛼)𝜃][1 + 𝜆(1 − 𝑥𝛼)𝜃],                       (6) 

where α and θ are the shape parameters and λ the transmuting parameter, 

representing the different patterns of the subject distribution. The 𝑇𝐾𝑤 

distribution approaches the 𝐾𝑤 distribution when the transmuted parameter λ = 0.  
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If 𝑋 has 𝑇𝐾𝑤(x; α, θ, λ)distribution, then the reliability function (RF), hazard 

function and cumulative hazard function corresponding to (5) are given by 

𝑅𝑇𝐾𝑤(𝑥; 𝛼, 𝜃, 𝜆) = 1 − [1 − (1 − 𝑥𝛼)𝜃][1 + 𝜆(1 − 𝑥𝛼)𝜃],                       (7) 

ℎ𝑇𝐾𝑤(𝑥; 𝛼, 𝜃, 𝜆) =
𝛼𝜃𝑥𝛼−1(1 − 𝑥𝛼)𝜃−1{1 − 𝜆 + 2𝜆(1 − 𝑥𝛼)𝜃}

1 − [1 − (1 − 𝑥𝛼)𝜃][1 + 𝜆(1 − 𝑥𝛼)𝜃]
,                       (8) 

and 

𝐻𝑇𝐾𝑤(𝑥; 𝛼, 𝜃, 𝜆) = ∫
𝛼𝜃𝑥𝛼−1(1 − 𝑥𝛼)𝜃−1{1 − 𝜆 + 2𝜆(1 − 𝑥𝛼)𝜃}

1 − [1 − (1 − 𝑥𝛼)𝜃][1 + 𝜆(1 − 𝑥𝛼)𝜃]
𝑑𝑥

𝑥

0

, 

𝐻𝑇𝐾𝑤(𝑥; 𝛼, 𝜃, 𝜆) = −ln|1 − [1 − (1 − 𝑥𝛼)𝜃][1 + 𝜆(1 − 𝑥𝛼)𝜃]|.                (9) 

Figure 1 shows some possible shapes of probability density function of the 

𝑇𝐾𝑤 distribution for selected values of the parameters α, θ and λ, and the hazard 

function of the 𝑇𝐾𝑤 distribution for the same value of the parameters, 

respectively. 

 

  

    

Figure 1. Plots of the 𝑇𝐾𝑤 PDF & HF for some parameter values 
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Figure 1 also illustrates the 𝑇𝐾𝑤 instantaneous failure rates. These failure 

rates are defined with different choices of parameters. For all choices of 

parameters the distribution has a monotonically increasing and decreasing 

behaviour of hazard rates. The transmuted beta and 𝑇𝐾𝑤 distributions share their 

main special cases. T-Beta (𝑎, 1, 𝜆) and 𝑇𝐾𝑤(𝛼, 1, 𝜆) distributions are both power 

function distributions. The 𝑇𝐾𝑤 distribution approaches the transmuted uniform 

distribution 𝑎 = 𝜃 = 1, 𝜆 ≤ 1, uniform distribution for 𝑎 = 𝜃 = 1, 𝜆 = 0 . 

3. Moments and quantiles 

This section presents expressions for the moments, moment generating 

function and quantiles of the 𝑇𝐾𝑤 distribution.   

Theorem 1: If 𝑋 has the 𝑇𝑘𝑤(𝑥; α, 𝜃, λ) distribution with |λ| ≤ 1, then the 𝑘𝑡ℎ 

moment of 𝑋 is given as follows 

𝐸(𝑋k) = (1 − λ)θβ (
k

α
+ 1, θ) + 2λθβ (

k

α
+ 1,2θ). 

Proof: Let X have a 𝑇𝑘𝑤 distribution, then the 𝑘𝑡ℎ moment of X is given as 

𝐸(𝑋k) = ∫ 𝛼𝜃𝑥𝑘+𝛼−1(1 − 𝑥𝛼)𝜃−1{1 − 𝜆 + 2𝜆(1 − 𝑥𝛼)𝜃}𝑑𝑥
1

0

,               

𝐸(𝑋k) = (1 − λ)∫ 𝛼𝜃𝑥𝑘+𝛼−1(1 − 𝑥𝛼)𝜃−1𝑑𝑥
1

0

+ 2λ∫ 𝛼𝜃𝑥𝑘+𝛼−1(1 − 𝑥𝛼)2𝜃−1
1

0

𝑑𝑥. 

Finally, we obtain the 𝑘𝑡ℎ moment of the 𝑇𝑘𝑤 distribution as 

𝐸(𝑋k) = (1 − λ)θ  ψ1,k + 2λθ  ψ2,k,                              (10) 

where  ψ𝒿,k  is introduced for simplicity as                          

                                          ψ𝒿,k = β(
k

α
+ 1, 𝒿θ),     𝒿 = 1, 2.   

The expressions for the expected value and variance are  

E(𝑋) = (1 − λ)θ  ψ1,1 + 2λθ  ψ2,1,                                  (11) 
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and 

𝑉𝑎𝑟(𝑋) = (1 − λ)θ  ψ1,2 + 2λθ  ψ2,2 − {(1 − λ)θ  ψ1,1 + 2λθ  ψ2,1}
2
.           (12) 

 

The coefficient of variation, skewness and kurtosis measures can now be 

calculated using the following relationships 

 

              𝐶𝑉(𝑋) =
√𝑉𝑎𝑟(𝑋)

E(𝑋)
,                

Skewness(𝑋) =
E(X − E(𝑋))

3

[𝑉𝑎𝑟(𝑋)]
3

2

, 

and 

Kurtosis(𝑋) =
E(X − E(𝑋))

4

[𝑉𝑎𝑟(𝑋)]2
. 

