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STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY
Joint Issue: Small Area Estimation 2014
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BORROWING INFORMATION OVER TIME

IN BINOMIAL/LOGIT NORMAL MODELS
FOR SMALL AREA ESTIMATION

Carolina Franco!, William R. Bell?

ABSTRACT

Linear area level models for small area estimation, such as the Fay-Herriot model, face
challenges when applied to discrete survey data. Such data commonly arise as direct
survey estimates of the number of persons possessing some characteristic, such as the
number of persons in poverty. For such applications, we examine a binomial/logit nor-
mal (BLN) model that assumes a binomial distribution for rescaled survey estimates
and a normal distribution with a linear regression mean function for logits of the true
proportions. Effective sample sizes are defined so variances given the true proportions
equal corresponding sampling variances of the direct survey estimates. We extend the
BLN model to bivariate and time series (first order autoregressive) versions to permit
borrowing information from past survey estimates, then apply these models to data
used by the U.S. Census Bureau’s Small Area Income and Poverty Estimates (SAIPE)
program to predict county poverty for school-age children. We compare prediction re-
sults from the alternative models to see how much the bivariate and time series models
reduce prediction error variances from those of the univariate BLN model. Standard
conditional variance calculations for corresponding linear Gaussian models that sug-
gest how much variance reduction will be achieved from borrowing information over
time with linear models agree generally with the BLN empirical results.

Key words: area level model, complex surveys, American Community Survey, bi-
variate model, SAIPE.

1. Introduction

Small area estimation by area level models often uses linear Gaussian mixed mod-
els, specifically the model of Fay and Herriot (1979). When such models are ap-
plied to data from a repeated survey the question arises as to whether better re-
sults may be obtained by borrowing information from past data. Time series ex-
tensions to the Fay-Herriot (FH) model have thus been explored. See, e.g., Ghosh
et al. (1996), Datta, Lahiri, Maiti, and Lu (1999), Saei and Chambers (2003), Rao

1U.S. Census Bureau. E-mail: Carolina.Franco@census.gov.
2U.S. Census Bureau. E-mail: William.R.Bell @census.gov.
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and Molina (2015, Sections 4.4.3, 8.3, and 10.9), Esteban et al. (2012), and Pratesi
et al. (2010, Chapter 3). Huang and Bell (2012) investigated the use of a bivariate
FH model that, for each area, borrowed information from an estimate obtained by
pooling recent past survey samples, which is similar to borrowing information from
an average of past survey estimates.

Area level modeling has also been extended through the use of Generalized
Linear Mixed Models (GLMM), which have been discussed in the context of small
area estimation by Ghosh, et al. (1998) and Rao and Molina (2015, Section 10.13).
GLMMs have potential advantages for modeling inherently discrete data arising
from direct survey estimates of the number of persons that possess a certain char-
acteristic (e.g., the number of persons in poverty). This can also be thought of as
modeling survey estimates of the corresponding proportions (e.g., poverty rates).
Directly applying a linear Gaussian model to such data may risk producing nonsen-
sical results such as negative predictions or, more likely, prediction intervals that
include negative values. Taking logarithms can eliminate these problems but cre-
ates the problem of dealing with direct estimates of zero that arise when no one in
an area’s sample possesses the characteristic whose prevalence is being estimated.
Analogous problems arise if predicted proportions or their interval limits exceed
one, or if direct estimates of proportions equal one. GLMMs avoid such problems
and may also help account for the skewness typically inherent in such data when the
underlying proportion is near zero or one.

This paper focuses on small area models that combine both extensions just men-
tioned. To address the challenges posed by discrete survey data, we use a bino-
mial/logit normal (BLN) model. This particular GLMM assumes a binomial distri-
bution for discrete observations, and a normal distribution with a linear regression
mean function for logits of the binomial proportions. We determine effective sam-
ple sizes for the binomial distributions to preserve sampling variances estimated via
a generalized variance function. To borrow information from past data we extend
the BLN model to a bivariate version and then to a time series version. The latter
uses a first order autoregressive model (AR(1)), although other time series structures
could be used. The normality assumption for the random effects in the logits of the
proportions facilitates these extensions for modeling dependence. One qualification
to note is that the extensions assume independence of the sampling errors of the
survey estimates for all years covered by the time series model, as well as for the
two equations of the bivariate model.

