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A COMPARISON OF SMALL AREA ESTIMATION
METHODS FOR POVERTY MAPPING

María Guadarrama1, Isabel Molina2, J. N. K. Rao3

ABSTRACT

We review main small area estimation methods for the estimation of general non-
linear parameters focusing on FGT family of poverty indicators introduced by Fos-
ter, Greer and Thorbecke (1984). In particular, we consider direct estimation, the
Fay-Herriot area level model (Fay and Herriot, 1979), the method of Elbers, Lan-
jouw and Lanjouw (2003) used by the World Bank, the empirical Best/Bayes (EB)
method of Molina and Rao (2010) and its extension, the Census EB, and finally the
hierarchical Bayes proposal of Molina, Nandram and Rao (2014). We put ourselves
in the point of view of a practitioner and discuss, as objectively as possible, the ben-
efits and drawbacks of each method, illustrating some of them through simulation
studies.
Key words: area level model, non-linear parameters, empirical best estimator, hi-
erarchical Bayes, poverty mapping, unit level models.

1. Introduction

Poverty maps are an important source of information on the regional distribution
of poverty and are currently used to support regional policy making and to allocate
funds to local jurisdictions. Good examples are the poverty and inequality maps
produced by the World Bank for many countries all over the world. In the U.S., the
Small Area Income and Poverty Estimates (SAIPE) program (http://www.census.gov
/hhes/www/saipe) of the Census Bureau provides annual estimates of income and
poverty statistics for all school districts, counties, and states, for the administra-
tion of federal, state and local programs and the allocation of federal funds to local
jurisdictions. In Europe, the joint project “Poverty Mapping in the New Member
States of the European Union" between the World Bank and the European Com-
mission was aimed to construct poverty maps for the new members of the EU.
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The TIPSE (The Territorial Dimension of Poverty and Social Exclusion in Europe)
project, commissioned by the European Observation Network for Territorial De-
velopment and Cohesion (ESPON) program, aims to support policy by creating a
regional database and associated maps of poverty and social exclusion indicators.
In Mexico, the National Council for the Assessment of the Social Development
Policy (CONEVAL) is committed by law to produce regular poverty and inequality
estimates at the state level by population subgroups and at municipality level.

Obtaining accurate poverty maps at high levels of disaggregation is not straight-
forward because of insufficient sample size of official surveys in some of the target
regions. Direct estimates, obtained with the region-specific sample data, are unsta-
ble in the sense of having very large sampling errors for regions with small sample
size. Very unstable poverty estimates might make the seemingly poorer regions
in one period appear as the richer in the next period, which can be contradictory.
On the other hand, very stable but biased estimates (e.g., too homogeneous across
regions) might make identification of the poorer regions difficult.

Here we review the main methods for the estimation of general non-linear small
area parameters, focusing for illustrative purposes on a specific family of poverty
indicators introduced in Section 2. Specifically, in Section 3 we describe direct
estimation, the EBLUP based on the Fay-Herriot area level model (Fay and Her-
riot, 1979), the method of Elbers, Lanjouw and Lanjouw (2003), the empirical
Best/Bayes (EB) method of Molina and Rao (2010) together with its variation called
Census EB, and hierarchical Bayes (HB) method of Molina, Nandram and Rao
(2014). We discuss advantages and disadvantages of each procedure from a practi-
cal point of view. In Section 4 we illustrate their performance in simulations under
several scenarios, including the cases of informative sampling or the presence of
outliers. Finally, in Section 5 we draw some conclusions.

2. Poverty indicators

In this paper, we will focus on the FGT family of poverty indicators introduced
by Foster, Greer and Thorbecke (1984). Consider a population P of size N that is
partitioned into D domains or areas P1, . . . ,PD, of sizes N1, . . . ,ND. Let Edi be a
measure of welfare for individual i (i = 1, . . . ,Nd) in area d (d = 1, . . . ,D). Let z be
the poverty line, that is, the value such that when Edi < z, individual i from area d
is regarded as “at risk of poverty". Then, the FGT family of poverty indicators for
area d is given by

Fαd =
1

Nd

Nd

∑
i=1

(
z−Edi

z

)α

I(Edi < z), α ≥ 0, d = 1, . . . ,D, (1)
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where I(Edi < z) = 1 if Edi < z, and I(Edi < z) = 0 otherwise. For α = 0 we obtain
the proportion of individuals “at risk of poverty", that is, the poverty incidence or
at-risk-of-poverty rate. For α = 1, we get the average of the relative distances to not
being “at risk of poverty", called the poverty gap. The poverty incidence measures
the frequency of poverty, whereas the poverty gap measures the intensity of poverty.
We remark that the unit level methods introduced in this paper can be applied to
estimate any desired population characteristic that is obtained as a real measurable
function of a continuous variable, as long as this variable follows the considered
model in each method.

3. Estimators

Estimation of population characteristics is typically based on a sample s drawn from
the population P. We denote by sd = s∩Pd the subsample from area d of size nd <

Nd and by rd = Pd − sd the complement of sd , of size Nd −nd . The overall sample
size is n = n1 + · · ·+nD. The following subsections describe common estimators of
poverty indicators obtained from the sample data.

3.1. Direct estimators

Turning now to estimation in a given domain or area d, a direct estimator is an
estimator obtained using only the nd observations from that area, provided that this
area has been sampled (i.e., nd > 0). The FGT poverty indicator (1) of order α for
area d can be expressed as a linear parameter as follows

Fαd = N−1
d

Nd

∑
i=1

Fαdi, Fαdi =

(
z−Edi

z

)α

I(Edi < z), i = 1, . . . ,Nd .

Then, the basic direct estimator of Fαd is simply given by

F̂DIR
αd = N−1

d ∑
i∈sd

wd,iFαdi, (2)

where wd,i = π
−1
d,i is the sampling weight of unit i from area d and πd,i is the inclusion

probability of unit i in the subsample sd .
Below we list the advantages and disadvantages of direct estimators, such as (2),

for small area estimation.

