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SOME EFFECTIVE ESTIMATION PROCEDURES 

UNDER NON-RESPONSE IN TWO-PHASE 

SUCCESSIVE SAMPLING 

G. N. Singh1, M. Khetan2, S. Maurya3 

ABSTRACT 

This work is designed to assess the effect of non-response in estimation of the 

current population mean in two-phase successive sampling on two occasions. 

Sub-sampling technique of non-respondents has been used and exponential 

methods of estimation under two-phase successive sampling arrangement have 

been proposed. Properties of the proposed estimation procedures have been 

examined. Empirical studies are carried out to justify the suggested estimation 

procedures and suitable recommendations have been made to the survey 

practitioners. 

Key words: non-response, successive sampling, two-phase sampling, mean 

square error, optimum replacement strategy. 

1. Introduction 

In collecting information through sample surveys, there may arise numerous 

problems; one of them is non-response. It frequently occurs in mail surveys, where 

some of the selected units may refuse to return back the filled in questionnaires. 

An estimate obtained from such an incomplete survey may be misleading, 

especially when the respondents differ significantly from the non-respondents, 

because the estimate may be a biased one. Hansen and Hurwitz (1946) suggested 

a technique of sub-sampling of non-respondents to handle the problem of non-

response. Cochran (1977) and Fabian and Hyunshik (2000) extended the Hansen 

and Hurwitz (1946) technique for the situation when besides the information on 

the character under study, information on auxiliary character is also available. 

Recently, Choudhary et al. (2004) Singh and Priyanka (2007), Singh and Kumar 
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(2009, 2010), Singh et al. (2011) and Garcia Luengo (2013) used the Hansen and 

Hurwitz (1946) technique for the estimation of population mean on the current 

occasion in two-occasion successive sampling.  

If the study character of a finite population is subject to change over time, a 

single occasion survey is insufficient. For such a situation successive sampling 

provides a strong tool for generating reliable estimates over different occasions. 

Sampling on successive occasions was first considered by Jessen (1942) in the 

analysis of farm data. The theory of successive (rotation) sampling was further 

extended by Patterson (1950), Eckler (1955), Rao and Graham (1964), Sen (1971, 

1972, 1973), Gupta (1979), Das (1982) and Singh and Singh (2001) among others.  

In sample surveys, the use of auxiliary information has shown its significance 

in improving the precision of estimates of unknown population parameters. When 

the population parameters of auxiliary variable are unknown before start of the 

survey we go for two-phase (double) sampling structure to provide the reliable 

estimates of the unknown population parameters. Singh and Singh (1965) used 

two-phase (double) sampling for stratification on successive occasions. Recently, 

Singh and Prasad (2011) and Singh and Homa (2014) applied two-phase sampling 

scheme with success in the estimation of the current population mean in two-

occasion successive sampling.  

The aim of the present work is to study the effect of non-response when it 

occurs on various occasions in two-occasion successive (rotation) sampling. 

Recently, Bahl and Tuteja (1991), Singh and Vishwakarma (2007) and Singh and 

Homa (2013) suggested exponential type estimators of population mean under 

different realistic situations. Motivated with the dominating nature of these 

estimators and utilizing the information on a stable auxiliary variable with 

unknown population mean over both occasions, some new exponential methods 

of estimation have been proposed to estimate the current population mean in two-

phase successive (rotation) sampling arrangement.. The Hansen and Hurwitz 

(1946) technique of sub-sampling of non-respondents has been used to reduce the 

negative effects of non-response. Properties of the proposed estimators are 

examined and their empirical comparisons are made with the similar estimator and 

with the natural successive sampling estimator when complete response is 

observed on both occasions. Results are interpreted and followed by suitable 

recommendations. 

2. Sample structures and symbols 

Let U = (U1, U2, -, -, -, UN) be the finite population of N units, which has been 

sampled over two occasions. The character under study is denoted by x(y) on the 

first (second) occasion respectively. It is assumed that the non-response occurs 

only in study variable x(y) and information on an auxiliary variable z (stable over 

occasion), whose population mean is unknown on both occasions, is available and 

positively correlated with study variable. Since we have assumed that non-
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response occurs on both occasions, the population can be divided into two classes 

– those who will respond at the first attempt and those who will not on both 

occasions. Let the sizes of these two classes be 
*

1N  and 
*

2N respectively on the 

first occasion and the corresponding sizes on the current (second) occasion be N1 

and N2, respectively. To furnish a good estimate of the population mean of the 

auxiliary variable z on the first occasion, a preliminary sample of size n'  is drawn 

from the population by the simple random sampling without replacement 

(SRSWOR) method, and information on z is collected. Further, a second-phase 

sample of size n ( n' > n) is drawn from the first-phase (preliminary) sample by the 

SRSWOR method and henceforth the information on the study character x is 

gathered. We assume that out of selected n units, n1 units respond and n2 unit do 

not respond. Let n2h denote the size of sub-sample drawn from the non-responding 

units in the sample on first occasion. A random sub-sample sm of m = n  units is 

retained (matched) from the responding units on the first occasion for its use on 

the second occasion under the assumption that these units will give complete 

response on the second occasion as well. Once again, to furnish a fresh estimate 

of the population mean of the auxiliary variable z on the second occasion, a 

preliminary (first-phase) sample of size u'  is drawn from the non-sampled units 

of the population by the SRSWOR method and information on z is collected. 

A second-phase sample of size u = (n-m) = nμ ( u'  > u) is drawn from the first-

phase (preliminary) sample by the SRSWOR method and the information on study 

variable y is gathered. It is obvious that the sample size on the second occasion is 

also n. Here λ and μ (λ+μ =1) are the fractions of the matched and fresh samples, 

respectively, on the second (current) occasion. We assume that in the unmatched 

portion of the sample on the current (second) occasion u1 units respond and u2 

units do not respond. Let u2h denote the size of the sub-sample drawn from the 

non-responding units in the fresh sample (su) on the current (second) occasion. 