Our motivating application comes from the U.S. Census Bureau’s Small Area
Income and Poverty Estimates (SAIPE) program. SAIPE provides annual poverty
estimates for various age groups for states, counties, and school districts of the U.S.
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An important SAIPE product is school district age 5—17 poverty estimates used by
the U.S. Department of Education in allocating federal funds (over $14 billion in
2013) to school districts. For more information on the SAIPE program, see Bell et
al. (2015) or the SAIPE web page at http://www.census.gov/did/www/saipe/.

The survey data source used by SAIPE, which we also use here for illustration,
is poverty estimates from the American Community Survey (ACS). The ACS is the
largest household sample survey in the United States, sampling approximately 3.5
million addresses per year. It collects data on a broad range of population charac-
teristics such as income, health insurance coverage, and education, and publishes
estimates annually. For areas with populations of 65,000 or more, ACS publishes
estimates based on a single year of data collection. For the smallest places, pub-
lished estimates use data pooled from five years of ACS samples. The ACS, with its
S5-year estimates, has effectively replaced the decennial census long form sample,
which was last carried out in Census 2000. SAIPE poverty models use ACS 1-year
estimates, which are not publicly released for counties with populations less than
65,000.

We focus here on modeling county poverty for school-aged (5-17) children,
a key component of developing the SAIPE poverty estimates for school districts.
The SAIPE production model has as a covariate the log of the Census 2000 long
form county estimates of age 5-17 children in poverty. This covariate is going
further and further out of date, motivating consideration of replacing it with past,
but more recent, ACS data. Huang and Bell (2012) thus explored bivariate FH
models for current ACS 1-year and past ACS 5-year poverty estimates. This issue
also motivates the bivariate and time series extensions to the BLN model that we
study here.

Our interest in studying the BLN model applied to SAIPE data stems from its
potential advantages for modeling discrete data discussed above, a relevant con-
sideration for the ACS 1-year estimates for small counties. Slud (2000, 2004) did
several analyses comparing results from GLMM models to results from models sim-
ilar to the SAIPE county production model. Slud (2000) showed advantages to the
use of a unit level BLN model of sampled counts compared to a linear Fay—Herriot
model for logged counts when the data were simulated from the GLMM model.

The rest of the paper proceeds as follows. Section 2 presents the BLN model
and its extensions to bivariate and time series (AR(1)) versions. Section 3 presents
results from application of these models to ACS county poverty data for 2012. We
compare results between the variants of the BLN model to illustrate the potential
benefits of the two different ways of borrowing information from past data. Sec-
tion 4 provides conclusions.
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2. Binomial/Logit Normal (BLN) Models

The BLN model may be written as

yi‘piani ~ Bin(”hpi) i:17"'7m (1)
logit(p;)) = XB+u; )

where logit(p;) = log[p;/(1 — p;)], u; ~ i.i.d. N(0,62), and n; is the sample size for
area i. The model as given by (1)—(2) can be readily applied to unweighted sample
counts y;, but doing this ignores any complex aspects of the survey design. For
applications to complex survey data where the y; are survey weighted estimates, two
problems arise. First, the possible values for the y; will not be the integers 0,1,...,n;
for any direct definition of sample size n;. Instead, y; will take a value from a finite
set of unequally-spaced numbers (not necessarily integers) determined by the survey
weights that apply to the sample cases in area i. Second, the sampling variance of
y; implied by the binomial distribution in (1), n;p;(1 — p;), will be incorrect.

To address these problems we start by defining an “effective sample size” 7,
and an “effective sample number of successes” j;, determined to maintain: (i) the
direct survey weighted estimate p; of the true proportion, and (ii) a corresponding
sampling variance estimate, var(f;). For the latter we set

ii; = pi(1 — p;) /var(p;) 3)

where p; is a preliminary model-based prediction of the population proportion p; (on
which var(p;) truly depends), and var(;) depends on p; through a fitted generalized
variance function (GVF). Franco and Bell (2013) give a detailed explanation of
the implementation of this GVF for application of the BLN models to the ACS
county poverty data used in SAIPE models. Liu, Lahiri, and Kalton (2007) and
You (2008) used essentially this type of sampling variance model, but applied it in
models of survey estimates of proportions assumed to follow either a normal or a
Beta distribution.

