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DEVELOPMENT OF SMALL AREA ESTIMATION IN 

OFFICIAL STATISTICS1   

Jan Kordos2  

ABSTRACT 

The author begins with a general assessment of the mission of the National 
Statistics Institutes (NSIs), main producers of official statistics, which are obliged 
to deliver high quality statistical information on the state and evolution of the 
population, the economy, the society and the environment. These statistical 
results must be based on scientific principles and methods. They must be made 
available to the public, politics, economy and research for decision-making and 
information purposes. 
Next, before discussing general issues of small area estimation (SAE) in official 
statistics, the author reminds: the methods of sampling surveys, data collection, 
estimation procedures, and data quality assessment used for official statistics. 
Statistical information is published in different breakdowns with stable or even 
decreasing budget while being legally bound to control the response burden.   
Special attention is paid, from a practitioner point of view, to synthetic 
development of small area estimation in official statistics, beginning with 
international seminars and conferences devoted to SAE procedures and methods 
(starting with the Canadian symposium, 1985, and the Warsaw conference, 1992, 
to the Poznan conference, Poland, 2014), and  some international projects 
(EURAREA, SAMPLE, BIAS, AMELI, ESSnet). Next, some aspects of 
development of SAE in official statistics are discussed. At the end some 
conclusions regarding quality of SAE procedures are considered.  

Key words: small area estimation, official statistics, sampling survey, direct 
estimation, indirect estimation, empirical Bayes estimator; hierarchical Bayes 
estimator; data quality. 

1. Introduction 

National Statistics Institutes (NSIs) are the most important statistical 

information providers for official statistics. Their mission is to produce high 

                                                           
1 This is an updated and extended version of the first part of the paper entitled “Small Area 

Estimation in Official Statistics and Statistical Thinking” presented at the International 

Conference on Small Area Estimation 2014, held in Poznan, Poland, 3-5 September 2014. 
2 Central Statistical Office of Poland and Warsaw Management Academy. 
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quality statistical information on the state and evolution of the population, the 

economy, the society and the environment. These statistical results must be based 

on scientific principles and methods. They must be made available to the public, 

politics, economy and research for decision-making and information purposes. 

One important challenge that NSIs have to face is the growing users’ demand 

with stable or even decreasing budget while being legally bound to control the 

response burden. The use of more and more efficient statistical methods is a way 

to take up this challenge.  To collect, estimate, process and publish statistical 

information NSIs use different methods and procedures, but special emphasis is 

paid to sampling surveys, taking into account basic needs, cost and respondent 

burden. For this reason, issues connected with sampling surveys in official 

statistics from a practitioner point of  view are considered first here, using 

different  approaches, methods, and variety of data, mainly sampling data, 

censuses and registers (Brakel & Bethlehem, 2008; Little, 2004. 2012). 

2. Sampling surveys in official statistics and issues of SAE methods 

First, the author would like to remind that the purpose of sampling surveys is 

to obtain statistical information about a finite population by: a) selecting a 

probability sample from this population, b) obtaining or measuring the required 

information about the units in this sample, and c) estimating finite population 

parameters such as means, totals, ratios, etc., and assessing their variances (Brakel 

& Bethlehem, 2008). The statistical inference in this setting can be: (i) design-

based, (ii) model-assisted or (iii) model-based. In the design-based and model-

assisted approach, the statistical inference is based on the stochastic structure 

induced by the sampling design. Parameter and variance estimators are derived 

under the concept of repeatedly drawing samples from a finite population 

according to the same sampling design, while statistical modelling plays a minor 

role. This is the traditional approach of survey sampling theory, followed by 

authors like Hansen et al. (1953), Kish (1965), Cochran (1977), Yates (1981) and 

Särndal et al. (1992). 

In the model-based context, the probability structure of the sampling design 

plays a less pronounced role, since the inference is based on the probability 

structure of an assumed statistical model. This is the position taken by authors 

like Gosh and Meeden (1997), Gosh &Rao (1994), Rao (1999), Valliant et al. 

(2000), Rao (2003), Pfeffermann (2002, 2013) and Jang &  Lahiri (2006). An 

overview of the different modes of inference in survey sampling is given by Little 

(2004).  

Design-based and model-assisted estimators refer to a class of estimators that 

expand or weight the observations in the sample with the so-called survey 

weights. Survey weights are derived from the sampling design and available 

auxiliary information about the target population. Functions of the expanded 

observations in the sample are used as (approximately) design-unbiased 



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

 

107 

estimators for the unknown population parameters of interest. The associate 

inferences are based on the probability distribution induced by the sampling 

design with the population values held fixed. 

A well-known design-based estimator is the π-estimator or Horvitz-Thompson 

estimator, developed by Narain (1951), and Horvitz and Thompson (1952) for 

unequal probability sampling from finite populations without replacement. The 

observations are weighted with the inverse of the inclusion probability, also called 

design-weights. This estimator is design-unbiased, since the expectation of the 

estimator with respect to the probability distribution induced by the sampling 

design is equal to the true but unknown population value. 

The precision of the Horvitz-Thompson estimator can be improved by making 

advantage of available auxiliary information about the target population (Wywiał, 

2000). In the model-assisted approach developed by Särndal et al. (1992) this 

estimator is derived from a linear regression model that specifies the relationship 

between the values of a certain target parameter and a set of auxiliary variables 

for which the totals in the finite target population are known. Based on the 

assumed relationship between the target variable and the auxiliary variables, a 

generalized regression estimator can be derived of which most well-known 

estimators are special cases. After this estimator is derived, it is judged by its 

design-based properties, such as design expectation and design variance. 

Most NSIs surveys are designed to provide statistically reliable estimates at 

national or high-level geographies. So when statistics are required for more 

detailed geographical areas or small subgroups of the population, the sample sizes 

just are not big enough to make reliable estimates. Increasing the size of samples 

would be prohibitively expensive – instead, estimation methods have been 

developed that combine data from administrative, census and survey sources to 

produce estimates for small areas or domains. There are many statistical 

techniques covered by small area estimation, a frequently used approach is a 

model-based one, where local area outcomes are estimated from the regression 

between survey data and auxiliary data from census and administrative data 

sources. 