 

The mean, variance and coefficient of variation can be obtained using 

equations (11) and (12). The relationship between α and the mean is shown in 

Figure 2.  

 

 
 

Figure 2. 𝛼 vs mean 
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(𝑎)α vs 𝑉𝑎𝑟𝑇𝐾𝑤                                                              (b) α vs 𝐶𝑉𝑇𝐾𝑤 

 

  
(𝑐) α vs 𝐶𝑆𝑇𝐾𝑤                                                               (d) α vs 𝐶𝐾𝑇𝐾𝑤 

Figure 3. Plots of the 𝑇𝐾𝑤 distribution α 𝑣𝑠 coefficients 
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Theorem 2: If 𝑋 has the 𝑇𝑘𝑤(𝑥; α, 𝜃, λ) distribution with |λ| ≤ 1, then the 

moment generating function of 𝑋 say M𝑥(t) is given as follows  

M𝑥(t) = (1 − λ) ∑
tm

m!
θβ (

m

α
+ 1, θ) + 2λ ∑

tm

m!
θβ (

m

α
+ 1,2θ) .

∞

m=0

 

∞

m=0

                  

Proof: Let X has a 𝑇𝑘𝑤 distribution, then the moment generating function of X is 

given as 

M𝑥(t) = ∫ 𝛼𝜃 exp(𝑡𝑥) 𝑥𝛼−1(1 − 𝑥𝛼)𝜃−1{1 − 𝜆 + 2𝜆(1 − 𝑥𝛼)𝜃}𝑑𝑥
1

0

.               

Using the Taylor series of function 𝑒𝑡𝑥 reduces the above to 

M𝑥(t) = (1 − λ) ∑
tm

m!

∞

m=0

∫ 𝛼𝜃𝑥𝑚+𝛼−1(1 − 𝑥𝛼)𝜃−1𝑑𝑥
1

0

+ 

2λ ∑
tm

m!

∞

m=0

∫ 𝛼𝜃𝑥𝑚+𝛼−1(1 − 𝑥𝛼)2𝜃−1
1

0

𝑑𝑥. 

By solving the above integral we obtain 

M𝑥(t) = (1 − λ) ∑
tm

m!
θβ (

m

α
+ 1, θ) + 2λ ∑

tm

m!
θβ (

m

α
+ 1,2θ)

∞

m=0

,

∞

m=0

             (13) 

which completes the proof. 

Theorem 3: The qth quantile 𝑥q of the 𝑇𝑘𝑤 random variable is given by  

𝑥q = [1 − {1 −
(1 + λ) − √(1 + λ)2 − 4λq

2λ
}

1

θ

]

1

α

,           0 <  𝑞 < 1.        (14) 

Proof: The qth quantile 𝑥q of the 𝑇𝑘𝑤 distribution is defined as 

𝑞 = P(𝑋 ≤ 𝑥q) = F(𝑥q),           𝑥q ≥ 0.  

Using the distribution function of the 𝑇𝑘𝑤 distribution we have 

𝑞 = F(𝑥q) = (1 + 𝜆) [1 − (1 − 𝑥𝑞
𝛼)

𝜃
] − 𝜆 [1 − (1 − 𝑥𝑞

𝛼)
𝜃
]
2

, 

that is 

𝜆 [1 − (1 − 𝑥𝑞
𝛼)

𝜃
]
2

− (1 + 𝜆) [1 − (1 − 𝑥𝑞
𝛼)

𝜃
] + 𝑞 = 0. 

Consider this as a quadratic in 1 − (1 − 𝑥𝑞
𝛼)

𝜃
as 

∆= 1 + (2 − 4𝑞)𝜆 + 𝜆2. 
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It has roots 
(1+λ)−√∆

2λ
. These exist if ∆ is positive. Consider the following cases. 

If 𝜆 = −1 then ∆ reduces to 

∆= 4𝑞 > 0,   𝑖𝑓 𝑞 > 0. 

If 𝜆 = 1 then ∆ takes the form 

∆= 4(1 − 𝑞) > 0,      𝑖𝑓 𝑞 > 0. 

Otherwise for −1 < 𝜆 < 1, consider the roots of ∆, as a quadratic form in 𝜆, 
are 

λ = −1 + 2𝑞 ± 2√𝑞2 − 𝑞 ,          

Therefore, 𝑞2 − 𝑞 < 0 for   0 < 𝑞 < 1. So the only real roots could occure for 

𝑞 = 0 𝑜𝑟 1. 

If 𝑞 = 0 then roots = -1, contradiction between (−1 < 𝜆 < 1), and if 𝑞 = 1 

then roots = 1, contradiction between (−1 < 𝜆 < 1). Thus, there are no real roots 

of ∆ as a quadratic in 𝜆. Therefore, ∆ has the same sign in the range −1 ≤ 𝜆 ≤ 1, 

hence ∆> 0. 

Since ∆≥ 0, then 

1 − (1 − 𝑥𝑞
𝛼)

𝜃
=

(1 + λ) − √∆

2λ
. 

Finally, we obtain the qth quantile 𝑥q of the 𝑇𝑘𝑤 distribution as 

𝑥q = [1 − {1 −
(1 + λ) − √Δ

2λ
}

1

θ

]

1

α

, 

which completes the proof.  

           
(a) Median                                                    (b) B-lives 

Figure 4. Plots of the Quantiles for the  𝑇𝐾𝑤 distribution for some parameter  
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Using the method of inversion we can generate random variables from the 

𝑇𝑘𝑤 distribution. One can use equation (14) to generate random numbers when 

the parameters α, 𝜃, λ are known. 