Advantages:

• They are (at least approximately) design-unbiased and design-consistent (as
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nd → ∞). Thus, they perform well under complex sampling designs, includ-
ing informative sampling, as long as they are calculated using the correct
inclusion probabilities.

• They do not require model assumptions; that is, they are completely nonpara-
metric.

Disadvantages:

• They are very inefficient for areas with very small nd .

• They cannot be calculated for nonsampled areas (i.e., with nd = 0).

3.2. Fay-Herriot model

Fay-Herriot (FH) area level model links the parameters of interest for all the areas,
Fαd , d = 1, . . . ,D, through a linear model as

Fαd = x′dβ +ud , d = 1, . . . ,D, (3)

where xd is a p-vector of area level covariates, β is the regression parameter com-
mon for all areas, and ud is the area-specific regression error, also called random
effect for area d. We assume that area random effects ud are independent and iden-
tically distributed (iid), with unknown variance σ2

u , that is, ud
iid∼ (0,σ2

u ). Note that
true values Fαd are not observable and therefore model (3) cannot be directly fitted.
However, we can make use of a direct estimator F̂DIR

αd of Fαd . FH model assumes
that F̂DIR

αd is design-unbiased, with

F̂DIR
αd = Fαd + ed , d = 1, . . . ,D, (4)

where ed is the sampling error for domain d. We assume that sampling errors ed

are independent of random effects ud and satisfy ed
ind∼ (0,ψd), where the sampling

variances ψd , d = 1, . . . ,D, are assumed to be known. Combining (3) and (4), we
obtain a linear mixed model

F̂DIR
αd = x′dβ +ud + ed , d = 1, . . . ,D. (5)

The best linear unbiased predictor (BLUP) of Fαd = x′dβ +ud under model (5)
is given by

F̃FH
αd = x′d β̃ + ũd , (6)



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 45

where ũd = γd(F̂DIR
αd −x′d β̃ ) is the BLUP of ud , with γd = σ2

u /(σ
2
u +ψd) and where

β̃ is the weighted least squares estimator of β , given by

β̃ =

(
D

∑
d=1

γdxdx′d

)−1 D

∑
d=1

γdxdF̂DIR
αd .

In practice, the variance σ2
u of the area effects ud is unknown and needs to be es-

timated. Common estimation methods are maximum likelihood (ML) and restricted
maximum likelihood (REML). REML corrects for the degrees of freedom due to
estimating β and leads to a less biased estimator of σ2

u for finite sample size n. Let
σ̂2

u be the resulting estimator. Replacing σ̂2
u for σ2

u in (6), we obtain the empirical
BLUP (EBLUP) of Fαd , denoted here as F̂FH

αd and called hereafter FH estimator.
A second-order correct estimator of MSE (F̂FH

αd ) is given in Rao (2003, Chapter
7), assuming normality of ud and ed . Good and bad properties of FH estimator (6)
are listed below, including particular properties for poverty mapping.

Advantages:

• The BLUP under FH model can be expressed as a weighted combination of
the direct and the regression-synthetic estimators, that is,

F̃FH
αd = γdF̂DIR

αd +(1− γd)x′d β̃ , d = 1, . . . ,D. (7)

with weight γd = σ2
u /(σ

2
u +ψd). Then, for an area d in which the direct esti-

mator F̂DIR
αd is inefficient, that is, with a large sampling variance ψd compared

to the unexplained between-area variability σ2
u , γd becomes small and F̃FH

αd
borrows more strength from the other areas through the regression-synthetic
estimator x′d β̃ . On the other hand, for an area d in which the direct estimator
F̂DIR

αd is efficient, that is, with small sampling variance ψd compared to the
unexplained between-area variability σ2

u , γd is large and F̃FH
αd attaches more

weight to the direct estimator. Thus, FH estimator automatically borrows
strength for the areas where it is needed.
• If γd > 0 for area d, it makes use of the sampling weights wd,i through the

direct estimator F̂DIR
αd . Thus, it is design-consistent (as nd → ∞). As a con-

sequence, it is less affected by informative sampling provided that the direct
estimator is calculated using the correct inclusion probabilities.
• Due to the aggregation of data, it is not very much affected by isolated unit

level outliers.
• It requires only area level auxiliary information and therefore avoids the con-

fidentiality issues associated with micro-data.
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Disadvantages:

• The sampling variances ψd are assumed to be known, but in practice they are
estimated. It is not easy to incorporate the uncertainty due to estimation of
the sampling variances in the MSE.

• The number of observations used to fit the FH model is the number of areas
D, which is typically much smaller than the number of observations used
to fit unit level models, n. Thus, model parameters are estimated with less
efficiency and therefore the efficiency gains with respect to direct estimators
are expected to be smaller than under unit level models.

• It requires normality of ud and ed for MSE estimation. This might not hold
for very complex poverty indicators.

• If we want to estimate several indicators depending on a common continuous
variable, it requires separate modeling and searching for good covariates for
each indicator.

• Once the model is fitted at the area level, small area estimates F̂FH
αd cannot

be further disaggregated for subdomains or subareas within the areas unless a
new good model is found at that subarea level.

3.3. ELL method

The method of Elbers, Lanjouw and Lanjouw (2003), called hereafter ELL method,
assumes a unit level linear mixed model for a log-transformation of the variable
measuring welfare of individuals, with random effects for the sampling clusters or
primary sampling units. For comparability with the rest of the methods presented
here, in the following we assume that the sampling clusters are the areas. In this
case, the model becomes the nested error model of Battese, Harter and Fuller (1988)
for the log-transformation of the welfare variables, that is, Ydi = log(Edi) is assumed
to be linearly related with a p-vector of auxiliary variables xdi, which may include
unit-specific and area-specific covariates, and includes random area effects ud as
follows

Ydi = x′diβ +ud + edi, i = 1, . . . ,Nd , d = 1, . . . ,D. (8)

Here, β is a p-vector of regression coefficients, ud
iid∼ (0,σ2

u ), edi
ind∼ (0,σ2

e k2
di), where

ud and edi are independent and kdi are known constants.
ELL estimator of Fαd is given by the marginal expectation F̂ELL

αd = E[Fαd ] under
model (8). This estimator and its MSE are approximated by a bootstrap method. In
this bootstrap procedure, random effects u∗d and model errors e∗di are generated from
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residuals obtained by fitting model (8) to survey data. Then, a bootstrap census of
Y -values is generated as

Y ∗di = x′diβ̂ +u∗d + e∗di, i = 1, . . . ,Nd , d = 1, . . . ,D,

where β̂ is an estimator of β . The generation is repeated for a = 1, . . . ,A, obtaining
A censuses. Then, for each bootstrap census a, the FGT poverty indicator for area d
is calculated as

F∗(a)
αd =

1
Nd

Nd

∑
i=1

(
z− exp(Y ∗(a)di )

z

)α

I(exp(Y ∗(a)di )< z).