The great importance of SAE stems from the fact that many new programs, 

such as fund allocation for needed areas, new educational or health programs and 

environmental planning rely heavily on these estimates. SAE techniques are also 

used in many countries to test and adjust the counts obtained from censuses that 

use administrative records and for post-enumeration surveys after the population 

censuses for quality assessment. SAE is researched and applied so broadly 

because of its usefulness to researchers who wish to learn about the research 

carried out in SAE and to practitioners who might be interested in applying the 

new methods.  

The problem of SAE is twofold. First, the fundamental question is how to 

produce reliable estimates of characteristics of interest (means, counts, quantiles, 

etc.) for small areas or domains, based on very small samples taken from these 

areas. The second related question is how to assess the estimation error. Budget 
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and other constraints usually prevent the allocation of sufficiently large samples 

to each of the small areas. Also, it is often the case that domains of interest are 

only specified after the survey has already been designed and carried out. Having 

only a small sample (and possibly an empty sample) in a given area, the only 

possible solution to the estimation problem is to borrow information from other 

related data sets. 

As it has been mentioned, and from theoretical point of view, SAE methods 

can be divided broadly into “design-based” and “model-based” methods. The 

latter methods use either the frequentist approach or the full Bayesian 

methodology, and in some cases combine the two, known in the SAE literature as 

“empirical Bayes”. Design-based methods often use a model for the construction 

of the estimators (known as “model assisted”), but the bias, variance and other 

properties of the estimators are evaluated under the randomization (design-based) 

distribution. The randomization distribution of an estimator is the distribution 

over all possible samples that could be selected from the target population of 

interest under the sampling design used to select the sample, with the population 

measurements considered as fixed values (parameters). Model-based methods, on 

the other hand, usually conditioned on the selected sample, and the inference is 

with respect to the underlying model. A common feature to design- and model-

based SAE is the use of auxiliary covariate information, as obtained from large 

surveys and/or administrative records such as censuses and registers. Some 

estimators only require knowledge of the covariates for the sampled units and the 

true area means of these covariates. Other estimators require knowledge of the 

covariates for every unit in the population. The use of auxiliary information for 

SAE is vital because with the small sample sizes often encountered in practice, 

even the most elaborated model can be of little help if it does not involve a set of 

covariates with good predictive power for the small area quantities of interest.  

It is now generally accepted that the indirect estimates should be based on 

explicit models that provide links to related areas through the use of 

supplementary data such as census counts or administrative records. See, for 

example, Ghosh and Rao (1994), Rao (1999), Rao (2003), Pfeffermann (2002, 

2013), and Jiang and Lahiri (2006)  for more discussion on model-based small 

area methods.  

Thus, the model-based estimates are obtained to improve the direct design-

based estimates in terms of precision and reliability, i.e., smaller coefficients of 

variation (CVs). Supplementary data are vital for improving quality of small area 

statistics. These data are used to construct predictor variables for use in a 

statistical model that can be used to predict  the estimate of interest for small 

areas. The effectiveness of small area estimation depends initially on the 

availability of good predictor variables that are uniformly measured over the total 

area. It next depends on  the choice of a good prediction model. Effective use of  

small area estimation methods  further depends on a careful, thorough evaluation 

of the quality of the model. Finally, when small area estimates are produced, they 

should be accompanied by valid measures of their precision. Now, there is a wide 



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

 

109 

range of different, often complex models that can be used, depending on the 

nature of the measurement of the small area estimates and on the auxiliary data 

available. One key distinction in model construction is between situation where 

the auxiliary data are available for the individual units in the population and those 

where they are available at aggregate level for each small area. In the former case,  

the data can be used  in unit level models. Another feature involved in the choice 

of a model is whether the model borrows strength across sectional or over time, or 

both. There are also now a number of different approaches, such as empirical best 

linear prediction (EBLUP), empirical Bayes (EB) and hierarchical Bayes (HB) 

that can be used to estimate the models and the variability of the model dependent 

small area estimates (Choudry et al., 1989, 2012; Data. 2009; Datta et al.,1999, 

2012; Gosh & Meeden, 1997, 1999; Kubacki, 2004; Lehtonen et al., 2003, 2005, 

2009; Molina et al., 2009; Moura et al., 2002;  Pfeffermann,1999, 2013; 

Pfeffermann & Tiller, 2006; Pratesi &Salvati, 2008; Rao, 2003, 2011; You & 

Dick, 2004). Moreover, complex procedures that would have been extremely 

difficult to apply a few years ago can now be implemented fairly 

straightforwardly, taking advantage  of the continuing increases in computing 

power and the latest developments in software.   

Thus, there are two broad classifications for small area models: area level 

models and unit level models: 

 Area level models that relate small area means and totals to area-specific 

auxiliary variables, 

 Unit level models that relate the unit values of the dependent variable to unit 

specific auxiliary variables. 

Among the area level models, the Fay-Herriot model (Fay and Herriot, 1979) 

is a basic and widely used area level model in practice to obtain reliable model-

based estimates for small areas. The Fay-Herriot model basically has two 

components, namely, a sampling model for the direct estimates and a linking 

model for the parameters of interest. The sampling model involves the direct 

survey estimate and the corresponding sampling variance. The Fay-   Herriot 

model assumes that the sampling variance is known in the model. Typically, a 

smoothed estimator of the sampling variance is obtained and then treated as 

known in the model. Wang and Fuller (2003), You and Chapman (2006), 

Gonzalez-Manteiga, et al. (2010), considered the situation where the sampling 

variances are unknown and modelled separately by direct estimators.  

The linking model relates the parameter of interest to a regression model with 

area-specific random effects. In the Fay-Herriot model, the area random effects 

are usually assumed to be independent and identically distributed  normal random 

variables to capture geographically unstructured variations among areas. 