Hence, the median of 𝑇𝑘𝑤 distribution is given by 

𝑥0.5 = [1 − {1 −
(1 + λ) − √1 + λ

2

2λ
}

1

θ

]

1

α

.                               (15) 

To demonstrate the effect of the shape parameter on the median and the 

percentile life (or B-life) as a function of α, they are calculated using quantiles 

and shown in Figure 4a and 4b, respectively. It can be concluded that as the shape 

parameter α increases the behaviour of median and percentile life (or B-life) also 

increases. To illustrate the effect of the transmuting parameter, on skewness and 

kurtosis, we also consider the measure based on quantiles. Skewness and kurtosis 

are calculated by using the relationship of Bowley (ℬ) and Moors (ℳ). The 

Bowley skewness is one of the earliest skewness measures defined by the average 

of the quantiles minus median, divided by the half of the interquantile range given 

by (see Kenney and Keeping (1962)) 

ℬ =
𝒬(3 4⁄ ) + 𝒬(1 4⁄ ) − 2𝒬(2 4⁄ )

𝒬(3 4⁄ ) − 𝒬(1 4⁄ )
.                                (16) 

The Moors kurtosois is based on octiles and given by Moors (1998) 

ℳ =
𝒬(3 8⁄ ) − 𝒬(1 8⁄ ) + 𝒬(7 8⁄ ) − 𝒬(5 8⁄ )

𝒬(6 8⁄ ) − 𝒬(2 8⁄ )
 .                     (17) 

Figures 5a and 5b respectively illustrate the graphical representation of the 

Bowley (ℬ) skewness and Moors (ℳ) kurtosis as a function of the λ  

for α = θ = 3. 

          

       (a) Skewness                                                    (b) kurtosis   

Figure 5. Plots of the Bowley skewness and Moors kurtosis for the 𝑇𝐾𝑤 distribution 
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4. Parameter estimation 

If the parameters of the 𝑇𝐾𝑤 distribution are not known, then the maximum 

likelihood estimates, MLEs, of the parameters are given as follows. 

Let 𝑥1 , 𝑥2, … , 𝑥𝑛 be the random samples of size 𝑛 from the 𝑇𝐾𝑤 distribution. 

Then the log-likelihood function of (5) is given by 

 

ℒ = nlnα + nln𝜃 + (α − 1)∑ln𝑥i + (𝜃 − 1)∑ln(1 − 𝑥i
α)

n

i=1

n

i=1

 

+∑ln{1 − λ + 2λ(1 − 𝑥i
α)𝜃}

n

i=1

.       (18)  

 

By differentiating (18) with respect to α, θ and λ, then equating it to zero, we 

obtain the estimating equations  

 

∂ℒ

∂α
=

n

α
+ ∑ln𝑥i − (𝜃 − 1)∑

𝑥i
αln𝑥i

1 − 𝑥i
α

n

i=1

n

i=1

− ∑
2λ𝜃(1 − 𝑥i

α)𝜃−1𝑥i
αln𝑥i

{1 − λ + 2λ(1 − 𝑥i
α)𝜃}

,          

n

i=1

 

∂ℒ

∂𝜃
=

n

𝜃
+ ∑ln(1 − 𝑥i

α)

n

i=1

− ∑
2λ(1 − 𝑥i

α)𝜃ln(1 − 𝑥i
α)

{1 − λ + 2λ(1 − 𝑥i
α)𝜃}

,                       

n

i=1

 

∂ℒ

∂λ
= ∑

−1 + 2(1 − 𝑥i
α)𝜃

{1 − λ + 2λ(1 − 𝑥i
α)𝜃}

.                   

n

i=1

                       

 

The maximum likelihood estimator 𝜔̂ = (α̂, 𝜃, λ̂)
T

of 𝜔 = (α, 𝜃, λ)T is 

obtained by solving this nonlinear system of equations. These solutions will yield 

the ML estimators  α̂, 𝜃 and λ̂. Here we used a nonlinear optimization algorithm 

such as the quasi-Newton algorithm to numerically maximize the log-likelihood 

function given in (18). The required numerical evaluations were implemented 

using the R language.  Under the conditions that are fulfilled for parameters in the 

interior of the parameter space, but not on the boundary, the asymptotic 

distribution of the element of the  3 × 3 observed information matrix for the 𝑇𝐾𝑤 

distribution is 

√n(𝜔̂ − ω)~𝑁3(0, 𝑉−1).                                                            

where 𝑉 is the expected information matrix. Thus, the expected information 

matrix is 
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                            𝑉−1 = −E

[
 
 
 
 
 
 

∂2ℒ

∂α2

∂2ℒ

∂α∂𝜃

∂2ℒ

∂α∂λ
∂2ℒ

∂α∂𝜃

∂2ℒ

∂𝜃2

∂2ℒ

∂𝜃 ∂λ
∂2ℒ

∂α∂λ

∂2ℒ

∂𝜃 ∂λ

∂2ℒ

∂λ2 ]
 
 
 
 
 
 

.                                              (19) 

 

By solving the expected information matrix, these solutions will yield the 

asymptotic variance and covariances of these ML estimators for α̂,  𝜃̂ and λ̂. By 

using (19), approximate 100(1 − γ)% confidence intervals for  α, 𝜃 and λ can be 

determined as 

α̂ ± Zγ

2

√V̂11,          𝜃 ± Zγ

2

√V̂22,          λ̂ ± Zγ

2

√V̂33 , 

where Zγ

2 
is the upper γth percentile of the standard normal distribution. 