The ELL estimator of Fαd is then approximated by averaging over the A generated
censuses, that is,

F̂ELL
αd =

1
A

A

∑
a=1

F∗(a)
αd .

The MSE of F̂ELL
αd is then estimated as follows

mse(F̂ELL
αd ) =

1
nd

A

∑
a=1

(F∗(a)
αd − F̂ELL

αd )2.

Advantages and disadvantages of ELL method are listed below.

Advantages:

• It is based on unit level data, which are richer than area level data and sample
size is much larger (n compared to D).

• ELL method can be applied to estimate general indicators defined as a func-
tion of the model response variables Ydi.

• They are model-unbiased if the model parameters are known.

• Once the model is fitted, estimates can be obtained at whatever subarea level.

Disadvantages:

• In terms of model MSE, ELL estimates perform poorly and can even perform
worse than direct estimators when unexplained between-area variation is sig-
nificant, see Molina and Rao (2010). In fact, for the estimation of domain
means, ELL estimates are basically equal to regression-synthetic estimators,
which assume the regression model without further between-area variation.

• They are based on a model assumption. Hence, model checking is crucial.
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• They are not design-unbiased and can be seriously biased under informative
sampling.

• They can be seriously affected by unit level outliers.

• If cluster effects are included in the model instead of area effects, but area
effects are significant, ELL estimates of the model MSE can seriously under-
estimate the true MSE. Even if area effects are included in the model, ELL
estimates of MSE do not track correctly the true MSE for each area.

3.4. Empirical Best/Bayes EB method

The empirical Best/Bayes (EB) method of Molina and Rao (2010) assumes that the
population variables Ydi follow the nested error model (8) with normality of random
effects ud and errors edi. Under that model, the area vectors Yd = (Yd1, . . . ,YdNd )

′

are independent for d = 1, . . . ,D and satisfy Yd
ind∼ N(µd ,Vd), where µd = Xdβ and

Vd = σ2
u 1Nd 1′Nd

+σ2
e Ad , for Ad = diag(k2

di; i = 1, . . . ,Nd). For an area parameter
δd = h(Yd), the estimator that minimizes the MSE, called best estimator, is given
by

δ̂
B
d = EYdr [h(Yd)|Yds;θ ] =

∫
h(Yd) f (Ydr|Yds;θ)dYdr, (9)

where f (Ydr|Yds;θ) is the conditional distribution of the vector of out-of-sample
values Ydr in domain d given the sampled values Yds in that domain and θ is the
vector of model parameters. Now replacing θ in (9) by an estimator θ̂ , we get the
empirical best (EB) estimator, δ̂ EB

d .

Under the nested error model (8), the distribution of Ydr|Yds is easy to derive.
First, we decompose Xd and Vd into sample and out-of-sample elements similarly
as we do with Yd , that is,

Yd =

(
Yds

Ydr

)
, Xd =

(
Xds

Xdr

)
, Vd =

(
Vds Vdsr

Vdrs Vdr

)
.

By the normality assumption, we have that Ydr|Yds
ind∼ N(µdr|s,Vdr|s), where the

conditional mean vector and covariance matrix are given by

µdr|s = Xdrβ + γdc(ȳdc− x̄T
dcβ )1Nd−nd , (10)

Vdr|s = σ
2
u (1− γd)1Nd−nd 1T

Nd−nd
+σ

2
e diagi∈rd

(k2
di). (11)

Here, γdc = σ2
u (σ

2
u +σ2

e /cd·)
−1, for cd· = ∑i∈sd

cdi with cdi = k−2
di , and ȳdc and x̄dc
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are weighted sample means obtained as

ȳdc =
1

cd·
∑
i∈sd

cdiYdi, x̄dc =
1

cd·
∑
i∈sd

cdixdi. (12)

For complex non-linear parameters δd = h(Yd), the expectation given in (9)
cannot be calculated analytically. In those cases, the EB estimator δ̂ EB

d is approxi-
mated by Monte Carlo. This requires to simulation of multivariate Normal vectors
Y(a)

dr of sizes Nd−nd , d = 1, . . . ,D, from the (estimated) conditional distribution of
Ydr|Yds and then to replication for a = 1, . . . ,A, which may be computationally un-
feasible. Simulation of very large multivariate Normal vectors Y(a)

dr can be avoided
by noting that the conditional covariance matrix Vdr|s, given by (11), corresponds

to the covariance matrix of a random vector Y(a)
dr generated from the model

Y(a)
dr = µdr|s + v(a)d 1Nd−nd + ε

(a)
dr , (13)

where v(a)d and ε
(a)
dr are independent and satisfy

v(a)d ∼ N(0,σ2
u (1− γd)) and ε

(a)
dr ∼ N(0Nd−nd ,σ

2
e diagi∈rd

(k2
di));

see Molina and Rao (2010). Using model (13), instead of generating a multivariate
normal vector Y(a)

dr of size Nd−nd , we just need to generate 1+Nd−nd independent

univariate normal variables v(a)d
ind∼ N(0,σ2

u (1− γd)) and ε
(a)
di

ind∼ N(0,σ2
e k2

di), for i ∈
rd . Then, we obtain the corresponding out-of-sample values Y (a)

di , i ∈ rd , from (13)
using as means the corresponding elements of µdr|s given by (10). Using the vector