However, in some small area applications, particularly in public health estimation 

problems, geographical variation of a disease is a subject of interest, and 

estimation of overall spatial pattern of risk and borrowing strength across regions 

to reduce variances of final estimates are both important. Thus, it may be more 



110                                                                                J. Kordos: Development of small … 

 

 

reasonable to construct spatial models on the area-specific random effects to 

capture the spatial dependence among them. The spatial models are generally 

used in health related small area estimation, and various spatial models have been 

proposed for small area estimation [(e.g. Ghosh et al.,  1999; Moura et al., 2002; 

Pratesi and Salvati (2008),  Singh et al., (1994) and Molina et al., (2009)]. Best et 

al., (2005) provided a comprehensive review on spatial models for disease 

mapping. Rao (2003) also discussed several spatial small area models. 

The unit model originates with Battese, Harter and Fuller (1988).  They used 

the nested error regression model to estimate county crop areas using sample 

survey data in conjunction with satellite information. Prasad and Rao (1990, 

1999) were first to include the survey weights in the unit level model: they 

labelled their estimator as a pseudo-EBLUP estimator of the small area mean. 

Prasad and Rao (1999) also provided based expressions for the MSE of their 

estimator when it included the estimated variance components. You and Rao 

(2002) proposed an estimator of β that ensures self-benchmarking of the small 

area estimates to the corresponding direct estimator. 

Thus, an indirect estimator uses values of the variable of interest from a 

domain and/or time period other than the domain and time period of interest. 

Three types of indirect estimators can be identified: 

 A domain indirect estimator uses values of the variable of interest from 

another domain but not from another time period.  

 A time indirect estimator uses values of the variable of interest from another 

time period but not from another domain.  

 An estimator that is both domain and time indirect uses values of the variable 

of interest from another domain and another time period.  

Individual level models work in two stages using regression modelling. 

Firstly, the survey data are used to predict the probability of the characteristic of 

interest based on the attributes of the individuals in the survey (such as gender, 

age and marital status). The aggregate levels of a cross tabulation of these 

individual characteristics for each local area are obtained, usually from the 

census, and the coefficients from the regression model are applied to those small 

area covariate values so as to calculate the expected value of the target outcome 

variable conditional on the area’s characteristics. The steps are relatively 

straightforward:  

 Ensure that the predictor variables are available in both survey data and for 

small areas  

 Fit a regression model to survey data to predict the probability of chosen 

outcome  

 Use Wald tests to consider dropping non-significant variables.     

 Extract parameter estimates and apply to small area data.  
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In short,  SAE is a collection of different methods: 

 Synthetic methods (often implicit assumptions on the nature of relationship; a 

simple case: rates at NUTS2 level = rates at NUTS4 level). 

 Composite methods (linear combination of synthetic methods and direct 

estimators to balance bias and variance). 

 Estimator based on linear mixed models (EBLUP, EB, HB). 

 Non-linear models (e.g. logistic models for binary responses) with spatial 

and/or temporal correlation structures among random effects. 

 Semi-parametric models.  

Potentially more serious, with respect to accuracy and quality, are non-

sampling errors such as coverage errors, measurement errors and response bias. 

Most censuses miss some people, or count some people twice, and it has been 

repeatedly shown that those miscounted are generally not typical of the 

population as a whole. Census or sample survey estimates may therefore be 

biased against certain subgroups of the population. If these subgroups tend to be 

geographically clustered, this can have a serious impact on estimates for some 

small areas. Response bias arises if many respondents systematically 

misunderstand a census  or a survey question or are unable or unwilling to give 

correct answer. Both small area and large area estimates would be affected by 

such errors (Bethlehem, 1988; Bethlehem et al. 1985; Brackstone, 1999, Eurostat, 

2007; Holt et al, 1991; Kalton, 2002; Kalton & Kasprzy, 1986; Kordos, 2005; 

Longford, 2005; Rao, 2011; Trewin, 2002). 

3. Use of administrative data in official statistics 

NSIs around the world are coming under increasing pressure to improve the 

efficiency of the statistical production process, and particularly to make  savings 

in costs and staff resources. At the same time, there are growing political  

demands to reduce the burden placed on the respondents to statistical surveys. 

Given these pressures, statisticians are increasingly being forced to consider 

alternatives to the traditional survey approach as a way of gathering data. Perhaps 

the most obvious answer is to see if usable data already exist elsewhere. Many 

nonstatistical organisations collect data in various forms, and although these data 

are rarely direct substitutes for those collected via statistical surveys, they often 

offer possibilities, sometimes through the combination of multiple sources, to 

replace, fully or partially, direct statistical data collection. The degree of the use 

of administrative sources in the statistical production process  varies considerably 

from country to country, from those that have developed fully functioning 

register-based statistical systems, to those that are just starting to consider this 

approach. A significant contribution in this field is publication issued in 2011 by 
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the United Nations Economic Commission for Europe3, entitled “Using 

Administrative and Secondary Sources for Official Statistic, A Handbook of 

Principles and Practices”. These trends make model-based procedures more and 

more attractive and relevant for NSIs to apply in the production of official 

statistics (Chambers et al., 2006).  

Administrative datasets are typically very large, covering samples of 

individuals and time periods not normally financially or logistically achievable 

through survey or even census methodologies. Alongside cost savings, the scope 

of administrative data is often cited as its main advantage for research purposes, 

though coverage is recognized to be imperfect. The lack of control the researcher 

has during the data collection stage and how this affects its quality, and therefore 

what can be done with the data, are the main problems for administrative data. 

More general concern has also been voiced about the lack of well-established 

theory and methodologies to guide the use of administrative data in social science 

research.  

Potential auxiliary data should be evaluated for their relationship to the 

variable(s) of interest, both theoretically and statistically as well as the accuracy 

and reliability with which they have been collected. The theoretical relationship 

should emanate from tested social or economic theories. A careful examination 

should be made to understand any major differences between the auxiliary data 

and the variables of interest. 