5. Entropy  

The original definition of entropy was defined by Rényi (1961) for a variable 

X with the probability density function f(x) continuous on [0,1]. Then, the 

integrated probability is 

𝑃𝑛,𝑘 = ∫ 𝑓(𝑥)𝑑𝑥

(𝑘+1)
𝑛⁄

𝑘
𝑛⁄

,        𝑘 = 0,1,… , 𝑛 − 1. 

By defining this as a discrete mass function Pn = Pn,k,  it is possible to show 

that (see Principe (2009)) 

lim
𝑛→∞

(𝐼𝑛(𝑃𝑛) − logn) =
1

1 − ρ
log {∫𝑓(𝑥)ρ𝑑𝑥}. 

The entropy of a random variable X with density 𝑓(𝑥) is a measure of 

variation of the uncertainty. A large entropy value indicates greater uncertainty in 

the data. By definition the Rényi entropy is defined as 

𝐼𝑅(𝜌) =
1

1−ρ
log{∫𝑓(𝑥)ρ𝑑𝑥},                                          (20) 

where 0 and 1 . The Rényi entropy for the 𝑇𝐾𝑤  variable X with density 

𝑓(𝑥) is given by the following theorem.  
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Theorem 4: If a random variable 𝑋 has the 𝑇𝑘𝑤 distribution, then the Rényi 

entropy of 𝑋, 𝐼𝑅(𝜌) is given by 

𝐼𝑅(𝜌) =
ρ

1 − ρ
log(𝛼) +

ρ

1 − ρ
log(𝜃) +

ρ

1 − ρ
log(1 + λ) +

1

1 − ρ
log 

 

[∑ (𝛼𝜃)ρ (
2λ

1+λ
)
k
(1 + λ)ρ𝒲k,ℓ,ρ β {

ρ

𝛼
(𝛼 − 1) + 1, ρ(𝜃 − 1) + 𝜃ℓ + 1}∞

𝑘,ℓ=0 ].     

 

Proof: Rényi entropy is defined in equation (20). So, to complete the proof, we 

first evaluate the integral as  

∫ 𝑓(𝑥)𝜌𝑑𝑥
1

0

= ∫ 𝛼𝜌𝜃𝜌𝑥𝜌(𝛼−1)(1 − 𝑥𝛼)𝜌(𝜃−1){1 + 𝜆 − 2𝜆[1 − (1 − 𝑥𝛼)𝜃]}
𝜌

1

0

𝑑𝑥 

           

  

= ∑ (𝛼𝜃)ρ (
2λ

1 + λ
)
k

(1 + λ)ρ𝒲k,ℓ,ρ ∫ 𝑥ρ(𝛼−1)(1 − 𝑥𝛼)𝜌(𝜃−1)+𝜃ℓ𝑑𝑥,
1

0

∞

𝑘,ℓ=0

 

where  

  

                 𝒲k,ℓ,ρ =
(−1)k+ℓΓ(ρ+1)Γ(k+1)

k!ℓ! Γ(ρ+1−k)Γ(k+1−ℓ)
. 

 

The above integral reduces to 

 

∫ 𝑓(𝑥)𝜌𝑑𝑥
1

0

= ∑ (𝛼𝜃)ρ (
2λ

1 + λ
)
k

(1 + λ)ρ𝒲k,ℓ,ρ

∞

𝑘,ℓ=0

 β {
ρ

𝛼
(𝛼 − 1) + 1, ρ(𝜃 − 1)

+ 𝜃ℓ + 1}.                                                                                          (21) 

 

By using equation (21), equation (20) can be simplified to 

𝐼𝑅(𝜌) =
ρ

1 − ρ
log(𝛼) +

ρ

1 − ρ
log(𝜃) +

ρ

1 − ρ
log(1 + λ) +

1

1 − ρ
log 

[∑ (𝛼𝜃)ρ (
2λ

1+λ
)
k
(1 + λ)ρ𝒲k,ℓ,ρ β {

ρ

𝛼
(𝛼 − 1) + 1, ρ(𝜃 − 1) + 𝜃ℓ + 1}∞

𝑘,ℓ=0 ]        

 

which completes the proof. 
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6. Mean deviation 

The mean deviation, about the mean and the median, can be used as measures 

of the degree of scatter in a population. Let 𝜇 = 𝐸(𝑋) and M be the mean and the 

median of the 𝑇𝑘𝑤 distribution given by (11) and (15) equations, respectively. 

The mean deviation about the mean, and about the median, can be  

calculated as 

δ1(𝑋) = E|𝑋 − μ| = ∫|𝑋 − μ|

1

0

𝑓(𝑥)𝑑𝑥, 

and 

δ2(𝑋) = E|𝑋 − M| = ∫|𝑋 − M|

1

0

𝑓(𝑥)𝑑𝑥, 

respectively. Hence, we obtain the following equations (Cordeiro et al. (2013)) 

δ1 = 2μF(μ) − 2ψ(μ)    and    δ2 = μ − 2ψ(M),              (22)   

where ψ(q) can be obtained from (5) by 

ψ(q) = (1 − λ)∫ 𝜃𝑧
1

𝛼(1 − 𝑧)𝜃−1𝑑𝑧
𝑞𝛼

0
+ 2λ∫ 𝜃𝑧

1

𝛼(1 − 𝑧)2𝜃−1𝑞𝛼

0
𝑑𝑧.         (23)  

One can easily compute these integrals numerically in software such as 

MAPLE, MATLAB, Mathcad, R and others and hence obtain the mean deviation 

about the mean and about the median, as desired. The mean deviation can be also 

used to determine the Bonferroni and Lorenz curves which have application in 

econometrics, finance, insurance and others.  