Hence, onwards, we use the following notations: 

X, Y, Z : The population means of the variables x, y and z respectively. 

1 2 h 1 2hm u u u n n n m m uy , y , y , y , x , x , x , x , z , z : The sample means of the 

respective variables based on the sample sizes shown in suffices. 
' '

n uz , z : The sample means of the auxiliary variable z and based on the first-

phase samples of sizes u' and n' respectively. 

yx xz yzρ , ρ , ρ : The population correlation coefficients between the variables 

shown in suffices. 
2 2 2

x y zS , S , S : The population variances of the variables x, y and z respectively.  

2 2

2x 2yS ,S : The population variances of the variables x and y respectively in the 

non-responding units of the population. 

x y zC , C , C : The coefficients of variation of the variables x, y and 

z respectively.  
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2x 2yC , C : The coefficients of variation of the variables x and y in the non-

responding units of the population. 
*

* 2N
W =

N
: The proportion of non-responding units in the population at first 

occasion.

 

2N
W=

N
: The proportion of non-responding units in the population on 

the current (second) occasion. 

2 2
1 2

2h 2h

n u
f  =  and f  =

n u
. 

3. Formulation of estimation strategy 

To estimate the population mean Y on the current (second) occasion, two 

different estimators are considered – one estimator 
uT based on sample su of size 

u drawn afresh on the second occasion and the second estimator 
mT  based on the 

sample sm of size m, which is common to both occasions. Since the non-response 

occurs in the samples sn and su, we have used the Hansen and Hurwitz (1946) 

technique to propose the estimators Tu and Tm. Hence, the estimators Tu and Tm 

for estimating the current population mean Y  are formulated as  

' * '
* u u n m n

u u m m' *

u u n m m

z -z x -x z
T  =  y exp  and T  =  y exp

z +z x +x z

    
    

   
 

where 

1 2h 1 2h1 n 2 n 1 u 2 u* *

n u

n x +n x u y +u y
x  =  and  y  = .

n u
 

Combining the estimators Tu and Tm, finally we have the following estimator 

of population mean Y on the current (second) occasion 

                                             u mT = φ T + 1-φ T                                                    (3.1) 

where φ (0 φ 1)   is the unknown constant (scalar) to be determined under 

certain criterions. 

4. Properties of the estimator T 

Since the estimators 
 u  mT  and T are exponential type estimators, the 

population mean Y  are biased, therefore the resulting estimator T defined in 
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equation (3.1) is also a biased estimator of Y . The bias B (.) and the mean square 

error M (.) of the estimator T are derived up to the first order of approximations 

using the following transformations: 

*

m 1 u 2 u 3 m 4 n 5

' * '

n 6 n 7 m 8 u 9 u 10

y (1 e )Y,   y (1 e )Y, y (1 e )Y,  x (1 e )X,  x (1 e )X, 

x (1 e )X,  x (1 e )X, z (1 e )Z, z (1 e )Z,  z (1 e )Z, 

         

         
 

'

n 11z (1 e )Z,   such that 
iE(e ) = 0 , 

ie <1  i = 1, 2, 3, - - -, 11. Under the 

above transformations, the estimators
u  mT and T  take the following forms: 

-1

u 3 10 9 10 9

1 1
T =Y(1+e )exp (e -e ) 1+ (e +e )

2 2

  
  

   

        (4.1) 

and       
-1

-1

m 1 11 8 7 4 7 4

1 1
T =Y(1+e )(1+e )(1+e ) exp (e -e ) 1+ (e +e )

2 2

  
  

   

         (4.2) 

Thus, we have the following theorems: 

 

Theorem 4.1.  

Bias of the estimator T to the first order of approximations is obtained as  

u  mB(T) = φB(T )+(1-φ)B(T )                      (4.3) 

where   

2

u z yz y z'

1 1 3 1
B(T ) = Y - C - ρ C C

u u 8 2

  
  
  

 

and                                    

 

 

2

x xz x z xy y x

m

* 2 21
2x z yz y z'

1 1 3 1 1
- C + ρ C C - ρ C C

m n 8 2 2
B T  =Y 

(f -1)1 1 1
- W C + - C -ρ C C
8 n m n

   
   
   
 

  
    

             

Proof 

The bias of the estimator T is given by  

                  u mB(T) = E T-Y  = φE(T -Y) + (1-φ) E(T -Y)        

                  u m= φB(T )+ 1-φ B(T )         (4.4)  

where   

u  u  m  mB(T ) = E T -Y  and B(T ) = E T -Y .        
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Substituting the expressions of Tu, and Tm from equations (4.1) and (4.2) in 

equation (4.4), expanding the terms binomially and exponentially, taking 

expectations and retaining the terms up to the first  order of sample sizes, we have 

the expressions for the bias of the estimator T as described in equation (4.3). 

 

Theorem 4.2.  

The mean square error of the estimator T to the first order of approximations 

is obtained as   

               
22

u mM( T) = φ M T + 1-φ M T +2φ 1-φ C        (4.5) 

where  

 
2 22

u u yz y'

W(f -1)1 1 1 1 1
M(T ) = E T -Y  = - -ρ + - + S  

u u 4 u N u

     
     
     

      (4.6) 

 
 

xz yx
2 2

m m y

*1
yz'

1 1 1 1 1
-  +ρ -ρ + -

m n 4 m N
M(T ) = E T -Y  = S

(f -1)1 1 1
+ - 1 -2ρ + W

m n 4 n

      
      
      

   
   
    

         (4.7)  

and 

  
2

y

u m

S
C = E T -Y T -Y  =  -

N
 
 

.                  (4.8) 

 

Proof 

It is obvious that the mean square error of the estimator T is given by    

    
22

u mM(T) = E T-Y  = E φ T -Y + 1-φ T -Y       

          
2 222

u m u m= φ E T -Y + 1-φ E T -Y +2φ 1-φ E T -Y T -Y 
   

             
     

22

u m= φ M(T )+ 1-φ M T +2φ 1-φ C
          

(4.9) 

 

Substituting the expressions of Tu, and Tm from equations (4.1)-(4.2) in 

equation (4.9), expanding the terms binomially and exponentially, taking 

expectations and retaining the terms up to the first order of sample sizes, we have 

the expression of the mean square error of the estimator T as it is given in equation 

(4.5).  
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Remark 4.1. 