Consideration should be given to the purpose for which the data were initially 

collected, how it was processed and edited, what conceptual definitions were used 

and what the scope of the auxiliary data holdings is. This will allow appropriate 

auxiliary information to be chosen to improve the model, and in explaining to 

users what factors are driving the small area estimates and help pinpoint potential 

sources of error.  

Although auxiliary information was originally used in the design and 

estimation procedure of a survey to decrease the sampling variance of estimators, 

nowadays it is an important tool to decrease the bias due to selective non-

response. Estimators using auxiliary information are generally more robust 

against selective non-response than estimators that do not use auxiliary 

information (Bethlehem, 1988; Särndal et al., 1987, 2005; Thomsen et al., 1998). 

Common concern around the use of detailed administrative data at the small 

area level includes risks around confidentiality, anonymity and disclosure and this 

may lead to data controllers refusing to release the data or making it available 

within very controlled environments. An important consideration therefore for the 

release or publication of administrative data at individual or aggregate small area 

level is that the identity of individuals is protected. The assessment of disclosure 

risk is a complex process. Generally, the more detail the data has and the higher 

                                                           
3 http://www.unece.org/fileadmin/DAM/stats/publications/Using_Administrative_Sources_Final_ 

for_web.pdf. 

http://www.unece.org/fileadmin/DAM/stats/publications/Using_Administrative_Sources_Final_for_web.pdf
http://www.unece.org/fileadmin/DAM/stats/publications/Using_Administrative_Sources_Final_for_web.pdf
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the proportion of the population of interest that is captured in the data, the higher 

the risk.  

There are various ways in which extracts of administrative data can be linked 

with other data sources to create more comprehensive and powerful datasets for 

analysis (both in terms of cases and variables).  

Examples of available administrative data: i) population, ii) building and 

dwellings, iii) taxes, iv) business registers. Uses of administrative data are 

especially useful for:  

1) improving survey results (sampling frame for persons and business surveys; 

auxiliary variables for calibration); 

2) reducing the respondent burden: directly (some questions are skipped); 

indirectly (gain efficiency the estimators). 

Administrative data holds great research potential for SAE (and other) 

research in all national contexts although the research availability and use of such 

data varies significantly between countries. There is also a problem how to use 

available BIG Data or other approaches for SAE in official statistics. 

4. The international conferences and research projects towards 

application of SAE methods in official statistics 

There have been different kind of conferences, seminars, and research projects 

devoted to exchange of ideas, experiences and achievements related to application 

of SAE in official statistics. First, some international conferences and next 

selected international research projects devoted to  applications of SAE methods 

are briefly presented. 

4.1. The International Conferences to apply SAE methods in official statistics 

The results of the first attempts of applications of SAE methods in official 

statistics were presented at the symposium held in Ottawa in 1985 and published 

in Platek et al. (1987).  

This publication had significant impact on academic statisticians and research 

statisticians in NSIs, and specially on countries in transition in Central and 

Eastern Europe, which organized  international conferences held in  Poland in 

1992 (Warsaw Conference in 1992: Kalton et al., 1993), and Latvia in 1999 (Riga 

conference: Riga, 1999). 

Starting from 2005, a new series of SAE Conferences  have taken place in: 

Finland, (Jyvaskyla, 2005); Italy, (Pisa, 2007); Spain, (Elche, 2009); Germany, 

(Trier, 2011); Thailand, (Bangkok, 2013); Poland, (Poznan, 2014), Chile, 

(Santiago de Chile, 2015). 

SAE conferences are aimed at providing a platform  for discussion and 

exchange of ideas about current developments in small area estimation research in 

different fields. The conferences address - in a good balance with theoretical and 
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methodological development in small area estimation and related fields, and in 

practical application - of SAE methods, including their potential uses in various 

research areas in official statistics. The need to regulate and promote the 

continuity of SAE conferences required the creation a working group with an 

acronym: EWORSAE – the European Working Group on Small Area Estimation4 

– aimed to build and maintain a network of researchers and statisticians to foster 

collaborative work and to increase cooperation between Statistical Offices and the 

research community within the field of SAE and related topics. Although the 

working group is basically European, it is open to all people worldwide working 

in small area estimation5. 

4.2. The International Projects for SAE implementations in official statistics 

Before presenting some international projects for SAE methods applications 

in official statistics, it seems reasonable to begin with a program started in the 

USA over 20 years ago. 

SAIPE – an acronym for Small Area Income and Poverty Estimates6. The U.S. 

Census Bureau's program started at the beginning of 1990s and has provided 

annual estimates of income and poverty statistics for all states, counties, and 

school districts. The main objective of this program is to provide estimates of 

income and poverty for the administration of federal programs and the allocation 

of federal funds to local jurisdictions. In addition to these federal programs, state 

and local programs use the income and poverty estimates for distributing funds 

and managing programs. SAIPE revises and improves methodology as time and 

resources allow. The details of the methodology differ slightly from year to year. 

The most significant change was between 2004 and 2005, when SAIPE began 

using data from the American Community Survey, rather than from the Annual 

Social and Economic Supplement to the Current Population Survey. 

Some impact on applications of SAE procedures in official statistics has had 

the following international projects sponsored by the European Union:  

EURAREA; SAMPLE; BIAS; AMELI; ESSnet 

4.2.1. The EURAREA project investigated methods for small area 

estimation and their application in official statistics. It was funded by Eurostat 

under the Fifth Framework (FP5) Programme of the European Union and was 

carried out by a consortium of NSIs, universities and research consultancies from 

across the European Union (United Kingdom, Spain, Italy, Sweden, Norway, 

Finland and Poland). The project was co-ordinated by the UK Office for National 

Statistics. It ran from January 2001 until June 2004 and was signed off by 

                                                           
4 On initiative of Spanish Statisticians. 
5 http://sae.wzr.pl/. 
6 http://beta.census.gov/did/www/saipe/about/index.html.  

http://sae.wzr.pl/
http://beta.census.gov/did/www/saipe/about/index.html
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Eurostat in February 2005. The aim of this project was to evaluate the 

effectiveness of standard estimation techniques for small areas (synthetic 

estimators, GREGs and composite estimators). The studies carried out until 2004 

were based on sampling designs with equal selection probabilities. In order to 

undertake this project it was necessary to study the existing theory as well as to 

develop new theories that make it easier to obtain estimation techniques and their 

mean squared error when other sampling plans are used that are more similar to 

those applied in official statistics in the real world. Finally, all the theory 

developed has been implemented in a SAS IT application whose use has been 

widely documented so that any user is able to apply the programme to his/her 

own data. The links below provide further information about the project, its aims, 

objectives and conclusions7. 