Having thus determined #i;, we set §; = /i; X p; and, after rounding, substitute
(71, ¥;) for (n;,y;) in (1). Note that §; = 0 if p; = 0, but this does not cause problems
since the BLN allows for observations of zero. Moreover, p; > 0 in (3) implies
ii; > 0 even if p; = 0. Rounding of 7; and ¥; may be required by computer software
for the fitting of models such as (1)—(2).
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We extend the univariate BLN given by (1)—(2) to a bivariate BLN, written as

V1ilp1i,fii ~ Bin(7iy;, pii) Y2i| pais fiai ~ Bin(iiy;, pai) 4)
logit(p1;) = x1;B1 + ui; logit(pai) = X4, B2 + ua; Q)

[”h] ~iid N(0,X), E= {

O11 612]
Uz;

O12 022

fori=1,...,m. In (4), for each area i 7i|; and J|; are the effective sample size
and effective number of successes derived as discussed above from a direct sur-
vey estimate yj; and a corresponding sampling variance estimate. Similarly, 7iy;
and j,; are derived from another direct survey estimate y,; and corresponding sam-
pling variance estimate. The bivariate BLN model can be applied to estimates y;
and y,; from two different surveys or for two different time points from the same
repeated survey. Notice, though, that ¥;; and J,; are assumed conditionally inde-
pendent (given py;,7i1; and py;,7ip;), as will be the case if the samples on which they
are based are drawn independently. This is true for our application of the bivariate
BLN in Section 3, where y;; and y;; are ACS 1-year and previous 5-year poverty
estimates, respectively, since ACS samples are drawn approximately independently
each year. (The ACS housing unit samples are drawn independently each year from
one of five population subframes to which U.S. residential addresses are randomly
assigned, with rotation of the subframes on a five-year cycle. Sampling fractions for
most areas are 5% or less. See U.S. Census Bureau (2014, pp. 32-46).)

Instead of summarizing the information in five prior years of ACS data through
the resulting 5-year estimates, a logical alternative to consider is to use the cor-
responding five individual 1-year estimates. Putting this together with the current
1-year estimates, implies modeling six years of ACS 1-year estimates. We do this
by extending the BLN to assume the model errors u; have an AR(1) correlation

structure:
yit|pit7ﬁiNBin(ﬁitvpi1) izla"')ma III,...,T (6)
logit(pi) = X;tﬁt +uy = X;tﬁt + Ol @)
iy = Qi1 + & (®)

where —1 < ¢ < 1. The &; are assumed distributed as i.i.d. N(0,1 — ¢?) so that
var(ii;) = 1 (Box and Jenkins 1970, p. 58) and var(u;;) = 0',2. Note that this ver-
sion of the BLN-AR(1) model has different regression coefficients (f3;) and different
model variances (6%) each year. We have three reasons for making this assumption.
First, the true regression coefficients and model variances may actually differ year-
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to-year. Second, this assumption is implicitly made in current SAIPE production by
fitting the univariate production models separately for each year. Third, and most
importantly here, the assumption facilitates comparisons of results, especially the
comparisons of posterior variances and standard deviations that we make in Sec-
tion 3, to corresponding results obtained from the univariate and bivariate BLN
models. Both the univariate and bivariate BLN models use regression coefficients
and a model variance specific to the prediction year.

A more conventional version of the BLN-AR(1) model would set §;, = 8 and
o} = o2 for all years ¢ in the model. With this assumption, the covariance matrix of
w; = (u1,...,u;7) has the general form (Box and Jenkins 1970, pp. 56-58)

1 ) T
1 T-2
var(u;) = Guz (P : . ¢ : 9)
(PT;I (PT;Z 1

For the heteroscedastic version given by (7)—(8), we drop cru2 in (9) and pre- and
post-multiply the matrix there by a diagonal matrix with diagonal elements o;.
Linear Gaussian models with AR(1) model errors for ACS poverty data were in-
vestigated by Taciak and Basel (2012) for application to logs of ACS county 5-17
poverty estimates, and by Hawala and Lahiri (2012) for application to ACS esti-
mates of county 5-17 poverty rates. Esteban et al. (2012) applied such models to
data from the Spanish Living Conditions Survey to improve direct survey estimates
of the male and female poverty rates for Spanish provinces.