The expression of the mean square error in the equation (4.5) is derived under 

the assumptions (i) that the coefficients of variation of non-response class are 

similar to that of the population, i.e. 
2x x 2y y  C = C  and C = C  , and (ii) since x and 

y are the same study variable over two occasions and z is the auxiliary variable 

correlated to x and y, looking at the stability nature of the coefficients of variation, 

viz. Reddy (1978), the coefficients of variation of the variables x, y and z in the 

population are considered equal, i.e. 
x y zC = C = C .  

5. Minimum mean square error of the estimator T 

Since the mean square error of the estimator T in equation (4.5) is the function 

of unknown constant φ, it is minimized with respect to φ, and subsequently the 

optimum value of φ is obtained as 

        m

u m
opt

M(T )-C
φ  = 

M(T )+M(T )-2C
 .                               (5.1) 

Now, substituting the value of 
opt

φ   in equation (4.5), we get the optimum 

mean square error of T as 

    
2

u m
opt

u m

M(T ).M(T )-C
M(T) = .

M(T )+M(T )-2C
                      (5.2) 

Further, substituting the values from equations (4.6)-(4.8) in equation (5.2), 

we get the simplified value of M (T)opt  which is given below: 

    

22
y3 2 1

opt 2

6 5 4

Sa +μa +μ a
M(T)  = 

a +μa +μ a n
.                    (5.3)  

where                                                                                                    
 

2 2 2 2

1 2 3 4 5 6 

*

1 0 0 2 2 1 1 1

*

2 1 1 0 yz 1 xz xy

a  = ac+k f , a  = ad+cb-k f , a  = bd, a  = c-a+2kf, a  = a-b+d-2kf, a = b,  

1
a = -(f+t a ), b= a +1+(f -1)W, c = t d +c +f- (f -1)W , 

4

1 1 1
d = 1-f+(1-t )d + (f -1)W , k =-1, a = -ρ , c = +ρ -ρ ,

4 4 4
1 yz

2 2
1 2 1 2' '

2h 2h

 d = 1-2ρ ,

n un n n
f = ,f  =  , f  = , t  =  and t  = .

N n u u n
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6. Optimum replacement strategy 

Since the mean square error of the estimator T given in equation (5.3) is the 

function of μ (fractions of the sample to be drawn afresh at the second occasion), 

the optimum value of μ is determined to estimate the population mean Y with 

maximum precision and lowest cost. To determine the optimum value of μ, we 

minimized the mean square error of the estimator T given in equation (5.3) with 

respect to μ, which results in quadratic equation in μ and the respective solutions 

of μ,  say μ̂ , are given below: 
2

1 2 3p μ +2p μ+p =0
            (6.1) 

                         

2

2 2 1 3

1

-p ± p -p p
μ̂ = 

p
                                  

(6.2) 

where   

1 1 5 2 4 2 1 6 3 4 3 2 6 3 5p  = a a -a a , p  = a a -a a  and p  = a a -a a .  

From equation (6.2) it is obvious that real values of μ̂  exist iff the quantities 

under square root are greater than or equal to zero. For any combinations of 

correlations ρyx, ρxz and ρyz, which satisfy the conditions of real solutions, two real 

values of μ̂  are possible. Hence, while choosing the values of μ̂ , it should be 

remembered that ˆ0 μ 1  . If both the values of μ̂ satisfy the stated condition, we 

chose the smaller value of μ̂ as it will help in reducing the cost of the survey.  

All other values of μ are inadmissible. Substituting the admissible value of μ̂ , say 
(0)μ , from equation (6.2) into equation (5.3), we have the optimum value of the 

mean square error of T, which is shown below: 

2(0) (0)2
y0 3 2 1

opt (0) (0)2

6 5 4

Sa +μ a +μ a
M(T )  = 

a +μ a +μ a n
.            (6.3) 

7. Some special cases 

Case 1: When non-response occurs only at first occasion 

When non-response occurs only at first occasion, the estimator for the mean 

Y  on the current occasion may be obtained as 

 * * *

 1u mT  = φ ξ + 1-φ T             (7.1) 
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where 
'

u u
1u u '

u u

z -z
ξ  =  y exp

z +z

 
 
 

 and Tm is defined in section 3, where * *φ  (0 φ 1)   is 

the unknown constant (scalar) to be determined under certain criterions.   

7.1. properties of the estimator T*  

 

Since the estimator T* is exponential type estimator, it is biased for  the 

population mean Y . The bias B (.) and the mean square error M (.) of the estimator 

T*
 are derived up to the first order of approximations similar to that of the 

estimator T. 

 

Theorem 7.1. 

The bias of the estimator T* to the first order of approximations is obtained as  
* * *

1u  mB(T ) = φ B(ξ )+(1-φ )B(T )             (7.2) 

where   

2

1u z yz y z'

1 1 3 1
B(ξ ) = Y - C - ρ C C

u u 8 2

  
  
  

 

and B(Tm ) is defined in section 4.                        

 

Theorem 7.2. 