The research outputs from the project are available in the download section: 

these include the final project reference volume and macro language programs 

written in SAS. The project reference volume contains reviews of existing theory 

in small area estimation, an assessment of the “standard” estimators and the 

results of the innovative work undertaken within the project. The program codes 

for the procedures investigated are provided so that the results can be 

implemented by other NSIs and statisticians. The program code has been written 

in SAS macro language or SAS macros or routines that can be called in 

SAS. Some results are also presented in EURAREA (2004),  Heady et al. (2001, 

2004) and Chambers et al. (2006). 

4.2.2. SAMPLE: Small Area Methods for Poverty and Living Condition 

Estimates 

The Project was supported by the European Commission (FP7-SSH-2007-1).  

The aim of SAMPLE project was to identify and develop new indicators and 

models for inequality and poverty with attention to social exclusion and 

deprivation, as well as to develop, implement models, measures and procedures 

for small area estimation of the traditional and new indicators and models8. This 

goal was achieved with the help of the local administrative databases. Local 

government  agencies often had huge amount of administrative data to monitor 

some of the actions which witness situations of social exclusion and deprivation 

(social security claims for unemployment and eligibility for benefits from any of 

the programs Social Security administers) of households and citizens. SAMPLE 

utilised widely used indicators on monetary and non-monetary poverty. 

Moreover, in collaboration with stakeholders working with the poor, the project 

developed new poverty indicators that meet local needs. The results of the 

SAMPLE project will help local authorities and stakeholders to plan and 

implement their poverty-reduction policies. In fact, more than two thirds of 

                                                           
7 http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/spatial-analysis-

and-modelling/eurarea/index.html. 
8 http://www.bing.com/search?ei=UTF-8&pc=AV01&q=http%3A%2F%2Fwww.sample-

project.eu%2F&FROM=AVASDF.  

http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/spatial-analysis-and-modelling/eurarea/index.html
http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/spatial-analysis-and-modelling/eurarea/index.html
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=http%3A%2F%2Fwww.sample-project.eu%2F&FROM=AVASDF
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=http%3A%2F%2Fwww.sample-project.eu%2F&FROM=AVASDF
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stakeholders surveyed said that these local indicators would prove very useful in 

the planning of social policies. The final goal of the project is to provide a 

dashboard of reliable indicators of poverty and deprivation defined at NUTS3, 

NUTS4 level, useful for Local Government Agencies. In the project, the EU-

SILC9 sample will be enlarged at NUTS410.  
The Project was coordinated by Prof. Monica Pratesi, Italy. Consortium of the project: 

Prof. Achille Lemmi, Italy; Dr Nikos Tzavidis, UK; Dr Isabel Molina, Spain ; Prof. 

Domingo Morales, Spain; Prof. Tomasz Panek, Poland; Dr Paolo Prosperini, Dr Claudio 

Rognini, Dr Moreno Toigo, Italy. 

4.2.3. BIAS Project 

The BIAS project is an acronym for ”Bayesian methods for combining 

multiple Individual and Aggregate data Sources in observational studies” project. 

The first edition of the project named BIAS I was funded between April 2005 and 

June 2008 under the first phase of node commissioning. The second edition 

named BIAS II was  funded by the second commissioning phase from July 2008 

to June 2011. Description of BIAS I and BIAS II projects is based on information 

from the web page: www.bias-project.org.uk. 

The aims of the project were: a) to develop a set of statistical frameworks for 

combining data from multiple sources, b) to improve the capacity of social 

science methods to handle the intricacies of observational data. In this project 

Bayesian hierarchical models are used as the basic building  blocks for these 

developments. These offer a natural tool for linking together many different sub-

models and data sources. The BIAS I research programme consisted of three 

methodological components: a)  multiple bias modelling for observational studies, 

b)  combining individual and aggregate level data, c)  small area estimation. 

The last one was especially devoted to small area estimation methodology and 

was being carried out in collaboration with ONS. The basic methodological 

problem was to estimate the value of a given indicator (e.g. income, crime rate, 

unemployment) for every small area, using data on the indicator from individual-

level surveys in a partial sample of areas, plus relevant area-level covariates 

available for all areas from census and administrative sources, for example.  

4.2.4. The AMELI Project  

The project AMELI (Advanced Methodology for Laeken Indicators) was a 

trial to satisfy expectations of the need for effective, high-quality, robust, timely 

and reliable statistics and indicators related to the social cohesion. It started in 

April 2008 and ended in March 2011. The main target of the project was to 

review the state-of-the-art of the existing indicators monitoring the 

multidimensional phenomena of poverty and social exclusion - the Laeken 

indicators including their relation to social cohesion. Special emphasis was put on 

                                                           
9 EU-SILC – an acronym for: European Union Statistics on Income and Living Conditions.   
10 NUTS – an acronym for: Nomenclature of Units for Territorial Statistics.  
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methodological aspects of indicators and especially on their impact on policy 

making. This included quality aspects as well as mathematical and statistical 

properties within a framework of a complex survey in the context of practical 

needs and peculiarities. The official website of the project is: 

http://ameli:surveystatistics:net/. 

The coordinator of the Project was Prof. Ralf Münnich, University of Trier, 

Germany. Consortium consisted of: Federal Statistical Office of Germany, Swiss 

Federal Statistical Office,  Statistics Austria, Statistics Finland, University of 

Helsinki, Vienna University of Technology, Statistical Office of Slovenia, 

Statistics Estonia. 