By using equation (23), the Bonferroni curve can be calculated from the 

following equation 

B(P) =
1

Pμ
{(1 − λ)∫ 𝜃𝑧

1

𝛼(1 − 𝑧)𝜃−1𝑑𝑧
𝑞𝛼

0

+ 2λ∫ 𝜃𝑧
1

𝛼(1 − 𝑧)2𝜃−1
𝑞𝛼

0

𝑑𝑧},   

and the Lorenz curve  can be calculated from the following equation 

  L(P) =
1

μ
{(1 − λ)∫ 𝜃𝑧

1

𝛼(1 − 𝑧)𝜃−1𝑑𝑧
𝑞𝛼

0

+ 2λ∫ 𝜃𝑧
1

𝛼(1 − 𝑧)2𝜃−1
𝑞𝛼

0

𝑑𝑧}.   

7. Order statistics 

If  𝑋1:𝑛, … , 𝑋𝑛:𝑛 denote the order statistics of a random sample 𝑋 =
(𝑋1, … , 𝑋𝑛) from the 𝑇𝐾𝑤 distribution with cumulative distribution function 

F(𝑥), and probability density function 𝑓(𝑥), then the 1st order and nth order 

probability density functions are given by 

     𝑓1:𝑛(𝑥) = n{1 − [1 − (1 − 𝑥𝛼)𝜃][1 + 𝜆(1 − 𝑥𝛼)𝜃]}
n−1
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             × 𝛼𝜃𝑥𝛼−1(1 − 𝑥𝛼)𝜃−1{1 − 𝜆 + 2𝜆(1 − 𝑥𝛼)𝜃},               (24) 

and 

    𝑓𝑛:𝑛(𝑥) = n{[1 − (1 − 𝑥𝛼)𝜃][1 + 𝜆(1 − 𝑥𝛼)𝜃]}
n−1

    

             × 𝛼𝜃𝑥𝛼−1(1 − 𝑥𝛼)𝜃−1{1 − 𝜆 + 2𝜆(1 − 𝑥𝛼)𝜃}.             (25) 

Theorem 5: The probability density function and the 𝑘𝑡ℎ moment of rth order 

statistic 𝑋𝑟:𝑛 of  the random sample X  from the 𝑇𝐾𝑤 distribution are given by 

 𝑓𝑟:𝑛(𝑥) = n(
n − 1
r − 1

) ∑ ∑ ∑ 𝑤𝑘,ℓ,𝓂,𝜆

∞

𝓂=0

 

∞

ℓ=0

n−r

k=0

{(1 − λ)τα,θ,𝓂,λ
(1)

+ 2λτα,θ,𝓂,λ
(2)

}. 

μk
(r:n)

= n(
n − 1
r − 1

) ∑ ∑ ∑ 𝑤𝑘,ℓ,𝓂,𝜆

∞

𝓂=0

 

∞

ℓ=0

n−r

k=0

[(1 − λ)θβ {
k

α
+ 1, θ(𝓂 + 1)} 

                            +2λθβ {
k

α
+ 1, θ(𝓂 + 2)}]. 

Proof: From Balakrishnan and Nagaraja (1992), the pdf of rth order statistics is 

given by 

                                 𝑓𝑟:𝑛(𝑥) =
[F(𝑥)]r−1[1 − F(𝑥)]n−rf(𝑥)

B(r, n − r + 1)
 ,                                 (26) 

where B(. , . ) is the beta function. Using (26) the pdf of 𝑥(𝑟) is given by 

         𝑓𝑟:𝑛(𝑥) =
1

B(r, n − r + 1)
∑ (

n − r
k

) (−1)k(F(𝑥))
r+k−1

f(𝑥).

n−r

k=0

             (27) 

Substituting (5) and (6) in (27) we obtain   

 𝑓𝑟:𝑛(𝑥) = n(
n − 1
r − 1

)∑ (
n − r

k
) (−1)k{[1 − (1 − 𝑥𝛼)𝜃][1 + 𝜆(1 − 𝑥𝛼)𝜃]}

r+k−1
n−r

k=0

 

× 𝛼𝜃𝑥𝛼−1(1 − 𝑥𝛼)𝜃−1{1 − 𝜆 + 2𝜆(1 − 𝑥𝛼)𝜃}. 

The above expression reduces to the pdf of the rth order statistic as 

 𝑓𝑟:𝑛(𝑥) = n (
n − 1
r − 1

) ∑ ∑ ∑ 𝑤𝑘,ℓ,𝓂,𝜆

∞

𝓂=0

 

∞

ℓ=0

n−r

k=0

{(1 − λ)τα,θ,𝓂,λ
(1)

+ 2λτα,θ,𝓂,λ
(2)

},     (28) 

where 

𝑤𝑘,ℓ,𝓂,𝜆 = (
n − r

k
) (

r + k − 1
ℓ

) (
r + k + ℓ − 1

𝓂
) (−1)k+ℓ+𝓂 (

λ

1 + λ
)

ℓ

(1 + λ)r+k−1 

τα,θ,𝓂,λ
(g)

= 𝛼𝜃𝑥𝛼−1(1 − 𝑥𝛼)𝜃(𝓂+g)−1,       𝑔 = 1, 2.  
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Using (28) the 𝑘𝑡ℎ moment of rth order statistic of 𝑥(𝑟) is given by 

μk
(r:n)

= n(
n − 1
r − 1

)∑ ∑ ∑ 𝑤𝑘,ℓ,𝓂,𝜆

∞

𝓂=0

[(1 − λ)∫𝛼𝜃𝑥𝑘+𝛼−1(1 − 𝑥𝛼)𝜃(𝓂+1)−1

1

0

 

∞

ℓ=0

n−r

k=0

𝑑𝑥 

                            +2λ∫𝛼𝜃𝑥𝑘+𝛼−1(1 − 𝑥𝛼)𝜃(𝓂+2)−1

1

0

𝑑𝑥]. 