The mean square error of the estimator T* to the first order of approximations 

is obtained as   

       
2

* *2 * * * *

1u mM( T ) = φ M ξ + 1-φ M T +2φ 1-φ C       (7.3) 

where 

  2

1u 1u yz y'

1 1 1 1 1
M(ξ ) = E ξ -Y = - -ρ + - S  

u u 4 u N

     
     
     

      (7.4) 

                                 
2

y*

1u m

S
C  = E ξ -Y T -Y  =  -

N
 
            (7.5) 

and M(Tm ) is defined in section 4.                                                                        

Since the mean square error of the estimator T*
 in equation (7.3) is the function 

of unknown constant φ*
, it is minimized with respect to φ*

 , and subsequently the 

optimum value of φ*
 is obtained as    

*
* m

*

1u m
opt

M(T )-C
φ  = 

M(ξ )+M(T )-2C
.                                           (7.6) 

LitkowiecR
Pływające pole tekstowe
2
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Now substituting the value of *

opt
φ  in equation (7.6), we get the optimum 

mean square error of the estimator T* as 

*2
* 1u m

opt *

1u m

M(ξ ).M(T )-C
M(T ) =

M(ξ )+M(T )-2C
,                           (7.7) 

Further, substituting the values from equations (4.7), (7.4) and (7.5) in 

equation (7.7), we get the simplified value of M (T*)opt , which is given below: 

2* * * *2
y* 3 2 1

opt * * * *2

6 5 4

Sa +μ a +μ a
M(T )  = 

a +μ a +μ a n
                            (7.8) 

where
 * * 2 2 * * * * * *

2 3 5 6 0a  = ad+cb -k f ,   a  = b d,   a  = a-b +d-2kf,   a = b , b = a 1,  a1 and a4 are 

defined in section 5. 

To determine the optimum values of μ*, we minimized the mean square error 

of the estimator T* given in equation (7.8) with respect to μ* , which results in 

quadratic equation in μ*
 and the respective solutions of 

*μ , say 
*μ̂ , are given 

below: 
* *2 * * *

1 2 3p μ +2p μ +p =0
                              (7.9) 

* *2 * *

2 2 1 3*

*

1

-p ± p -p p
μ̂  = 

p
                                

(7.10)   

where 
* * * * * * * * * * *

1 1 5 2 4 2 1 6 3 4 3 2 6 3 5p  = a a -a a , p  = a a -a a  and p  = a a -a a .  

Substituting the admissible value of 
*μ̂ , say *(0)μ , from equation (7.10) into 

equation (7.8), we have the optimum value of the mean square error of the 

estimator T* , which is shown below: 

               

2* *(0) * *(0)2
y*0 3 2 1

opt * *(0) * *(0)2

6 5 4

Sa +μ a +μ a
M(T )  = 

a +μ a +μ a n
 .                     (7.11)  

Case 2: When non-response occurs only at second occasion 

When non-response occurs only at current (second) occasion, the estimator 

for the mean Y   at current occasion may be obtained as 

 ** ** **

 u 1mT  = φ T + 1-φ ξ                               (7.12) 

where 
'

n m n
1m m

n m m

x -x z
ξ =  y exp

x +x z

  
  
  

and Tu is defined in section 3,  
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where 
** **φ  (0 φ 1)   is the unknown constant (scalar) to be determined under 

certain criterions.   

7.2. Properties of the estimator T**  

Since the estimator T** is exponential type estimator, it is biased for the 

population mean Y . The bias B (.) and the mean square error M (.) of the estimator 

T**
 are derived up to the first order of approximations similar to that of the 

estimator T. 

 

Theorem 7.3. 

The bias of the estimator T** to the first order of approximations is obtained 

as  
** ** **

u 1mB(T ) = φ B(T )+(1-φ )B(ξ )          (7.13) 

where 

   2 2

1m x xz x z xy y x z yz y z'

1 1 3 1 1 1 1
B ξ  =Y - C + ρ C C - ρ C C + - C -ρ C C

m n 8 2 2 m n

     
     
     

 

and B(Tu ) is defined in section 4. 

 

Theorem 7.4. 

The mean square error of the estimator T** to the first order of approximations 

is obtained as   

                  
2

** **2 ** ** ** **

u 1mM( T ) = φ M T + 1-φ M ξ +2φ 1-φ C

    (7.14)        

where 

   
2 2

1m 1m xz yx yz y'

1 1 1 1 1 1 1
M(ξ ) = E ξ -Y  = -  +ρ ρ + - + - 1 -2ρ S

m n 4 m N m n

        
        

        

             (7.15) 

  
2

y**

u 1m

S
C  = E T -Y ξ -Y  =  -

N
 
 

                           (7.16)   

and M(Tu ) is defined in section 4.                                                                        

Since the mean square error of the estimator T**
 in equation (7.14) is the 

function of unknown constant φ**
, it is minimized with respect to φ**

 and 

subsequently the optimum value of φ**
 is obtained as  

**
** 1m

**

u 1m
opt

M(ξ )-C
φ  = 

M(T )+M(ξ )-2C
.                     (7.17) 
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Now substituting the value of **

optφ   in equation (7.17), we get the optimum 

mean square error of T** as 
**2

** u 1m
opt **

u 1m

M(T ).M(ξ )-C
M(T ) =

M(T )+M(ξ )-2C
               (7.18) 

Further, substituting the values from equations (4.6), (7.15) and (7.16) in 

equation (7.18), we get the simplified value of M (T**)opt  which is given below: 

2** ** ** **2 **
y** 3 2 1

opt ** ** **2 **

6 5 4

Sa +μ a +μ a
M(T )  = 

a +μ a +μ a n
      (7.19)

 

where 

** * 2 2 ** * * 2 2 ** * ** * ** *

1 2 3 4 5

* *

6 1 2 1 1 2

a  = ac +k f ,   a  = ad +c b-k f ,   a  = bd ,   a  = c -a+2kf, a  = a-b+d -2kf,

a = b, c  = f+c +t d ,   d  = (1-f)+d (1-t ).
 