4.2.5. The ESSnet Project for SAE 

The project lasted 27 months (December 2009 to March 2012). The 

coordinator of the Project was: Stefano Falorsi, ISTAT, Italy. Co-partners: 

INSEE, France; DESTATIS, Germany; CBS, Netherlands; SSB, Norway; GUS, 

Poland; INE, Spain; ONS, United Kingdom; SFSO, Switzerland. 

The general objective of the project was to develop a framework enabling the 

production of small area estimates for ESS social surveys.  

The specific objectives were to: a) complete (thestate of the art  level) the 

EURAREA project, b) update the documents available on small area estimation, 

c) describe the current application in UE NSIs and non-UE NSIs, d) create a 

common knowledge on application of small area estimation methods; e) review 

and develop suitable criteria to assess the quality of SAE methods for the choice 

of proper model and the evaluation of MSE; f) make available software tools for 

SAE to the ESS; g) foster knowledge transfer by the development of case studies 

and associated recommendations on representative problems in small area 

estimation in the ESS; h) provide practical guidelines in ESS social surveys 

context; i) transfer knowledge and know-how to non-participating NSIs and 

disseminate results. 

Results of the project (lessons learned): 

1) The work done and the outcomes produced by the project are strategic for 

increasing the capability within ESS to produce official statistics by SAE 

techniques.  

2) The upload of all outcomes within the EU-cross-portal is very useful for 

disseminating scientific and applicative results of the ESSnet.  

3) It should be useful to try to develop the regular exchange of information about 

SAE methods and applications among NSIs giving impulse to the use of forum 

within the website.  

4) The course was very useful for involving the non-participating NSIs and 

transferring the results of the project within the ESS. It was also useful in order 

to map the real needs of non-participating countries.  

5) The different presentations in scientific workshops and conferences were 

important to disseminate the knowledge of the outcomes of the project.  

http://ameli:surveystatistics:net/
http://www.destatis.de/
http://www.bfs.admin.ch/bfs/portal/en/index.html
http://www.bfs.admin.ch/bfs/portal/en/index.html
http://www.statistik.at/web_en/
http://www.stat.fi/index_en.html
http://www.helsinki.fi/university/
http://www.helsinki.fi/university/
http://www.tuwien.ac.at/
http://www.stat.si/eng/index.asp
http://www.stat.ee/
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6) The survey on the use of methods and available tools within the NSIs of ESS 

and other NSIs has been very useful to map capabilities and application needs. 

This survey should be updated regularly and published into the website.  

The results of the ESSnet project for SAE are strategic for increasing the 

capability to produce official statistics. 

5. Discussion 

Small area estimation methods have been developing significantly over the 

last 30 years and used partially in official statistics. Before small area estimates 

can be considered fully credible, carefully conducted evaluation studies are 

needed to check on the adequacy of the model being used. Sometimes model-

dependent small area estimators turn out to be of superior quality to sample-based 

estimators, and this may make them seem attractive.  

SAE techniques are becoming a matter of great interest for a variety of 

people, including statisticians, researchers and other university experts, and 

institutions, as NSIs, research institutes, governmental bodies, local authorities 

and private enterprises dealing with research methodology, empirical research and 

statistics production for regional areas and other population subgroups.  

SAE methodologies have become a widely used method across various 

disciplines as a result of growing policy makers and researchers’ demand for 

spatially detailed information alongside advances in small area data availability 

and computing power. Currently, despite the potential of these approaches and the 

growing demands placed upon them, there is little agreement within the academic 

and policy community as to which method(s) work best, whether different 

approaches are best suited to different local contexts, how best methods can be 

implemented and how best results can be validated. Experts from across each of 

these methodological strands and across a range of academic disciplines are 

included in the network so as to enable not only improvements in each separate 

approach but also overall methodological progress through the cross-pollination 

of ideas and skills.  

Accuracy is generally considered to be a key measure of quality. Total survey 

error is a conceptual framework describing errors that can occur in a sample 

survey and the error properties. It may be used as a tool in the design of the 

survey, working with accuracy, other quality characteristics, and costs. Accuracy 

is often measured by the mean squared error (MSE) of the estimator. Error 

sources are considered one by one to estimate the uncertainty and also to obtain 

some indication of the importance of that source. The errors arise from: sampling, 

frame coverage, measurement, non-response, data processing, and model 

assumptions. 

Therefore, indirect estimators are constructed that borrow strength from 

related areas, increasing the effective sample size and with it the estimation 

precision. These indirect estimators are based on either explicit or implicit models 
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providing a link between the small area in question and related areas through 

ancillary information. These auxiliary variables can be miscellaneous, cross-

sectional as well as across time, for example information from neighbouring or 

next higher populations, data from a previous census or administrative records. 

Due to the growing demand for reliable small area statistics, small area estimation 

is becoming an important field in survey sampling. 

Weighting is a statistical technique commonly used and applied in practice to 

compensate for nonresponse and coverage error. It is also used to make weighted 

sample estimates conform to known population external totals. In recent years a 

lot of theoretical work has been done in the area of weighting and there has been a 

rise in the use of these methods in many statistical surveys conducted by NSIs 

around the world.  

In the last decade, calibration has been used to reduce both sampling error and 

nonresponse bias in surveys. In the presence of auxiliary variables with known 

population totals or with known values on the originally sampled units, the 

calibration procedure generates final weights for observations that, when applied 

to those auxiliary variables, yield their population totals or unbiased estimates of 

these totals, respectively. Unfortunately, in practice availability of such of 

auxiliary variables is rather not often. 

The move to a more overt modelling approach means that government 

agencies need to recruit and train statisticians who are adept in modelling 

methods, as well as being familiar with survey sampling design. Survey sampling 

needs to be considered a part of mainstream statistics, in which Bayesian models 

that incorporate complex design features play a central role. A Bayesian 

philosophy would improve statistical output, and provide a common philosophy 

for statisticians and researchers in substantive disciplines such as economics and 

demography. A strong research program within government statistical agencies, 

including cooperative ties with statistics departments in academic institutions, 

would also foster examination and development of the viewpoints (Lehtonen et al. 