Therefore, by solving the above integral the 𝑘𝑡ℎ moment of the rth order 

statistic of the 𝑇𝐾𝑤 distribution can be obtained as 

μk
(r:n)

= n(
n − 1
r − 1

) ∑ ∑ ∑ 𝑤𝑘,ℓ,𝓂,𝜆

∞

𝓂=0

 

∞

ℓ=0

n−r

k=0

[(1 − λ)θβ {
k

α
+ 1, θ(𝓂 + 1)} 

                            +2λθβ {
k

α
+ 1, θ(𝓂 + 2)}],               (29) 

which completes the proof. 

Theorem 6: The probability density function and the 𝑘𝑡ℎ moment of the median 

order statistic of a random sample X  from the TKw distribution are given by 

𝑔(𝑥̃) =
(2m + 1)!

m!m!
∑ ∑ ∑ 𝑤𝑘,ℓ,𝑚,𝓃,𝜆

∞

𝓃=0

 

∞

ℓ=0

m

k=0

{(1 − λ)ℰα,θ,𝓃,λ + 2λ𝒥α,θ,𝓃,λ} 

and 

μ̃k
(r:n)

=
(2m + 1)!

m!m!
∑ ∑ ∑ ∑ 𝑤𝑘,ℓ,𝑚,𝓃,𝜆

∞

𝓃=0

∞

𝓃=0

 

∞

ℓ=0

m

k=0

[(1 − λ)θβ {
k

α
+ 1, θ(𝓃 + 1)} 

              +2λθβ {
k

α
+ 1, θ(𝓃 + 2)}]. 

Proof: Let 𝑋,… , 𝑋𝑛 be independently and identically distributed ordered random 

variables from the 𝑇𝐾𝑤 distribution having median order 𝑋𝑚+1 probability 

density function given by 

𝑔(𝑥̃) =
(2m + 1)!

m!m!
∑ (

m
k
) (−1)k{F(𝑥̃)}m+kf(𝑥̃).                               (30)

m

k=0

 

Substituting (5) and (6) in (30) we obtain 

𝑔(𝑥̃) =
(2m + 1)!

m!m!
∑ (

m
k
) (−1)k{[1 − (1 − 𝑥̃𝛼)𝜃][1 + 𝜆(1 − 𝑥̃𝛼)𝜃]}

m+k
m

k=0

 

× 𝛼𝜃𝑥̃𝛼−1
(1 − 𝑥̃𝛼

)
𝜃−1

{1 − 𝜆 + 2𝜆(1 − 𝑥̃𝛼
)
𝜃
}. 
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The above expression reduces to the pdf of the median as 

𝑔(𝑥̃) =
(2m + 1)!

m!m!
∑ ∑ ∑ 𝑤𝑘,ℓ,𝑚,𝓃,𝜆

∞

𝓃=0

 

∞

ℓ=0

m

k=0

{(1 − λ)𝒥α,θ,𝓃,λ
(1)

+ 2λ𝒥α,θ,𝓃,λ
(2)

},     (31) 

where 

𝑤𝑘,ℓ,𝓂,𝓃,𝜆 = (
m
k
) (

m + k
ℓ

) (
m + k + ℓ

𝓃
) (−1)k+ℓ+𝓃 (

λ

1 + λ
)
ℓ

(1 + λ)m+k 

 𝒥α,θ,𝓃,λ
(ℎ)

= 𝛼𝜃𝑥̃𝛼−1(1 − 𝑥̃𝛼)𝜃(𝑛+ℎ)−1, ℎ = 1, 2. 

  Using (31) the 𝑘𝑡ℎ moment of the rth median 𝑥̃(𝑟) given by 

μ̃k
(r:n)

=
(2m + 1)!

m!m!
∑ ∑ ∑ ∑ 𝑤𝑘,ℓ,𝑚,𝓃,𝜆

∞

𝓃=0

∞

𝓃=0

 

∞

ℓ=0

m

k=0

[(1 − λ) ∫𝛼𝜃𝑥̃𝑘+𝛼−1(1 − 𝑥̃𝛼)𝜃(𝑛+1)−1

1

0

𝑑𝑥̃ 

              +2λ∫𝛼𝜃𝑥̃𝑘+𝛼−1(1 − 𝑥̃𝛼)𝜃(𝑛+2)−1𝑑𝑥̃

1

0

]. 

Therefore, the above integral reduces to the 𝑘𝑡ℎ moment of the median as 

follows 

μ̃k
(r:n)

=
(2m + 1)!

m!m!
∑ ∑ ∑ ∑ 𝑤𝑘,ℓ,𝑚,𝓃,𝜆

∞

𝓃=0

∞

𝓃=0

 

∞

ℓ=0

m

k=0

[(1 − λ)θβ {
k

α
+ 1, θ(𝓃 + 1)} 

              +2λθβ {
k

α
+ 1, θ(𝓃 + 2)}],                    (32) 

which completes the proof. 