To determine the optimum values of μ**, we minimized the mean square error 

of the estimator T* given in equation (7.19) with respect to μ** , which results in 

quadratic equation in μ**
 , and the respective solutions of μ**  , say **μ̂ , are given 

below: 
** **2 ** ** **

1 2 3p μ +2p μ +p =0
               (7.20) 

              
** **2 ** **

2 2 1 3**

**

1

-p ± p -p p
μ̂  = 

p
                          

(7.21)   

where 
** ** ** ** ** ** ** ** ** ** ** ** **

1 1 5 2 4 2 1 6 3 4 3 2 6 3 5p  = a a -a a , p  = a a -a a  and p  = a a -a a .  

Substituting the admissible values of 
**μ̂ , say 

**(0)μ , from equation (7.21) 

into equation (7.19), we have the optimum value of the mean square error of T** , 

which is shown below: 

               

2** **(0) ** **(0)2 **
y**0 3 2 1

opt **(0) ** **(0)2 **

6 5 4

Sa +μ a +μ a
M(T )  = 

a +μ a +μ a n
.                            (7.22) 

8. Comparison of efficiencies  

The percentage relative loss in efficiencies of the estimator T, T* and T** is 

obtained with respect to the similar estimator and natural successive sampling 

estimator when the non-response is not observed on any occasion. The estimator 

1ξ  is defined under similar circumstances as the estimator T but under complete 

response, whereas the estimator 2ξ   is the natural successive sampling estimator, 

and they are given as  

 j j ju j jmξ  = ψ ξ + 1-ψ ξ   ; (j= 1, 2)                            (8.1) 
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where 
' '

u u n m n
1u u 2u u 1m m 2m m yx n m'

u u n m m

z -z x -x z
ξ  =  y exp , ξ  = y , ξ =  y exp , ξ  = y +β (x -x )

z +z x +x z

    
    

   

 

Proceeding on a similar line as discussed for the estimator T the optimum 

mean square errors of the estimators 
jξ  (j=1,2) are derived as  

2' '2
y0 3 2 1

1 opt ' '2

6 5 4

Sb +μ b +μ b
M(ξ )  = 

b +μ b +μ b n

 
 
 

                     (8.2) 

and       

 
2

y0 2

2 opt xy

S1
M(ξ )  = 1+ (1-ρ ) -f .

2 n

 
 
 

 

      (8.3) 

where 

2

2 2 1 3'

1

-q ± q -q q
μ =

q
(fraction of the fresh sample for the estimator 

1ξ ), 

* 2 2 * * * 2 2 * * * * *

1 2 3 4 5

*

6 1 1 5 2 4 2 1 6 3 4 3 2 6 3 5

b = ac +k f ,   b = ad +c b -k f ,   b = b d ,   b = c -a+2kf,   b = a-b +d -2kf,

b = b , q = b b -b b , q = b b -b b  and q = b b -b b .
 

 

Remark 8.1. 

To compare the performances of the estimators * **T, T  and T  with respect to 

the estimators 
jξ (j=1, 2), we introduce the following assumptions: 

(i) ρxz = ρyz , which is an intuitive assumption, also considered by Cochran 

(1977) and Feng and Zou (1997), (ii) W=W* (iii) f1=f2 . 

The percentage relative losses in the precision of the estimators * **T, T  and T

with respect to 
jξ  (j=1, 2) under their respective optimality conditions are given 

by 

   

 

   

 

(0)

(0) (0)

*(0)
jj optoptopt opt*

j j
*

opt opt

M T -M ξM T -M ξ
L  = ×100, L  = ×100 

M T M T

 

   

 
(0)

**(0)

j optopt**

j
**

opt

M T -M ξ
and L  = ×100; (j=1, 2)

M T

 

For N = 5000,  n'  = 1000, u'  = 1000,    n = 500,  t1=0.50 ,t2=0.50, f=0.1 and 

different choices of f1, yx and yz , Tables 1-6 give the optimum values of 
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(0) *(0) **(0)μ ,μ ,μ  and percentage relative losses * **

j j jL , L  and L  (j=1, 2) in the precision 

of the estimators T ,T* and T** with respect to estimators 
jξ (j=1, 2). 

Table 1. Percentage relative loss L1 in the precision of the estimator T with respect 

to 
1ξ  

 

Table 2. Percentage relative loss L2 in the precision of the estimator T with respect 

to 
2ξ  

 