Y(a)
dr generated from (13), we construct the census vector Y(a)

d = (Y′ds,(Y
(a)
dr )
′)′ and

calculate the parameter of interest δ
(a)
d = h(Y(a)

d ). For a non-sampled area d (i.e.,
with nd = 0), we generate Y(a)

dr from (13) with γdc = 0 and in this case Y(a)
d = Y(a)

dr .
The Monte Carlo approximation to the EB estimator (9) of δd = h(Yd) is then given
by

δ̂
EB
d ≈ 1

A

A

∑
a=1

h(Y(a)
d ). (14)

In particular, to estimate the FGT poverty indicator given in (1), Molina and Rao
(2010) assumed that Ydi = T (Edi) follow the nested error model (8), where Edi are
variables measuring welfare and T (·) is a one-to-one transformation. In terms of
the vector of transformed variables Yd = (Yd1, . . . ,YdNd )

′, the FGT poverty indicator
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can be expressed as

Fαd =
1

Nd

Nd

∑
i=1

(
z−T−1(Ydi)

z

)α

I(T−1(Ydi)< z) = hα(Yd), (15)

and the above EB method can be applied to the area parameter δd = hα(Yd).
In the case of complex parameters such as the FGT poverty indicators, analytic

approximations for the MSE are hard to derive. Molina and Rao (2010) obtained a
parametric boostrap MSE estimator following the bootstrap method for finite popu-
lations of González-Manteiga et al. (2008), see Molina and Rao (2010) for further
details.

Note that both ELL and EB methods require a survey data file containing the ob-
servations from the target variable and the auxiliary variables, that is, {(Ydi,xdi); i ∈
sd , d = 1, . . . ,D}, and a census containing the values of the same auxiliary vari-
ables for all the units in the population, that is, {xdi; i = 1, . . . ,Nd , d = 1, . . . ,D}.
The EB method requires additionally the identification of the set of out-of-sample
units r (or equivalently the sample units s) in the census P. Linking the survey
and the census files is not always possible in practice. However, typically the area
sample size nd is really small compared to the population size Nd . Then, we can
use the Census-EB estimator proposed by Correa, Molina and Rao (2012), and
obtained by generating in each Monte Carlo replicate the full census vector Yd

rather than only the vector of out-of-sample observations Ydr. For this, we apply
the Monte Carlo approximation (9) by generating Y(a)

d = µd|s + v(a)d 1Nd−nd + ε
(a)
d ,

where µd|s = Xdβ + γdc(ȳdc− x̄T
dcβ )1Nd and ε

(a)
d ∼ N(0Nd ,σ

2
e diagi=1,...,Nd

(k2
di)). If

the sampling fraction nd/Nd is negligible, the Census-EB estimator of δd = Fαd is
practically the same as the original EB estimator.

Good properties and drawbacks of the EB method are listed below.

Advantages:

• It is based on unit level data, which are richer than the area level data and uses
much larger sample size to fit the model.

• The EB method can be applied to estimate general indicators defined as func-
tions of the response variables Ydi.

• Best estimators are model-unbiased.

• They are optimal in terms of minimizing the model MSE for known values of
model parameters.

• EB estimates perform significantly better than ELL estimates when unex-
plained between-area variation is significant. For out-of-sample areas (with
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nd = 0), EB and ELL small area estimates are nearly the same. They are
nearly the same for all areas if there is no unexplained between-area variation
(σ2

u = 0).

• Once the model is fitted, estimates can be obtained at whatever subarea level.

Disadvantages:

• They are based on a model assumption. Hence, model checking is crucial.

• They are not approximately design-unbiased and can be seriously biased un-
der informative sampling.

• They can be severely affected by unit level outliers.

• Parametric bootstrap estimates of the MSE of EB estimators are computation-
ally intensive.

3.5. Hierarchical Bayes (HB) method

Computation of EB (and Census-EB) estimates supplemented with their MSE es-
timates is very intensive and might be unfeasible for very large populations or for
very complex indicators. Note that to approximate the EB estimate by Monte Carlo,
we need to construct a large number A of censuses Y(a), where each one might be of
huge size. Moreover, to obtain the parametric bootstrap MSE estimator, the Monte
Carlo approximation needs to be repeated for each bootstrap replicate. Seeking for
a computationally more efficient approach, Molina, Nandram and Rao (2014) de-
veloped the alternative hierarchical Bayes (HB) method for estimation of complex
non-linear parameters. This approach does not require the use of bootstrap for MSE
estimation because it provides samples from the posterior distribution, from which
posterior variances play the role of MSEs, and any other useful posterior summary
can be easily obtained.

The HB method is based on reparameterizing the nested error model (8) in terms
of the intraclass correlation coefficient ρ = σ2

u /(σ
2
u +σ2

e ) and considering priors for
the model parameters (β ,ρ,σ2

e ) that reflect lack of knowledge. Concretely, the HB
model is defined as

(i) Ydi|ud ,β ,σ
2
e

ind∼ N(x′diβ +ud ,σ
2
e k2

di), i = 1, . . . ,Nd ,

(ii) ud |ρ,σ2
e

iid∼ N
(

0,
ρ

1−ρ
σ

2
e

)
, d = 1, . . . ,D,

(iii) π(β ,ρ,σ2
e ) ∝

1
σ2

e
, ε ≤ ρ ≤ 1− ε, σ

2
e > 0,β ∈R p,
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where ε > 0 is chosen very small to reflect lack of knowledge. See the application
carried out by Molina, Nandram and Rao (2014), where inference was not sensitive
to a small change of ε .