8. Simulation 

This section evaluates the performance of the MLEs for the three parameters 

α, θ and λ of the 𝑇𝐾𝑤 distribution by using Monte Carlo simulation. The 

simulation of the 𝑇𝐾𝑤 distribution can be performed by using (14). The samples 

of the 𝑇𝐾𝑤 distribution were generated for different sizes n =
25, 50, 75, 100, 200, 300, 400, 500 for fixed choice of parameters α = 3, θ = 3 

and 𝜆 = 0.5. The estimates of the unknown parameters has been obtained by 

using BFGS method to minimize the total log-likelihood function. The estimated 

values of the parameters 𝛼, 𝜃, 𝜆 with their corresponding standard error, bias and 

mean square error (MSE) are displayed in Table 1. The plot in Figure 6 evaluates 

the overall performance of the 𝑇𝐾𝑤 distribution for simulated data sets that show 

the exact densities and histogram for some selected values of parameters. 
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Table 1. Mean, standard Error, Bias and MSE of the 𝑇𝐾𝑤 distribution 

n Parameter Mean S.E Bias MSE 

 α 3.1119 0.6526 0.1119 0.4384 

25 θ 3.2504 1.3394 0.2504 1.8566 

 λ 0.2605 0.6013 -0.2395 0.4189 

 α 2.9603 1.0269 -0.0397 1.0561 

50 θ 3.6296 0.8641 0.6296 1.1430 

 λ -0.2737 0.8336 -0.7737 1.2935 

 α 3.2675 0.3535 0.2675 0.1965 

75 θ 3.1488 0.9566 0.1488 0.9372 

 λ 0.6362 0.3023 0.1362 0.1099 

 α 2.6158 0.4246 -0.3842 0.3278 

100 θ 3.1376 0.5942 0.1376 0.3720 

 λ 0.0164 0.5084 -0.4836 0.4923 

 α 2.9212 0.2045 -0.0788 0.0480 

200 θ 3.0396 0.8866 0.0396 0.7876 

 λ 0.4882 0.4256 -0.0118 0.1812 

 α 3.0556 0.1983 0.0556 0.0424 

300 θ 3.6425 0.6270 0.6425 0.8059 

 λ 0.3285 0.3121 -0.1715 0.1268 

 α 2.8835 0.1679 -0.1165 0.0417 

400 θ 3.0600 0.4560 0.0600 0.2115 

 λ 0.3212 0.2736 -0.1788 0.1068 

 α 2.9709 0.1579 -0.0291 0.0257 

500 θ 3.2659 0.4845 0.2659 0.3054 

 λ 0.3331 0.2789 -0.1669 0.1056 
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Figure 6. Plots of the 𝑇𝐾𝑤 densities for simulated data sets: 

      (a)  𝛼 = 3, 𝜃 = 3, 𝜆 = 1  and  (b)  𝛼 = 0.5, 𝜃 = 1, 𝜆 = 0.5. 
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9. Applications 

In this section we provide two data analyses in order to assess the goodness-

of-fit of the 𝑇𝐾𝑤 distribution. The first data set is from Dumonceaux and Antle, 

[32]; with respect to the flood data with 20 observations 0.265, 0.269, 0.297, 
0.315, 0.3235, 0.338, 0.379, 0.379, 0.392, 0.402, 0.412, 0.416, 0.418, 0.423, 
0.449, 0.484, 0.494, 0.613, 0.654, 0.74. The summary statistics for the 𝑇𝐾𝑤 

distribution are given in Table 2. The MLEs and the values of the maximized log-

likelihoods for the 𝑇𝐾𝑤 and Kw distributions are given in Table 3.  

Table 2. Summary Statistics for the 𝑇𝐾𝑤 and Kw distributions for flood data 

Distribution Median 
Coefficient of 

Quartile Deviation 

Bowley’s  

skewness 
Moors(ℳ) 

 kurtosis 

𝑇𝐾𝑤 0.4207 4.7328 -0.0048 1.2212 

𝐾𝑤 0.4268 4.4817 -0.0176 1.2019 

 

In order to compare the distributions, we consider the Kolmogorov-Smirnov 

(K-S) test, Cramér-von Mises and Anderson-Darling goodness-of-fit statistics for 

the flood data. Table 3 gives the MLEs of the unknown parameters and the 

corresponding standard errors of the 𝑇𝐾𝑤 and 𝐾𝑤 distributions. These results 

indicate that the 𝑇𝐾𝑤 distribution provides an adequate fit for the flood data. 

 

Table 3. MLEs of the unknown Parameters for the flood data with the 

corresponding standard errors in parenthesis and the goodness-of-fit 

measures, The K-S test, Cramér-von Mises and Anderson-Darling 

goodness-of-fit. 

Distribution 

Parameter Estimates 

K-S test 𝒲 𝒜 

̂  ̂  ̂  

𝑇𝐾𝑤 3.7252 

(0.6489) 

10.9575 

(6.0334) 

0.6143 

(0.3752) 

0.1930 0.1409 0.8408 

𝐾𝑤 3.3631  

(0.6033) 

11.7882  

(5.3589) 

- 0.2109 0.1658 0.9722 
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(a)  Estimated pdf                                      (b) Estimated Survival function 

Figure 7. Estimated densities and survival functions of TKw and Kw models  

fitted to flood data  

 

 

   (a) 𝑇𝐾𝑤                                                           (b) 𝐾𝑤 

Figure. 8 P-P Plots of the (a) 𝑇𝐾𝑤 and (b) 𝐾𝑤  models fitted to flood data. 
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             (a) ℒ for α                                                           (b) ℒ for θ 

 
(c) ℒ for 𝜆 

Figure 9. The profile of the log-likelihood function for α, θ and λ for flood data 

Based on the plots of the estimated 𝑇𝐾𝑤 and 𝐾𝑤 densities the relative 

histogram of the flood data suggests that the fit of the proposed model performs 

better than the baseline distribution shown in Figure 7(a). Furthermore, the 

empirical survival function and the fitted survival functions are plotted in Figure 