W 0.05 0.10 0.15 0.20 

yx f2 yz (0)μ  
1L  (0)μ  

1L  (0)μ  
1L  (0)μ  

1L  

0.6 1.5 0.6 

0.7 

0.8 

0.9 

0.8640 

0.4617 

0.3161 

0.2404 

3.2181 

2.5435 

2.5098 

2.7911 

0.7182 

0.3950 

0.2740 

0.2106 

5.9332 

4.7480 

4.7029 

5.2223 

0.5829 

0.3298 

0.2320 

0.1803 

8.2004 

6.6502 

6.6173 

7.3438 

0.4580 

0.2666 

0.1903 

0.1495 

10.0748 

8.2850 

8.2870 

9.1988 

2.0 0.6 

0.7 

0.8 

0.9 

0.7182 

0.3950 

0.2740 

0.2106 

5.9332 

4.7480 

4.7029 

5.2223 

0.4580 

0.2666 

0.1903 

0.1495 

10.0748 

8.2850 

8.2870 

9.1988 

0.2385 

0.1472 

0.1087 

0.0880 

12.8584 

10.8815 

11.0137 

12.2538 

0.0558 

0.0385 

0.0312 

0.0277 

14.6753 

12.7754 

13.0986 

14.6331 

0.8 1.5 0.6 

0.7 

0.8 

0.9 

0.5890 

0.4775 

0.3985 

0.3381 

2.4511 

2.4663 

2.6439 

3.0190 

0.5527 

0.4511 

0.3787 

0.3234 

4.6664 

4.7018 

5.0344 

5.7243 

0.5179 

0.4254 

0.3591 

0.3085 

6.6733 

6.7339 

7.2037 

8.1616 

0.4844 

0.4004 

0.3398 

0.2936 

8.4959 

8.5863 

9.1796 

10.3684 

2.0 0.6 

0.7 

0.8 

0.9 

0.5527 

0.4511 

0.3787 

0.3234 

4.6664 

4.7018 

5.0344 

5.7243 

0.4844 

0.4004 

0.3398 

0.2936 

8.4959 

8.5863 

9.1796 

10.3684 

0.4214 

0.3525 

0.3024 

0.2640 

11.6712 

11.8338 

12.6435 

14.2120 

0.3636 

0.3077 

0.2667 

0.2353 

14.3348 

14.5833 

15.5811 

17.4529 

W 0.05 0.10 0.15 0.20 

yx f2 yz (0)μ  2L  (0)μ  2L  (0)μ  2L  (0)μ  2L  

0.6 1.5 0.6 

0.7 

0.8 

0.9 

0.8640 

0.4617 

0.3161 

0.2404 

-6.7964 

-19.2197 

-38.1243 

-65.7067 

0.7182 

0.3950 

0.2740 

0.2106 

-3.8003 

-16.5229 

-35.0170 

-61.5624 

0.5829 

0.3298 

0.2320 

0.1803 

-1.2986 

-14.1959 

-32.3048 

-57.9460 

0.4580 

0.2666 

0.1903 

0.1495 

0.7698 

-12.1961 

-29.9392 

-54.7839 

2.0 0.6 

0.7 

0.8 

0.9 

0.7182 

0.3950 

0.2740 

0.2106 

-3.8003 

-16.5229 

-35.0170 

-61.5624 

0.4580 

0.2666 

0.1903 

0.1495 

0.7698 

-12.1961 

-29.9392 

-54.7839 

0.2385 

0.1472 

0.1087 

0.0880 

3.8414 

-9.0197 

-26.0759 

-49.5762 

0.0558 

0.0385 

0.0312 

0.0277 

5.8463 

-6.7029 

-23.1220 

-45.5204 

0.8 1.5 0.6 

0.7 

0.8 

0.9 

0.5890 

0.4775 

0.3985 

0.3381 

2.0316 

-11.1328 

-29.5093 

-56.2099 

0.5527 

0.4511 

0.3787 

0.3234 

4.2565 

-8.5855 

-26.3293 

-51.8524 

0.5179 

0.4254 

0.3591 

0.3085 

6.2720 

-6.2701 

-23.4436 

-47.9266 

0.4844 

0.4004 

0.3398 

0.2936 

8.1025 

-4.1593 

-20.8151 

-44.3720 

2.0 0.6 

0.7 

0.8 

0.9 

0.5527 

0.4511 

0.3787 

0.3234 

4.2565 

-8.5855 

-26.3293 

-51.8524 

0.4844 

0.4004 

0.3398 

0.2936 

8.1025 

-4.1593 

-20.8151 

-44.3720 

0.4214 

0.3525 

0.3024 

0.2640 

11.2914 

-0.4591 

-16.2073 

-38.1811 

0.3636 

0.3077 

0.2667 

0.2353 

13.9665 

2.6738 

-12.2995 

-32.9609 
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Table 3. Percentage relative loss *

1L  in the precision of the estimator T* with 

respect to 
1ξ  

Note: ‘*’ indicates 
*(0)

μ does not exist. 

 

Table 4. Percentage relative loss *

2L in the precision of the estimator T* with 

respect to 
2ξ  

Note: ‘*’ indicates 
*(0)

μ does not exist. 