3. Application: Borrowing Information from Past Data in Small Area
Estimation of Poverty for U.S. Counties

To illustrate the potential for variance reductions from the bivariate and AR(1) ex-
tensions to the BLN models, we apply these models to estimating poverty rates for
school aged children in U.S. counties in 2012. The univariate BLN (1)—(2) models
the 2012 ACS 1-year county poverty estimates, the bivariate BLN (4)—(5) models
these estimates together with the 2007-2011 ACS 5-year county poverty estimates,
and the BLN-AR(1) (6)—(8) models the ACS 1-year county poverty estimates from
2007-2012. We shall compare prediction results from these models for 2012 for
3,136 counties, omitting 6 counties from the SAIPE universe which were not con-
sistently defined across all 6 years of data. We did the same analysis with data
corresponding to prediction years 2010 and 2011 and obtained very similar results.

The regression variables used in each of the models included 1 for an intercept
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term, and logistic transformations of the following:

e the proportion of child tax exemptions “in poverty” for the county, i.e., the
ratio of the number of child exemptions claimed on tax returns whose adjusted
gross income falls below the poverty threshold divided by the total number
of child exemptions for the county. (Notes: (i) In general terms, a “child
tax exemption” is a child listed on an income tax return who is economically
dependent on the person filing the return. (ii) The poverty threshold used is
that applicable to a family of the size implied by the number of exemptions
(persons) listed on the tax return.)

e an adjusted version of the county “child tax filer rate,” which is defined as the
number of child exemptions in the county claimed on tax returns divided by
the county population age 0—17.

o the “SNAP participation ratio,” defined as the ratio of county recipients of
benefits from the Supplemental Nutrition Assistance Program (SNAP), a pro-
gram that subsidizes food expenses of low income persons, in July of the
previous year to the county population of the previous year.

Huang and Bell (2012) used the above ratio variables in bivariate models for ACS
poverty rates, while Bell et al. (2007) used their logarithms in models for logs of
ACS poverty rates. For x;; in equation (5) of the bivariate BLN, we used the above
variables defined for the middle year (2009) of the 5-year interval.

An issue arises for the child tax filer rate in that it often exceeds 1 due to the
number of child tax exemptions in a county exceeding the county’s age 0—17 pop-
ulation. This occurs because the upper age limit for a child tax exemption can
exceed 17, ranging as high as 23 for university students, and with no age limit for
disabled children. The issue was addressed by multiplying all child tax filer rates
by a constant factor to bring the maximum rescaled filer rate just below 1, permit-
ting the logistic transformation. This adjustment is discussed further in Franco and
Bell (2013).

We used the JAGS software (Plummer 2010) to implement the three models
via a Bayesian approach with noninformative priors. Regression parameters were
given normal priors with large variances, while the random effect variances in our
models were given flat priors on intervals [0, k| chosen wide enough to contain
essentially all the posterior probability as judged from examination of their posterior
densities for a univariate model. The parameters p of the bivariate BLN and ¢
of the BLN-AR(1) models were given flat priors on (—1,1). We determined the
effective sample sizes 7i; and effective numbers of successes J; for the BLN models
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as discussed in Section 2 for both the ACS 1-year and ACS 5-year poverty estimates.
We used separately fitted GVFs for the sampling variances for each year of the 1-
year estimates, as well as a separately fitted GVF for the variances of the 5-year
estimates.

3.1. Variance reductions from the extensions of the BLN model

Figure 1 compares the posterior means and standard deviations obtained from JAGS
for the rates of school-aged children in poverty for U.S. counties in 2012 from the
univariate, bivariate, and AR(1) BLN models. Parts (a) and (b) show that the pos-
terior means are similar regardless of which of the models we choose. Figure 1(c)
shows the posterior standard deviations tend to be lower for the bivariate BLN model
than for the univariate BLN model, suggesting some value to incorporating the ACS
5-year estimates into the model. The gains are modest, however. The average per-
centage reduction in posterior standard deviations from using the bivariate versus
the univariate model is approximately 5%, with about an 11% corresponding aver-
age reduction in posterior variances. The AR(1) model, on the other hand, yields
only a 2.3% average decrease in standard deviations and a 4.6% decrease in vari-
ances compared to the univariate model. On average, it has larger posterior standard
deviations than does the bivariate model, as reflected in Figure 1(d).