2002, Lehtonen and Sarndal 2009). 

5.1. Results of international  conferences and projects 

It is difficult to assess the impact of the international conferences and different 

projects on application of SAE methods in official statistics. General conclusion 

is that development and results of SAE methods  in official statistics obtained so 

far from these  conferences and the international projects have been mostly 

academic. Several projects aimed at development of SAE methodology such as 

EURAREA, SAMPLE, BIAS, AMELI, etc. are either completed or still ongoing at a 

country level. Next to these methodologies-oriented projects, quite few projects 

focused on estimating variables for social surveys undertaken by some NSIs. 

What is more, methodological know-how and techniques in SAE differ in NSIs. 

Some of NSIs have a great deal to offer in terms of expertise, links with academic 

experts and experience of implementation of these techniques while some others 
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are just at the empirical stage of practice. The first projects aiming at the 

development of SAE methodology did not highlight differences between 

European NSIs in the way they introduce the SAE methodology into the process 

of producing statistics. Only ESSnet project for SAE provides an overview of 

applications to social statistics for many European and some non-European NSIs. 

Furthermore, this project describes the research of the NSIs concerning SAE, 

which eventually will lead to a greater number of applications. 

As it has been already stressed, the application of model-based estimation 

procedures in official statistics is limited. Several factors have been mentioned for 

the slow adoption of these methods. One is the fact that many NSIs are rather 

reserved in the application of model-based estimation procedures and generally 

rely on the more traditional design-based or model-assisted procedures for 

producing their official statistics. NSIs need to play safe in the production of 

official statistics and therefore do not want to relay on model assumptions, 

particularly if they are not verifiable (Chambers et al, 2006; Brakel & Betheyem, 

2008; Eurarea, 2004; Little, 2004, 2012). 

The availability of small area data has improved dramatically since the 1990s 

yet many spatial variables of interest – income, fear of crime, health-related 

behaviours, and so the list goes on – remain impossible to access at small area 

geographies in many national contexts. Within this context SAE methodologies 

have become increasingly demanded, increasingly used and increasingly refined. 

Yet the methodological landscape around SAE remains in need of attention in at 

least three key ways, according to Whitworth  A. (edt)11. “Firstly, various 

alternative SAE methodologies have emerged and it is often unclear to some 

researchers what these alternative approaches are, how they relate to each other 

and how they compare in terms of their estimation performance. These 

methodological approaches can be classified broadly either as spatial 

microsimulation (which tend to be used by geographers predominantly) or 

statistical approaches (the use of which is dominated by statisticians). Secondly, 

despite recent advances in SAE methodologies there remain key methodological 

challenges and uncertainties to explore (e.g. how exactly each method can be best 

implemented in relation to weights, constraints, seeding, etc.) as well as 

innovative methodological advances to be brought together and extend (e.g. any 

role for agent-based modelling, estimating distributional functions or spatially 

varying interactions). Thirdly, the different methodological approaches to SAE in 

large part operate in parallel to one another without a clear understanding of the 

conceptual and methodological linkages between them. This is particularly true 

between the statistical and spatial microsimulation approaches and greater 

understanding of the linkages between methodologies within these two differing 

approaches could support important contributions to the effectiveness of current 

SAE best practice”. 

                                                           
11 http://eprints.ncrm.ac  .uk/3210/1/sme_whitworth.pdf.   

http://eprints.ncrm.ac.uk/3210/1/sme_whitworth.pdf
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Nevertheless, SAE methods have been used in applications including 
employment and unemployment statistics, health, poverty, agriculture, business, 
demography, census undercount,  ecology, and education (Datta et al.,1999, 
2002; Dehnel, 2010; Dick, 1995; Drew et al., 1982; Elazar, 2004; Esteban et al., 
2012; Gambino et al., 1998, 2000;  Dehnel et al., 2004; Golata, 2004; Hidiroglou 
et al., 1985, 2007; Kordos, 1994, 2006; Kubacki, 2004; Molina et al., 2010; 
Paradysz, 1998;  Paradysz & Dehnel, 2005; Schaible et al., 1994). 

5.2. Differentiation in utilization of SAE methods by NSIs  

As it has been stressed, NSIs are facing increasing demand for statistics below 
the level for which most large scale surveys have been designed. The survey 
methodologists are turning toward SAE techniques to satisfy the need for reliable 
estimates for small domains.  

However, there are some common characteristics connected with applications 
of SAE procedures in official statistics. Usually such applications are prepared 
and implemented in cooperation with academic statisticians or subject-matter 
specialists and official statisticians. Very often there are still R&D approaches. It 
is impossible to discuss the differences by countries here, but the author confines 
himself to some issue connected with R&D in this field and quality aspects of the 
results. The author has found a number of very interesting publications in the 
Internet connected with applications of SAE methods in different fields and 
countries. Some of them include: Statistics Canada12; USA – Bureau of Census13; 
U.K- Office for National Statistics (ONS)14 and Australian Bureau of Statistics15. 
The author would like to add the network, funded by the ESRC's National Centre 
for Research Methods (NCRM) Programme, which brings together experts in 
small area estimation techniques from the academic and policy (e.g. Office for 
National Statistics) communities in the UK and internationally in order to seek 
innovative ways to advance knowledge and understanding in SAE 
methodologies16.  

As it has already been stressed, it is impossible to discuss the differentiation 
of application of SAE procedures in different countries here, but the following 
issues will be considered: a) Assessing the quality of small area estimates;  
b) Communicating quality to users. 

“A Guide to Small Area Estimation” published by the Australian Bureau of 
Statistics17 has been mainly used here. 