The posterior distribution can be obtained in terms of posterior conditionals us-
ing the chain rule of probability as follows. First, note that under the HB approach,
the random effects u = (u1, . . . ,uD)

′ are regarded as additional parameters. Then,
the joint posterior pdf of the vector of parameters θ = (u′,β ′,σ2

e ,ρ)
′ given the sam-

ple values Ys is given by

π(u,β ,σ2
e ,ρ|Ys) = π1(u|β ,σ2

e ,ρ,Ys)π2(β |σ2
e ,ρ,Ys)π3(σ

2
e |ρ,Ys)π4(ρ|Ys), (16)

where the conditional pdfs π1, . . . ,π3 have known forms, but not π4. However, since
ρ is in a closed interval from (0,1), we can generate values from π4 using a grid
method, for more details see Molina, Nandram and Rao (2014). Samples from
θ = (u′,β ′,σ2

e ,ρ)
′ can then be generated directly from the posterior distribution in

(16), avoiding the use of Markov Chain Monte Carlo (MCMC) methods. Under
general conditions, a proper posterior distribution is guaranteed.

Given θ , population variables Ydi are all independent, satisfying

Ydi|θ
ind∼ N(x′diβ +ud ,σ

2
e k2

di), i = 1, . . . ,Nd , d = 1, . . . ,D. (17)

The posterior predictive density of Ydr is then given by

f (Ydr|Ys) =
∫

∏
i∈rd

f (Ydi|θ)π(θ |Ys)dθ .

Finally, the HB estimator of a domain parameter δd = h(Yd) is given by

δ̂
HB
d = EYdr(δd |Ys) =

∫
h(Yd) f (Ydr|Ys)dYdr. (18)

The HB estimator can be approximated by Monte Carlo. For this, we first gen-
erate samples from the posterior π(θ |Ys). We generate a value ρ(a) from π4(ρ|Ys)

using a grid method; then, a value σ
2(a)
e is generated from π3(σ

2
e |ρ(a),Ys); next

β
(a) is generated from π2(β |σ2(a)

e ,ρ(a),Ys) and, finally, u(a) is generated from
π1(u|β (a),σ

2(a)
e ,ρ(a),Ys). This process is repeated a large number A of times to

get a random sample θ
(a), a = 1, . . . ,A from π(θ |Ys). Now for each generated

value θ
(a) from π(θ |Ys), we generate the out-of-sample values {Y (a)

di , i ∈ rd} from
the distribution defined in (17). Thus, for each area d, we have generated an out-of-
sample vector Y(a)

dr = {Y (a)
di , i ∈ rd}, and we have also the available sample data Yds.

Putting them together, we construct the full population vector Y(a)
d = (Y′ds,(Y

(a)
dr )
′)′.
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Now using Y(a)
d , we compute the area parameter δ

(a)
d = h(Y(a)

d ). In the particular
case of estimating an FGT poverty indicator, we have δd = Fαd = hα(Yd) given in
(15). Then, in Monte Carlo replicate a, we calculate F(a)

αd = hα(Y
(a)
d ). Finally, the

HB estimator is approximated as

F̂HB
αd ≈

1
A

A

∑
a=1

F(a)
αd . (19)

Benefits and deficiencies of HB method are listed below.

Advantages:

• It is based on unit level data, which are richer than area level data and uses
much larger sample size to fit the model.

• HB method can be applied to estimate general indicators defined as function
of the model response variables Ydi.

• HB estimators are model-unbiased.

• HB estimators are optimal in terms of minimizing the posterior variance.

• EB and HB methods are expected to give practically the same point estimates,
see Molina, Nandram and Rao (2014). Thus, the proposed HB method has
good frequentist properties.

• Once the model is fitted, estimates can be obtained at any subarea level.

• The proposed HB approach does not require the use of MCMC methods
and therefore avoids the need of monitoring the convergence of Monte Carlo
chains.

• Bootstrap methods for MSE estimation are not needed. Therefore, total com-
putational time is considerably lower than in the EB method.

• Calculation of credible intervals or other posterior summaries is straightfor-
ward.

Disadvantages:

• It is based on model assumptions. Hence, model checking is crucial.

• HB estimators are not design-unbiased and can be seriously biased under in-
formative sampling.

• HB estimators can be severely affected by unit level outliers.

• HB method is not directly extendable to more complex models without losing
some of the mentioned advantages like avoiding MCMC.
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4. Simulation studies

This section illustrates some of the mentioned advantages and drawbacks of the con-
sidered poverty mapping methods through simulation studies. Concretely, we will
report results of simulations under three different scenarios: (i) Nested error model
with simple random sampling. (ii) Nested error model with informative sampling.
(iii) Nested error model with outliers.

Simulations were implemented in the statistical software environment R (R de-
velopment core team 2013) using the package lme4 (Bates et al. 2014), which fits
Gaussian linear and nonlinear mixed-effects models, and the package sae (Molina
and Marhuenda 2015), which contains functions for small area estimation, including
calculation of direct, FH and EB estimates along with their MSE estimates.

4.1. Nested error model with simple random sampling

We consider the same model-based simulation setup as in Molina, Nandram and Rao
(2014), where data are generated at the unit level following the nested error model
(8). However, here we also include FH estimators derived from the FH area level
model with the area means of the auxiliary variables as covariates. In addition, we
include ELL and Census-EB estimators. The population is composed of N = 20,000
units, distributed in D = 80 areas with Nd = 250 units in each area. We consider two
auxiliary variables X1 and X2 with known values for all the population units. Their
values are generated as xk,di ∼ Bern(pkd), k = 1,2, with success probabilities p1d =

0.3+ 0.5d/D and p2d = 0.2, d = 1, . . . ,D. Response variables Ydi are generated
from the nested error model (8) and the target variables are Edi = exp(Ydi). The
true values of the regression coefficients are β = (3,0.03,−0.04)′. Variances of
area effects and errors are taken as σ2

u = 0.152 and σ2
e = 0.52 respectively. The

poverty line is set to z= 12, which is approximately 0.6 times the median of {Edi; i=
1, . . . ,Nd , d = 1, . . . ,D} for a population generated as described before, which is
the official definition of poverty line used in the EU countries. We draw a sample
sd of size nd = 50, d = 1, . . . ,D, using sample random sampling (SRS) without
replacement, independently from each area d.