As the returns from using the bivariate or AR(1) BLN models to borrow in-
formation from past data are so modest, the question arises as to whether the data
provide much evidence of dependence over time in the model errors u;;. In fact, the
posterior mean of p from the bivariate BLN is .51 with a 95% posterior (credible)
interval of (.43,.60), while the posterior mean of ¢ from the AR(1) model is 0.44,
with a 95% interval of (.39,.50). So the data provide clear evidence of dependence
over time in the u;,, but modeling this dependence does not produce much reduction
in prediction uncertainty for the county 5-17 poverty rates.

3.2. How much improvement should we expect from borrowing information
from past data?

As a rough guide to how much improvement might be expected from the bivariate
or AR(1) models over the univariate model, we consider the linear FH model case
when the true dependence structure is a stationary AR(1) model and all model pa-
rameters are known. We also assume for simplicity that the model error variance 6.2
and the sampling variances v; remain constant over time. For this case it is straight-
forward to compute and compare the posterior variances (prediction MSEs) for the
univariate, bivariate, and AR(1) versions of the FH model using standard results on
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Figure 1: Comparison of posterior means and standard deviations for 2012 U.S.
county poverty rates of school-aged children for univariate, bivariate, and AR(1)
BLN Models.

conditional variances in a multivariate normal distribution — see the Appendix. Note
that, since model parameters are assumed known, the predictions for each model are
optimal conditional on the data used, but the data conditioned on differs across the
three models.

Percent reductions in posterior variances for the bivariate and AR(1) models
compared to the univariate model depend only on the parameter ¢ and variance ratio
v;/o2. Figure 2(a) shows contour plots of the percent variance reductions achieved
by the AR(1) model as functions of ¢ and v;/c2. (The plot assumes ¢ > .4; a mirror
image results for ¢ < —.4, and percent reductions are small for |¢| < .4.) It shows
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Figure 2: Contour plots of posterior variance percent reductions for small area esti-
mates achieved by the FH-AR(1) model using 6 years of data compared to the uni-
variate and bivariate FH models, when the true population characteristics actually
follow an AR(1) model. Contours are shown as functions of the AR(1) parameter ¢
and var(e;)/var(u;), the ratio of the sampling error variance to the model error vari-
ance. (a) Reductions from the AR(1) versus the univariate model. (b) Reductions
from the AR(1) versus the bivariate model.

that the variance reductions increase with increasing values of ¢, and decrease as
the value of v;/ Guz deviates from 1.0. (Note that the x-axis in Figure 2(a) is on a
log scale.) For values of ¢ such as .50 or less, the variance reductions are small,
no more than about 7% when v;/c2 = 1, and less as v;/c> moves away from 1.0.
Large variance reductions require larger values of ¢. For example, to achieve a 20%
or greater reduction in variance requires ¢ > .75.

Esteban et al. (2012) reported results related to those of Figure 2(a) obtained
from a simulation study of the FH-AR(1) model, though augmented with a time-
invariant area level random effect. This feature, and some other differences (most
notably that their simulations provide estimates of the full prediction MSEs, not
just a first order approximation) make their specific numerical results not directly
comparable to ours. However, their results obtained with the alternative values of
¢ =0,.25,.5,.75 (denoted as p in their paper) are consistent with the general con-
clusions we draw from Figure 2(a). First, they found that borrowing from past data
yielded little if any benefit for ¢ <.5. Then, for ¢ = .75, their augmented FH-AR(1)
model appears (judging from their Figure 4.1) to reduce prediction MSEs by about
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10%, or in some cases slightly more, relative to those obtained by applying this
model with ¢ fixed at 0. Their simulation model assumed different values of the
sampling variances across areas and time points, resulting in values of their ratio
of sampling to model variance ranging from roughly .325 to .8 overall. The values
within this range that were covered by a given simulation experiment varied as this
depended on the value used for ¢ in the experiment. Esteban et al. also remarked
that other simulations they did without the time-invariant random effect led to the
same basic conclusions.

Figure 2(b) shows contours of percentage variance reductions from using the
AR(1) model versus the bivariate model when the latter is applied to current year
survey estimates and the average of survey estimates over the previous five years.
We take this use of the five-year average as an approximation to the use of ACS
S-year estimates. Since the calculations assume the AR(1) is the true model, the
bivariate model must have higher posterior variances. However, the reduction in
variance from using the AR(1) model is generally small — less than 10% except for
a small region in the upper left corner of the plot for high values of ¢ and values of
Vi / 63 < .5.