                                                           
12 http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Small+area+estimation+in+ 

 Statistics+Canada&FROM=AVASDF&first=71&FORM=PORE.  

    http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=3604#a3  
13 www.census.gov/hhes/www/saipe/documentation.html.  

    http://www.census.gov/did/www/saipe/methods/10change.html. 
14 U.K. ONS: http://www.ons.gov.uk/ons/guide-method/method-quality/survey-methodology-bulletin/. 
15 http://www.nss.gov.au/nss/home.NSF/pages/Small+Areas+Estimates?OpenDocu. 
16 http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Evaluations+and+improvements+in+ 

small+area+estimation+methodologies++Adam+Whitworth+%28edt%29%2C+University+of+ 

Sheffield&FROM=AVASDF.   
17 http://www.nss.gov.au/nss/home.NSF/pages/Small+Areas+Estimates?OpenDocu. 

http://www.ncrm.ac.uk/
http://www.ncrm.ac.uk/
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Small+area+estimation+in+%20Statistics+Canada&FROM=AVASDF&first=71&FORM=PORE
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Small+area+estimation+in+%20Statistics+Canada&FROM=AVASDF&first=71&FORM=PORE
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=3604#a3
http://www.census.gov/hhes/www/saipe/documentation.html
http://www.census.gov/did/www/saipe/methods/10change.html
http://www.ons.gov.uk/ons/guide-method/method-quality/survey-methodology-bulletin/
http://www.nss.gov.au/nss/home.NSF/pages/Small+Areas+Estimates?OpenDocu
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Evaluations+and+improvements+in+small+area+estimation+methodologies++Adam+Whitworth+%28edt%29%2C+University+of+Sheffield&FROM=AVASDF
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Evaluations+and+improvements+in+small+area+estimation+methodologies++Adam+Whitworth+%28edt%29%2C+University+of+Sheffield&FROM=AVASDF
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Evaluations+and+improvements+in+small+area+estimation+methodologies++Adam+Whitworth+%28edt%29%2C+University+of+Sheffield&FROM=AVASDF
http://www.nss.gov.au/nss/home.NSF/pages/Small+Areas+Estimates?OpenDocu
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5.3. Assessing the quality of small area estimates 

Small area estimates are usually obtained by fitting statistical models to 

survey data and then applying these models to auxiliary information available for 

the small area population of interest. Often a number of potential or candidate 

models are considered involving various combinations of the auxiliary variables.  

The most reliable of these candidate models is then chosen as the final model, 

on the basis of: 

 plausibility of the model in light of previous studies or accepted wisdom; 

 how well the model fits the observed data; and, 

 accuracy of the small area estimates predicted from the model. 

In light of this, there is a need to examine various quality diagnostics to 

determine which of the candidate models to use. Having chosen a model, it is then 

necessary to provide users with an assessment of its quality as well as the quality 

of the small area estimates produced from it. In doing so, ranges of diagnostics are 

used to assess the accuracy, validity and consistency of the small area estimates. 

These include: 

 a bias test that compares the small area predictions with direct estimates; 

 testing whether model assumptions are met and that the model is a good fit; 

 checking that small area estimates add to published state or national 

estimates; 

 local knowledge and expert advice on the spread of estimates across small 

areas; and, 

 relative root mean squared errors (RMSE) - in modelling these are 

analogous to sampling errors calculated for survey estimates. 

Although these diagnostics are crucial in terms of assessing the relative 

performance of competing small area models, they have to be supported by good 

judgement from practitioners and expert advice from users. 

5.4. Communication with users on quality of accepted results 

From current practice we may draw conclusions that there are problems with 

users’ communication regarding quality of accepted results. There are several 

propositions to improve this practice, but it is suggested to consider the following 

Trewin’s proposition. 

Trewin (1999) encouraged NSIs to make greater use of small area estimation 

methods to generate statistical output. However, in doing so, he emphasised that: 

a) “the estimates need to be branded differently from other official statistics 

 (the methods and the assumptions should be described in any releases); 

b) their validity needs to be assessed to provide user confidence;     
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c) the underlying models need to be described in terms that users can 

understand and the validity of the underlying assumptions should be 

discussed with the key users; 

d) their quality should be described in quantitative terms as far as possible; 

and  

e) there should be peer review of the models by an expert as the models are 

very complex and the choice of methods is considerable.” 

The author would like to add in this section the Eurostat publication (Eurostat, 

2007) devoted to data quality assessment, presenting different methods and tools. 

6. Concluding remarks 

Small area estimation methods have been developing significantly over the 

last 30 years and used partially in official statistics. Before small area estimates 

can be considered fully credible, carefully conducted evaluation studies are 

needed to check on the adequacy of the model being used. Sometimes model-

dependent small area estimators turn out to be of superior quality to sample-based 

estimators, and this may make them seem attractive. 

It seems reasonably to give some recommendations and suggestions compiled 

from different papers, conferences and projects related to SAE methods: 

1. Good auxiliary information related to the variables of interest plays a vital role 

in model-based estimation. Expanded access to auxiliary data, such as census 

and  administrative data, through coordination and cooperation among federal 

agencies is needed. 

2. Preventive measures at the design stage may reduce the need for indirect 

estimators significantly. 

3. Model selection and checking plays an important role. External evaluations are 

also desirable whenever possible. 

4. Area-level models have wider scope because area-level data are more readily 

available. But assumption of known sampling variance is restrictive. 

5. HB approach is powerful and can handle complex modelling, but caution 

should be exercised in the choice of priors on model parameters. Practical 

issues in implementing HB paradigm should be addressed. 

6. Model-based estimates of area totals and means are not suitable if the 

objective is to identify areas with extreme population values or to identify 

areas that fall below or above some pre-specified level. 

7. Suitable benchmarking is desirable. 

8. Model-based estimates should be distinguished clearly from direct estimates. 

Errors in small area estimates may be more transparent to users than errors in 

large area estimates. 
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9. Proper criterion for assessing quality of model-based estimates is whether they 

are sufficiently accurate for the intended uses. Even if they are better than 

direct estimates, they may not be sufficiently accurate to be acceptable. 

10. Overall program should be developed that covers issues related to sample 

design and data development, organization and dissemination, in addition to 

those pertaining to methods of estimation for small areas. 
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