A total of L = 1,000 population vectors Y(`), ` = 1, . . . ,L, were generated
from the nested error model (8) with the mentioned values of model parameters
and auxiliary variables. For each Monte Carlo population ` = 1, . . . ,L, we calcu-
lated the true area poverty incidences and poverty gaps. Then, we selected the
sample s, which is kept fixed across Monte Carlo replicates. Using the sample
data {(Ydi,x1,di,x2,di); i ∈ sd ,d = 1, . . . ,D} and the population data on the auxil-
iary variables, we computed direct estimates F̂DIR

αd , FH, ELL, EB, Census-EB and
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HB estimates of poverty incidence (α = 0) and poverty gap (α = 1) for each area
d = 1 . . . ,D. FH, ELL and EB estimates were obtained using REML fitting method.

For the Monte Carlo population `, let F(`)
αd be the true poverty indicator for area d

and F̂(`)
αd be one of the estimates (direct, FH, ELL, EB, Census-EB or HB). Relative

bias (RB) and relative root mean squared error (RRMSE) of an estimator F̂αd are
approximated empirically as

RB(F̂αd) =
L−1

∑
L
`=1(F̂

(`)
αd −F(`)

αd )

L−1 ∑
L
`=1 F(`)

αd

, RRMSE(F̂αd) =

√
L−1 ∑

L
`=1(F̂

(`)
αd −F(`)

αd )
2

L−1 ∑
L
`=1 F(`)

αd

.

For each estimator F̂αd , the absolute RB (ARB) and the RRMSE are averaged across
areas as

ARBα = D−1
D

∑
d=1
|RB(F̂αd)|, RRMSEα = D−1

D

∑
d=1

RRMSE(F̂αd).

Figure 1 depicts percent RBs (left) and RRMSEs (right) of the estimators of
the domain poverty gaps F1d for each area d. EB and Census-EB estimates are not
shown in these plots because they are both practically equal to HB estimates and are
plotted separately in Figure 2. We can see in Figure 1 left that direct, ELL and HB
estimators are practically unbiased. In contrast, FH estimators display a substantial
negative bias. Concerning efficiency, Figure 1 right shows that HB estimators have
the smallest RRMSE whereas ELL estimators are the ones with the largest RRMSE.
Conclusions for the poverty incidence F0d are very similar.

Table 1 presents averages across areas of absolute RB and RRMSE of all the
estimators, for both poverty incidence and poverty gap. We see that, on average,
FH estimator presents a large absolute RB (over 6% for poverty incidence and close
to 15% for poverty gap), whereas EB, HB and Census-HB estimators have a very
small RB (< 1%). The latter estimators also achieve the smallest RRMSEs (slightly
over 20% for poverty incidence and over 25% for poverty gap). The largest RRMSE
is obtained by ELL estimator (over 58%). Note that both absolute RB and RRMSE
increase when estimating the poverty gap, because the poverty gap depends to a
greater extent on the extreme of the left tail of the income distribution, which is
more difficult to estimate correctly from a (finite) sample.

These results indicate that HB estimators are practically unbiased and clearly the
most efficient among the considered estimators when the nested error model holds
and the sample is drawn with SRS within each area. The bias of FH estimators is
due to the fact that they are attaching most of the weight to the regression-synthetic
component, which relies exactly on the model, but here data Ydi are generated from
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the unit level model (8) and the area means of the covariates X̄k,d = N−1
d ∑

Nd
i=1 xk,di

are not linearly related with the poverty indicators Fαd . Thus, FH model fails due to
non-linearity of the poverty indicators Fαd in the area level covariates X̄k,d , k = 1,2,
even if the unit level model holds exactly.
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Figure 1. Percent relative bias (left) and relative root MSE (right) of direct, FH, HB
and ELL estimators of poverty gap F1d for each area d under the nested error model
with simple random sampling.

Table 1. Averages across areas of percent ARB and RRMSE for direct, FH, HB,
EB, Census-EB and ELL estimators of poverty incidence F0d and poverty gap F1d ,
under the nested error model with simple random sampling.

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.99 1.26 28.53 36.33
FH 6.34 14.78 26.26 38.16
HB 0.48 0.65 20.15 25.43
EB 0.51 0.67 20.41 25.73

Census-EB 0.55 0.69 21.15 26.71
ELL 1.31 1.69 47.39 58.63

Figure 2 depicts percent RB (left) and RRMSE (right) of EB and Census-EB
estimates of the poverty gap F1d for each area d. Figure 2 left shows the great
similarity of EB and Census-EB estimates of F1d , even if sampling fractions in this
simulation study are not so small (nd/Nd = 1/5, d = 1, . . . ,D). See in Figure 2 right
and in Table 1 that the average RRMSE increase of the Census-EB estimator is in
this case less than 1%.

Next we study ELL estimator of the MSE of F̂ELL
αd . Figure 3 depicts the true

MSE of ELL estimators of the poverty gap F1d , labeled “True MSE ELL" and the
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Figure 2. Percent relative bias (left) and relative root MSE (right) of direct, FH, HB
and ELL estimators of poverty gap F1d for each area d under the nested error model
with simple random sampling.

means across simulations of ELL estimates of the MSE, labeled “MSE ELL", for
each area d. This figure shows that ELL estimates of MSE do not really track
the true MSEs for each area even if we have considered here random effects for the
areas in the model (i.e., sampling clusters equal to areas). In the case that clusters are
different from the areas, if we consider the original ELL method that includes only
cluster effects but area effects are significant, then ELL estimates might seriously
underestimate the MSE.

For EB estimator, the parametric bootstrap procedure proposed by Molina and
Rao (2010) approximates the true MSE reasonably well, see Molina and Rao (2010).
For HB estimator, posterior variance, approximated by Monte Carlo, is taken as
measure of uncertainty.