One might wonder whether larger variance improvements from the AR(1) or
bivariate models might result if more years of data were used compared to the six
years assumed for the plots of Figure 2. Doing the same contour plots for the cases
of 10 years of data and 20 years of data produced little change in the plots, except
for very large values of ¢ and within a limited range of large v;/c values, where
more substantial advantages to the AR(1) over the bivariate model were observed.
Over almost all of the range of ¢ and v;/c2, using more years of past data appeared
to make little difference.

The values of the variance ratios, v;/c2

-, across the areas i = 1,...,m in the

model will clearly affect how much variance improvement is achieved in specific
areas. To gauge this effect for our application, we fitted a linear FH model to the
ACS estimated county poverty rates, for which we had the sampling variances v;
from the GVF, and, using the posterior mean of 62, we calculated the ratios v;/c2.
Figure 3 shows a histogram of these variance ratios with the x-axis on a log scale.
Most of the values lie between .1 and 10, though some extend beyond this. The
variance ratios across the U.S. counties thus reflect much of the x-axis range of the
contour plots in Figure 2.

Figures 2 and 3, the simulation results of Esteban et al. (2012), and the esti-
mates of ¢ for the AR(1)-BLN model, suggest that for our application only small
improvements in posterior prediction variances would be realized from the AR(1)
or bivariate models compared to the univariate BLN. This is consistent with the
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Figure 3: Histogram of the ratios of the sampling variances to the model variance
in the FH model for the 2012 U.S. county poverty rates of school-aged children

posterior variance comparisons discussed in Section 3.1. Two other results from
these comparisons may still seem surprising. First, the improvements for the bivari-
ate BLN model are somewhat larger than the theoretical calculations for the linear
model would suggest. Second, the improvements for the bivariate BLN model are
larger than are those for the AR(1) model. While one would expect some limi-
tations on how well calculations for linear FH models with parameters assumed
known apply to fitted BLN models, that does not seem to explain these results since
we obtained very similar results when we made the same comparisons using the
bivariate and AR(1) extensions to the FH model applied to county poverty rates. In
this case the bivariate FH model reduced prediction error standard deviations and
variances compared to the univariate FH model by, on average, 5% and 9% (com-
pared to 5% and 11% for the bivariate BLN). Corresponding figures for the AR(1)
FH model were 2.7% and 5.2% (compared to 2.3% and 4.6% for the AR(1) BLN).
In any case, differences between the comparisons for the BLN models and those for
the FH model (both empirical and theoretical results) are not large, and all lead to
the main conclusion that, given the value of ¢ for the AR(1) model, modest vari-
ance reductions would be achieved by the bivariate or AR(1) models relative to the
univariate model.

3.3. Impact of removing model covariates

To illustrate a case where greater improvement would be expected from borrowing
information over time, we repeated our empirical analyses after removing the re-
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gression covariates from the BLN models, leaving only the intercept terms. Without
the regressors, the posterior means of p and ¢ skyrocketed to .92 and .94, respec-
tively. We are now in the region of the parameter space where, by Figure 2(a), we
would expect to see very substantial reductions in posterior variances from using
a bivariate or AR(1) model rather than a univariate model. For this case, Figure 4
shows substantial differences between both the posterior means and posterior stan-
dard deviations of county poverty rates from the univariate and bivariate BLN mod-
els. In fact, we now see an average 25% reduction in posterior standard deviations
and a 43% reduction in posterior variances from using the bivariate versus the uni-
variate model. The AR(1) and bivariate BLN models performed similarly (results
not shown on the plots), with the AR(1) yielding, on average, 1.3% higher poste-
rior standard deviations compared to the bivariate BLN. The average reductions in
standard deviations and variances for both the bivariate and AR(1) FH models for
poverty rates were 26% and 45%.