W 0.05 0.10 0.15 0.20 

ρyx f2 yz *(0)μ  
*

1L  *(0)μ  
*

1L  *(0)μ  
*

1L  *(0)μ  
*

1L  

0.6 1.5 0.6 

0.7 

0.8 

0.9 

* 

0.5489 

0.3748 

0.2828 

- 

0.1481 

0.3426 

0.5457 

* 

0.5667 

0.3911 

0.2961 

- 

0.2827 

0.6617 

1.0599 

* 

0.5832 

0.4065 

0.3089 

- 

0.4057 

0.9596 

1.5452 

* 

0.5984 

0.4212 

0.3212 

- 

0.5185 

1.2385 

2.0041 

2.0 0.6 

0.7 

0.8 

0.9 

* 

0.5667 

0.3911 

0.2961 

- 

0.2827 

0.6617 

1.0599 

* 

0.5984 

0.4212 

0.3212 

- 

0.5185 

1.2385 

2.0041 

* 

0.6258 

0.4484 

0.3445 

- 

0.7180 

1.7458 

2.8508 

* 

0.6497 

0.4732 

0.3663 

- 

0.8890 

2.1954 

3.6142 

0.8 1.5 0.6 

0.7 

0.8 

0.9 

0.6356 

0.5141 

0.4277 

0.3613 

0.1025 

0.2075 

0.3345 

0.4977 

0.6443 

0.5234 

0.4368 

0.3698 

0.1997 

0.4057 

0.6552 

0.9754 

0.6525 

0.5324 

0.4456 

0.3780 

0.2920 

0.5951 

0.9628 

1.4345 

0.6604 

0.5411 

0.4542 

0.3861 

0.3798 

0.7764 

1.2582 

1.8759 

 2.0 0.6 

0.7 

0.8 

0.9 

0.6443 

0.5234 

0.4368 

0.3698 

0.1997 

0.4057 

0.6552 

0.9754 

0.6604 

0.5411 

0.4542 

0.3861 

0.3798 

0.7764 

1.2582 

1.8759 

0.6752 

0.5574 

0.4705 

0.4016 

0.5430 

1.1163 

1.8150 

2.7098 

0.6887 

0.5727 

0.4859 

0.4163 

0.6916 

1.4292 

2.3308 

3.4842 

W 0.05 0.10 0.15 0.20 

yx f2 yz *(0)μ  
*

2L  *(0)μ  
*

2L  *(0)μ  
*

2L  *(0)μ  
*

2L  

0.6 1.5 0.6 

0.7 

0.8 

0.9 

* 

0.5489 

0.3748 

0.2828 

- 

-22.1500 

-41.1948 

-69.5345 

* 

0.5667 

0.3911 

0.2961 

- 

-21.9853 

-40.7427 

-68.6579 

* 

0.5832 

0.4065 

0.3089 

- 

-21.8349 

-40.3205 

-67.8305 

* 

0.5984 

0.4212 

0.3212 

- 

-21.6969 

-39.9255 

-67.0482 

2.0 0.6 

0.7 

0.8 

0.9 

* 

0.5667 

0.3911 

0.2961 

- 

-21.9853 

-40.7427 

-68.6579 

* 

0.5984 

0.4212 

0.3212 

- 

-21.6969 

-39.9255 

-67.0482 

* 

0.6258 

0.4484 

0.3445 

- 

-21.4529 

-39.2068 

-65.6050 

* 

0.6497 

0.4732 

0.3663 

- 

-21.2436 

-38.5697 

-64.3036 

0.8 1.5 0.6 

0.7 

0.8 

0.9 

0.6356 

0.5141 

0.4277 

0.3613 

-0.3271 

-13.7064 

-32.5814 

-60.2711 

0.6443 

0.5234 

0.4368 

0.3698 

-0.2294 

-13.4806 

-32.1549 

-59.5015 

0.6525 

0.5324 

0.4456 

0.3780 

-0.1367 

-13.2648 

-31.7456 

-58.7621 

0.6604 

0.5411 

0.4542 

0.3861 

-0.0486 

-13.0583 

-31.3527 

-58.0511 

2.0 0.6 

0.7 

0.8 

0.9 

0.6443 

0.5234 

0.4368 

0.3698 

-0.2294 

-13.4806 

-32.1549 

-59.5015 

0.6604 

0.5411 

0.4542 

0.3861 

-0.0486 

-13.0583 

-31.3527 

-58.0511 

0.6752 

0.5574 

0.4705 

0.4016 

0.1153 

-12.6709 

-30.6119 

-56.7079 

0.6887 

0.5727 

0.4859 

0.4163 

0.2646 

-12.3144 

-29.9258 

-55.4606 
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Table 5. Percentage relative loss **

1L in the precision of the estimator T** with 

respect to 
1ξ  

Note: ‘*’ indicates **(0)
μ does not exist. 

 

Table 6. Percentage relative loss **

2L  in the precision of the estimator T** with 

respect to 
2ξ  

Note: ‘*’ indicates 
**(0)

μ does not exist. 

 