4.2. Nested error model with informative sampling

We consider the same setup as in the previous simulation study, with the same popu-
lation sizes, model parameters, auxiliary variables and poverty line. The only differ-
ence is that in this simulation study, samples are drawn with informative sampling.
When the sampling is informative, the probability of a sample depends on the val-
ues of the population vector Y. Thus, under this setup, the simulations need to
be performed with respect to the joint distribution of (Y,s); that is, in each Monte
Carlo replicate `, we draw a population vector Y(`) and, given Y(`), we draw a sam-
ple s(`). A total of L = 1000 population vectors Y(`), ` = 1, . . . ,L, are generated
from the true nested error model (8). Again, we consider that the target variables
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Figure 3. True MSE of ELL estimators of poverty gap F1d and mean across simu-
lations of ELL estimator of the MSE for each area d, under the nested error model
with simple random sampling.

are Edi = exp(Ydi). The sample s(`) is drawn by Poisson sampling, with inclusion
probabilities πd,i depending on a random variable Zdi that is correlated with the
unexplained part of Ydi, that is, the model errors edi. Thus, for each population
unit i from area d, we generate a Bernoulli random value Qdi ∼ Bern(πd,i), with
πd,i = b−1 exp(−aZdi), where a > 0, b > 0 and Zdi ∼ Gamma(τdi,θdi). To choose
the values of τdi and θdi, we consider two cases: low and high level of informative-
ness. In the first case, we take τdi = 15+ 0.5edi and θdi = 0.75+ 0.025edi, which
yield random values Zdi with a 20% correlation with the model errors edi. In the
second case, we take τdi = 22.5+ 7.5edi and θdi = 1.125+ 0.375edi, yielding Zdi

with a 80% correlation with edi, which represents a high level of informativeness.
Note that under informative sampling, the sample size is random because each unit
in the population comes to the sample depending on its random value Qdi. To make
this simulation study comparable with the one in previous section, we wish to have
a similar average area sample size as before. This is achieved approximately by
considering a = 0.05 and b = 2.5 when the informativeness level is low and taking
a = 0.02 and b = 4 when the informative level is high. With the sample s(`) from
each population, we compute the five estimators, namely direct, FH, EB, ELL and
HB estimators. We excluded here Census-EB estimators because of their similarity
with EB estimators.
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Figure 4 plots RBs (left) and RRMSEs (right) of the estimators of the poverty
gap F1d when the informativeness level is low. Again, EB estimator is excluded
because it provides nearly the same results as HB. For low level of informativeness,
Figure 4 left shows that the negative bias of the EBLUP based on the FH model,
observed in the simulation with SRS, still persists, while the rest of the estimators
are almost unbiased. HB estimator still presents the smallest relative MSE among
the considered estimators, and ELL estimator performs the worst in terms of relative
MSE among the considered estimators. For the poverty incidence F0d , conclusions
are similar. These conclusions are confirmed by the averages across areas shown
in Table 2 for both poverty incidence and poverty gap. On average, the direct es-
timator has the smallest absolute RB (about 0.7% for poverty incidence and 0.9%
for poverty gap), followed by EB and HB estimators with a bias below 1.4% for
both poverty incidence and gap, the smallest RRMSE is for EB estimator (less than
21% for poverty incidence and than 26% for poverty gap) and the largest for ELL
estimator (over 47% for poverty incidence and over 58% for poverty gap).

Figure 5 plots RB (left) and RRMSE (right) of the estimators of the poverty gap
F1d when the level of informativeness is large. In this case, Figure 5 left shows a
negative bias for the FH estimator and a large positive bias of HB and ELL estima-
tors. Looking at Figure 5 right, we can see that now direct and FH estimates, which
are calculated using the true inclusion probabilities, present the smallest RRMSE
among the considered estimators. Again, conclusions are similar for the poverty
incidence F0d . Table 3 lists the averages across areas of ARB and RRMSE for all
the considered estimators of the poverty incidence and poverty gap. In this case,
the direct estimator has the smallest average ARB (about 0.6% for poverty gap),
whereas the average RRMSE of ELL estimator is the largest (99.6%).

To summarize, EB and HB methods are not greatly affected under low level of
informativeness, measured in terms of correlation among the design variable used
in the inclusion probabilities and the response variable. When the degree of infor-
mativeness is high, these two methods are certainly affected because they do not
take into account the sampling design. The effect of informative sampling on FH
estimator seems to be smaller, and its negative bias is again due to a non-linearity
problem of FH model because data actually follows the nested error linear regres-
sion model for log income at the unit level. We are currently developing suitable
methods to handle informative sampling in the case of unit level models.

4.3. Nested error model with outliers

In this section, we carry out a simulation study under exactly the same conditions
as in Section 4.1, but generating the model errors edi from a mixture of normal
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Figure 4. Percent relative bias (left) and relative root MSE (right) of direct, FH, HB
and ELL estimators of poverty gap F1d for each area d under low informativeness.

Table 2. Averages across areas of percent ARB and RRMSE for direct, FH, HB,
EB and ELL estimators of incidence F0d and poverty gap F1d , under low informa-
tiveness.

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.74 0.91 71.69 38.92
FH 10.47 19.26 30.33 43.38
HB 1.10 1.38 20.29 35.63
EB 1.04 1.25 20.48 25.86

ELL 1.63 1.98 47.39 58.65

distributions with different variances in order to create outliers. Concretely, in this
simulation study, we generate model errors as edi ∼ (1−ε)N(0,σ2

e )+ε N(0,Rσ2
e ),

where ε is generated as ε ∼ Bern(p). We consider two fractions of outliers, p = 0.1
and p = 0.5, and two values for the factor R in the variance of outliers, namely
R= 10 and R= 100. Using the above mechanism to generate model errors, a total of
L = 1000 population vectors Y(`), i = 1, . . . ,L, were generated from the nested error
model (8). Then, we calculated true area poverty incidences and gaps. Note that the
outliers considered in this simulation study are not recording errors in the sample
data. They are actually representative outliers appearing in the population. Thus,
they are actual realizations of the distribution with heavier tails obtained from the
normal mixture, and true values of poverty indicators actually include the generated
outliers in the population. The sample is drawn by SRS within each area as in
Section 4.1, keeping the sample units s fixed across simulations. With each Monte
Carlo sample, direct, FH, EB, ELL and HB estimators were computed.
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Figure 5. Percent relative bias (left) and relative root MSE (right) of direct, FH, HB
and ELL estimators of poverty gap F1d for each area d under high informativeness.