7(b). By comparing the fitted models of these two distribution we have supporting 

evidence that the 𝑇𝐾𝑤 distribution provides a good fit for flood data. We have 

supporting evidence that the Kolmogorov-Smirnov (K-S) distance between the 

empirical and fitted 𝑇𝐾𝑤 distribution is smaller than the 𝐾𝑤 distribution. Table 3 

also indicates that the Cramér-von Mises test statistics and Anderson-Darling 

goodness statistics have the smallest values for the 𝑇𝐾𝑤 distribution for the flood 

data with regard to the 𝐾𝑤 distribution. Based on these three goodness-of-fit 

measures we conclude that the 𝑇𝐾𝑤 distribution provides a better fit than the 𝐾𝑤 

lifetime distribution. Figure 8 displays the P-P Plots of the 𝑇𝐾𝑤 distribution and 
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𝐾𝑤 distribution. The P-P Plot distance between the ab-line and the fitted model of 

the 𝑇𝐾𝑤 distribution and 𝐾𝑤 distribution are very similar and close to the 

baseline model. Figure 9 illustrates the profile of the log-likelihood function for 

the 𝑇𝐾𝑤 distribution with parameters 𝛼, 𝜃 and 𝜆 fitted to the flood data and 

exhibits the unique maximum for these parameters. Based on these results we 

conclude that the 𝑇𝐾𝑤 tends to provide a relatively better fit than the 𝐾𝑤 

distribution for the flood data.  

The second data set has been collected from Joint United Nations programme 

on HIV/ AIDS (UNAIDS), for Infants born to HIV+ women receiving a 

virological test for HIV within 2 months of birth. The data set consists of 906 

observations for the years 2009-13 and is freely available online at 

http://data.un.org/Data.aspx?d=UNAIDS&f=inID%3a41. The summary statistics 

for the 𝑇𝐾𝑤 and 𝐾𝑤 distributions for HIV data are given in Table 4.  

Table 4. Summary Statistics for the 𝑇𝐾𝑤 and Kw distributions for HIV data 

Distribution Median 
Coefficient of 

Quartile Deviation 

Bowley’s 

skewness 
Moors(ℳ) 

kurtosis 

𝑇𝐾𝑤 0.2002 1.3272 0.2754 1.1491 

𝐾𝑤 0.2146 1.3137 0.2529 1.0884 

 

The MLEs and the values of the maximized log-likelihoods for the 𝑇𝐾𝑤 and 

Kw distributions for HIV data are given in Table 5, with the MLEs of the 

unknown parameters and the corresponding standard errors of the 𝑇𝐾𝑤 and 𝐾𝑤 

distributions. The standard error estimates obtained using the observed 

information matrix appear to be smaller than the parameter estimates. In order to 

compare the distributions, we consider the AIC (Akaike Information Criterion) 

for the HIV/ AIDS data. These results indicate that the 𝑇𝐾𝑤 distribution provides 

better fit for the HIV/ AIDS data. Furthermore, we applied the LR statistics in 

order to verify which model fits better for the HIV data. The hypotheses to be 

tested are 𝐻0: 𝜔 = (α, 𝜃, λ)T versus 𝐻𝐴: 𝐻0 is not true, and the LR statistics 

reduces to 𝛬 = 2{𝑙(𝜔̂) − 𝑙(𝜔̃)}=52.8088, where 𝜔̂ is the MLE of 𝜔 under 𝐻0. 

The null hypothesis is rejected as the p-value=1.7048E-12 < 𝛼 = 0.05. 

Table 5. MLEs of the unknown Parameters for the HIV/ AIDS data with the 

corresponding standard errors in parenthesis and the goodness-of-fit 

measure AIC 

Distribution 
Parameter Estimates 

AIC 
̂  ̂  ̂  

𝑇𝐾𝑤 0.6724 

(0.0251) 

1.1222 

(0.0837) 

0.5491 

(0.0882) 

-633.605 

𝐾𝑤 0.6096  

(0.0237) 

1.3961  

(0.0629) 

- -607.201 

http://data.un.org/Data.aspx?d
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(a)  Estimated pdf                                      (b) Estimated Survival function 

Figure 10.  Estimated densities and survival functions of TKw and Kw models 

 fitted to HIV data  

 

        (a) 𝑇𝐾𝑤                                                      (b) 𝐾𝑤 

Figure 11. P-P Plots of the (a) 𝑇𝐾𝑤 and (b) 𝐾𝑤  models fitted to HIV data 

 

Finally, in order to assess whether the proposed model is appropriate for HIV 

data we display the visualization of the estimated 𝑇𝐾𝑤 and 𝐾𝑤 densities and the 

relative histogram for the HIV/ AIDS data suggests that the fit of the proposed 

model performs better than the baseline distribution shown in Figure 10(a). 

Furthermore, the plots of the empirical survival function and the fitted survival 

functions are shown in Figure 10(b). Both figures suggest that the 𝑇𝐾𝑤 
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distribution provides a good fit for HIV/ AIDS data. Moreover, the graphical 

comparison of the PP-Plots corresponding to these fits confirms our claim as 

demonstrated in Figure 11.  

10. Concluding remarks 

In this paper we have presented a new generalization of the 𝐾𝑤 distribution, 

called the 𝑇𝐾𝑤 distribution. This generalization is obtained by transforming the 

two parameter 𝐾𝑤 model through the quadratic rank transmuted map technique. 

The properties of the proposed distribution are discussed. We obtain the analytical 

shapes of the density and hazard functions of the 𝑇𝐾𝑤 distribution. We also 

consider mean deviations, Bonferroni and Lorenz curves and Rényi entropy. 

Maximum likelihood estimation is discussed within the framework of asymptotic 

log-likelihood inferences including confidence intervals. The three parameter 

𝑇𝐾𝑤 distribution produced monotonically increasing and decreasing hazard rates. 

In terms of the statistical significance of the model adequacy, the 𝑇𝐾𝑤 

distribution leads to a better fit than the 𝐾𝑤 distribution. 
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