W 0.05 0.10 0.15 0.20 

ρyx f2 yz **(0)μ  
**

1L  **(0)μ  
**

1L  **(0)μ  
**

1L  **(0)μ  
**

1L  

0.6 1.5 0.6 

0.7 

0.8 

0.9 

0.8515 

0.4376 

0.2964 

0.2250 

3.2070 

2.3271 

2.0922 

2.1709 

0.6634 

0.3382 

0.2305 

0.1772 

5.8247 

4.1649 

3.7242 

3.8495 

0.4538 

0.2312 

0.1600 

0.1257 

7.7922 

5.5017 

4.9027 

5.0602 

0.2206 

0.1163 

0.0847 

0.0707 

9.0181 

6.3162 

5.6273 

5.8180 

2.0 0.6 

0.7 

0.8 

0.9 

0.6634 

0.3382 

0.2305 

0.1772 

5.8247 

4.1649 

3.7242 

3.8495 

0.2206 

0.1163 

0.0847 

0.0707 

9.0181 

6.3162 

5.6273 

5.8180 

* 

* 

* 

* 

- 

- 

- 

- 

* 

* 

* 

* 

- 

- 

- 

- 

0.8 1.5 0.6 

0.7 

0.8 

0.9 

0.5785 

0.4668 

0.3883 

0.3288 

2.3221 

2.2289 

2.2786 

2.4916 

0.5297 

0.4284 

0.3573 

0.3038 

4.3575 

4.1749 

4.2545 

4.6280 

0.4801 

0.3891 

0.3254 

0.2776 

6.1286 

5.8623 

5.9574 

6.4507 

0.4298 

0.3490 

0.2925 

0.2504 

7.6552 

7.3121 

7.4125 

7.9947 

2.0 0.6 

0.7 

0.8 

0.9 

0.5297 

0.4284 

0.3573 

0.3038 

4.3575 

4.1749 

4.2545 

4.6280 

0.4298 

0.3490 

0.2925 

0.2504 

7.6552 

7.3121 

7.4125 

7.9947 

0.3272 

0.2666 

0.2245 

0.1934 

10.0446 

9.5722 

9.6656 

10.3593 

0.2222 

0.1818 

0.1538 

0.1333 

11.6475 

11.0819 

11.1591 

11.9082 

W 0.05 0.10 0.15 0.20 

yx f2 yz **(0)μ  
**

2L  **(0)μ  
**

2L  **(0)μ  
**

2L  **(0)μ  
**

2L  

0.6 1.5 0.6 

0.7 

0.8 

0.9 

0.8515 

0.4376 

0.2964 

0.2250 

-6.8086 

-19.4844 

-38.7159 

-66.7641 

0.6634 

0.3382 

0.2305 

0.1772 

-3.9201 

-17.2361 

-36.4038 

-63.9026 

0.4538 

0.2312 

0.1600 

0.1257 

-1.7490 

-15.6008 

-34.7341 

-61.8388 

0.2206 

0.1163 

0.0847 

0.0707 

-0.3963 

-14.6045 

-33.7074 

-60.5469 

2.0 0.6 

0.7 

0.8 

0.9 

0.6634 

0.3382 

0.2305 

0.1772 

-3.9201 

-17.2361 

-36.4038 

-63.9026 

0.2206 

0.1163 

0.0847 

0.0707 

-0.3963 

-14.6045 

-33.7074 

-60.5469 

* 

* 

* 

* 

- 

- 

- 

- 

* 

* 

* 

* 

- 

- 

- 

- 

0.8 1.5 0.6 

0.7 

0.8 

0.9 

0.5785 

0.4668 

0.3883 

0.3288 

1.9021 

-11.4032 

-29.9953 

-57.0593 

0.5297 

0.4284 

0.3573 

0.3038 

3.9462 

-9.1858 

-27.3668 

-53.6183 

0.4801 

0.3891 

0.3254 

0.2776 

5.7249 

-7.2633 

-25.1016 

-50.6823 

0.4298 

0.3490 

0.2925 

0.2504 

7.2581 

-5.6113 

-23.1658 

-48.1954 

2.0 0.6 

0.7 

0.8 

0.9 

0.5297 

0.4284 

0.3573 

0.3038 

3.9462 

-9.1858 

-27.3668 

-53.6183 

0.4298 

0.3490 

0.2925 

0.2504 

7.2581 

-5.6113 

-23.1658 

-48.1954 

0.3272 

0.2666 

0.2245 

0.1934 

9.6578 

-3.0360 

-20.1687 

-44.3867 

0.2222 

0.1818 

0.1538 

0.1333 

11.2676 

-1.3158 

-18.1818 

-41.8919 
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9. Interpretations of results 

The following conclusions may be drawn from Tables 1-6: 

(1) From Tables 1 and 5 it is clear that 

(a) For the fixed values of W, ρyx and f2, the values of (0) **(0)
μ μ,  decrease with 

the increasing values of ρyz. This implies that the higher the value of ρyz, the lower 

the fraction of a fresh sample required on the current occasion. 

(b) For the fixed values of W, ρyx and ρyz, the values of 
(0) **(0)

μ μ,  decrease and 

L1, 
**

1L increase with the increasing values of f2. 

(c) For the fixed values of W, ρyz and f2, no pattern is observed with the 

increasing values of ρyx.  

(d) For the fixed values of f2, ρyz and ρyx, the values of 
(0) **(0)

μ μ,  decrease and 

L1, 
**

1L increase with the increasing values of W. This behaviour shows that with 

the higher non-response rate one may require to draw the smaller sample on the 

current occasion, which reduces the cost of a survey. 

 

(2) From Tables 2 and 6 it may be seen that 

(a) For the fixed values of W, ρyx and f2, the values of 
(0) **(0)

μ μ,  and L2, 
**

2L

decrease with the increasing values of ρyz.. This implies that if one uses the 

information on highly correlated auxiliary variable, there is a significant gain in 

the precision of estimates. 

(b)  For the fixed values of W, ρyx and ρyz, the values of 
(0) **(0)

μ μ,  decrease 

and L2, 
**

2L increase with the increasing values of f2. 

(c) For the fixed values of W, ρyz and f2, the values of L2, 
**

2L increase with the 

increasing values of ρyx.  

(d) For the fixed values of f2, ρyz and ρyx, the values of 
(0) **(0)

μ μ,  decrease and 

L2, 
**

2L  increase with the increasing values of W. This pattern shows that the 

higher the non-response rate, the greater the loss. This behaviour is practically 

justified. 

 

(3) From Table 3 it is clear that 

(a) For the fixed values of W, ρyx and f2, the values of *(0)
μ  decrease and 

*

1L

increase with the increasing values of ρyz. This behaviour indicates that if the 

information on highly correlated auxiliary variable is available, it plays an 

important role in improving the precision of estimates.  

(b) For the fixed values of W, ρyx and ρyz, the values of 
*(0)

μ  and 
*

1L  increase 

with the increasing values of f2. 
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(c) For the fixed values of W, ρyz and f2, no pattern is visible with the increasing 

values of ρyx.  

(d) For the fixed values of f2, ρyz and ρyx, the values of 
*(0)

μ   and *

1L  increase 

with the increasing values of W.  

 

(4) From Table 4 it may be seen that 

(a) For the fixed values of W, ρyx and f2, the values of 
*(0)

μ  and *

2L decrease 

with the increasing values of ρyz. This implies that negative loss is observed due to 

the presence of high correlation between the auxiliary variables. This behaviour 

is highly desirable. 

(b) For the fixed values of W, ρyx and ρyz, the values of 
*(0)

μ  and *

2L increase 

with the increasing values of f2. This indicates that if a smaller size of sub-sample 

is chosen, the loss in precision increases, as it was expected. 

(c) For the fixed values of W, ρyz and f2 no pattern is seen with the increasing 

values of ρyx.  

(d) For the fixed values of f2, ρyz and ρyx, the values of 
*(0)

μ  and *

2L increase 

with the increasing values of W.  

10. Conclusions and recommendations 

It may be seen from the above tables that for all cases the percentage relative 

loss in precisions is observed wherever the optimum value of μ exists, when non-

response occurs on both occasions. From Tables 1, 3 and 5, it is seen that the loss 

is present due to the presence of non-response on each occasion, but the negative 

impact of non-response is very low, which justifies the use of Hansen and Hurwitz 

(1946) technique in the proposed estimation procedures. From Tables 2, 4 and 6, 

when the proposed estimators are compared with the natural successive sampling 

estimator, substantial profit is visible, which justifies the intelligible use of 

auxiliary information in the form of exponential methods of estimation. Finally, 

looking at good behaviours of the proposed estimators one may recommend them 

to survey statisticians and practitioners for their practical applications.  
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