Table 3. Averages across areas of percent ARB and RRMSE for direct, FH, HB,
EB and ELL estimators of incidence F0d and poverty gap F1d , under large informa-
tiveness.

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.59 0.65 23.62 25.69
FH 6.94 9.21 23.83 29.40
HB 61.64 76.95 66.05 84.95
EB 61.60 73.68 66.08 84.89

ELL 61.69 76.98 72.94 97.29

We report here results for the cases of less frequent mild outliers (p = 0.1 and
R = 10), and of more frequent and extreme outliers (p = 0.5 and R = 100). For
the first case, results for the poverty gap are plotted in Figure 6. Again, EB is
excluded in the plots because it provides similar results as HB. Figure 6 left and
right show that direct estimators are not practically affected by the outliers, which is
expected because this estimator does not rely on any model assumption. Similarly,
FH estimator is less affected by outliers because the observed negative bias is again
due to non-linearity problems. HB and ELL estimators show a moderate bias, but
still HB estimator achieves the lowest error in terms of RRMSE. Averages across
areas of ARB and RRMSE for all estimators of poverty incidence and poverty gap
are shown in Table 4. We can see that the bias of EB and HB estimators is small
(around 4% for poverty incidence and 5% for poverty gap), and the RRMSE has
increased only about 0.5% with respect to the case of no outliers (see Table 2) and
it is still acceptable (around 21% for poverty incidence and 26% for poverty gap).
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For the case of more frequent and extreme outliers (p = 0.5 and R = 100), Fig-
ure 7 left shows that in this case HB, and to a greater extent ELL estimators; present
a very large positive bias, see also Table 7 reporting averages across areas. Note that
the RRMSE of ELL estimator reaches 226.63% for the poverty gap. In this simula-
tion study, FH estimates perform better than in the previous simulation studies, and
this could be due to the fact that, since FH model is less correct when outliers are
present, the FH estimator is attaching more weight to the direct estimator, which
is practically unbiased. EB, HB and ELL estimators are severely biased when data
contains frequent extreme outliers, performing even worse than under high level of
informative sampling, but are not too much affected under rare and not so extreme
outliers. These methods are based on model assumptions and are not robust to strong
model misspecification when the true error distribution has very heavy tails as in the
mixture model considered here with p = 0.5 and R = 100. We are exploring estima-
tion methods for complex parameters that are robust to outliers. Note that previous
work on robust estimation, e.g. Sinha and Rao (2009), focused on estimating area
means only.
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Figure 6. Percent relative bias (left) and relative root MSE (right) of direct, FH,
HB and ELL estimators of poverty gap F1d for each area d under nested error model
with outliers (p = 0.01 and R = 10).

5. Conclusions

This paper reviews popular poverty mapping procedures focusing on practical as-
pects. Simulation studies compare these methods under three interesting scenarios
that show the good properties when assumptions hold and also the worse perfor-
mance when some assumptions are not satisfied. These simulation studies illustrate
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Table 4. Averages across areas of percent ARB and RRMSE for direct, FH, HB,
EB and ELL estimators of incidence F0d and poverty gap F1d , under under nested
error model with outliers (p = 0.01 and R = 10).

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.92 1.18 28.54 36.82
FH 6.16 14.67 26.10 37.55
HB 3.95 4.95 20.81 26.22
EB 3.88 4.79 20.99 26.42

ELL 4.93 6.14 46.65 56.52
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Figure 7. Percent relative bias (left) and relative root MSE (right) of direct, FH,
HB and ELL estimators of poverty gap F1d for each area d under nested error model
with outliers (p = 0.05 and R = 100)

that: (i) Even if aggregation protects against model failures in FH area level model,
the linearity assumption of the model fails when data follows a unit level model but
target parameters are nonlinear functions of the model responses. However, FH es-
timates are less affected by informative sampling and by symmetric representative
unit level outliers. (ii) EB and HB methods perform practically the same, and are the
best among the considered estimators when the nested error model with normality
holds and sampling is noninformative. They are not very much affected by mildly
informative sampling and small proportion of mild outliers, but might be severely
affected by highly informative sampling or severe outliers in large proportions. (iii)
Census-EB estimators of poverty indicators are practically the same as EB estima-
tors and avoid linking the survey and census data files. (iv) ELL method under
a nested error model with random area effects performs the worst in all scenarios
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Table 5. Averages across areas of percent ARB and RRMSE for direct, FH, HB, EB
and ELL estimators of incidence F0d and poverty gap F1d , under nested error model
with outliers (p = 0.05 and R = 100).

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.96 1.20 29.68 41.99
FH 5.66 14.33 26.65 36.10
HB 74.13 161.73 86.87 180.88
EB 74.11 161.59 86.95 180.81

ELL 92.64 201.97 111.32 226.63

because it does not account for unexplained between-area variation.
Several relaxations of the normality assumption in the EB method have been

recently studied. Diallo and Rao (2004) derived EB estimators of poverty indica-
tors assuming the family of skew normal (SN) distributions for the random effects
and/or the errors, which includes the normal distribution as a particular case. Their
results indicate that the EB method based on normality is robust to deviations from
normality of ud provided edi remains normal. On the other hand, under SN errors
edi, normality-based EB estimators can induce significant bias and may not perform
well compared to SN-based EB estimators. Van der Weide and Elbers (2014) stud-
ied normal mixture models on the area effects ud and the errors edi. Their results
are in agreement with Diallo and Rao (2014) in the sense that the normality-based
EB method is robust provided edi remains normal. Graf, Marín and Molina (2015)
have also extended the EB method to the generalized Beta distribution of the sec-
ond kind (GB2), which models income data adequately. They have also shown that
using the EB method based on the GB2 distribution leads to clear efficiency gains
when the distribution of log income deviates from normality, whereas it does not
lose efficiency when log incomes follow the nested error model with normality.
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