() (b)

0.06 0.08
| |

bivariate posterior means
0.04
!

bivariate posterior std. deviations

0.02
|

T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.02 0.04 006 008 010 0.12

univariate posterior means univariate posterior std. deviations

Figure 4: Comparisons of the posterior means and standard deviations for the 2012
U.S. county poverty rates of school-aged children for the univariate and bivariate
BLN models with no regressors

3.4. Some model checks

For the linear (FH) model, where y; = (x/ + u;) + e;, examination of standardized
residuals defined as (y; —x/8)/[var(y; — x8)]'"/? provides a standard model check.
We seek an analog for the BLN model (1)—(2). Since the inverse to (2) is p; =
(1+ e (iB+u))=1 and E(u;) = 0, it may seem natural to use residuals defined as
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yi/ni — p; where p; = (1 —|—e*x53)*1 and 3 is an estimate of . However, even
with B known, (1+ ¢ *#)~1 is not an unbiased estimator of E(y;/n;) due to the
nonlinearity of the logistic transformation and the presence of the random effects
u;. Instead, we define residuals as y;/n; — E(y;)/n; and compute

EQi/n) = (/m)Ep [EGilp) = Ep(p) = [ (1) flapdz (10)

where z; = logit(p;), f(z) is the N(x/B8,02) density, and E,,(e) denotes uncondi-
tional expectation over the distribution of p;.

To standardize the residuals we need the unconditional variance

var(y;) = Ep[var(yi|pi)] + vary,[E(yi|pi)]
= Ep[nipi(1— p;)]+ var, [n;p;]
= niEPi [Pi] - niEPi [pzz} + nizvarpi [Pi} . (11)

To compute (11) requires computing E,, [p?] which, analogous to (10), is
Enlpf)= [ (1+e) 2 (adz (12)

Substituting the posterior means of 8 and 67 into f(z;), both (10) and (12) can
readily be computed by numerical integration. We used the “integrate” function in
R (R Core Team 2013) for this purpose. We then computed standardized residuals
as [yi/ni — E(pi)]/[var(y;)' /2 /ni].

Figure 5 plots such standardized residuals for 2012 from the equation for j; of
the bivariate BLN given by (4)—(5) against county effective sample sizes 71;;. (We
could equally well do this for residuals from the equation for y,;, but focus here
on checking the model for §;; since our interest lies in predictions of pj;.) For
iiy; “sufficiently large”, standard normal distribution inferences (e.g., =2.57 for a
99% confidence interval, as denoted by the blue dashed lines on the plot) may be
appropriate given the approximate normal distribution of the binomial, although
precisely how large 7ij; must be for this approximation to hold is unclear (Brown,
Cai, and DasGupta 2001). In any case, in the plot the bulk of the residuals look
reasonably symmetrical, with no systematic biases related to sample size (which is
strongly related to population size). There are a number of large positive residuals,
though mostly these occur at the smaller effective sample sizes, especially for 7i; of
about 30 or less, where the direct estimates are erratic. It may seem odd that there is
not a corresponding set of large in magnitude negative residuals. This is due to the
fact that y;/7i; € [0, 1] while all the predicted p; values are less than 0.54. Extreme
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Figure 5: Standardized residuals from the 2012 bivariate BLN model’s equation for
y1; plotted against county ACS effective sample sizes.

negative residuals are thus unlikely, while extreme positive residuals occur when
¥i/7i; is large, even 1.0, as happens sometimes with small samples.

We also examined a plot (not shown) of the standardized residuals against the
predicted p; values, which mimics a standard regression diagnostic (plot residuals
against fitted values). This plot did not suggest any systematic biases related to the
predicted county poverty rates.

Brown et al. (2001) suggest as a “calibration diagnostic” comparing model pre-
dictions aggregated to larger areas against corresponding direct survey estimates. In
SAIPE production the county model predictions of the number of age 5—17 children
in poverty are raked (rescaled) to force agreement with corresponding state esti-
mates obtained from an FH model applied to direct ACS estimates of state poverty
rates. For large states substantial weight is given to the direct ACS estimate in the
model predictions, and this raking is then similar to raking to the direct estimates. In
any case, there is practical interest in how much raking of the county model predic-
tions is required. We examine this here for the bivariate BLN and (unraked) SAIPE
production county model predictions derived from the 2012 ACS data.

To explain this in more detail, for the bivariate BLN model we expand our no-
tation slightly to let p;; be the bivariate BLN county model prediction of the age
5-17 poverty rate for county i in state j (treating the District of Columbia (DC)
as both a county and a state in this analysis), and Nj; be the 5-17 population esti-
mate for county i obtained from the Census Bureau’s population estimates program.
(Actually, slight modifications are made of the N;; to estimate the county “poverty
universes”, which exclude a relatively small set of persons for whom poverty status
cannot be determined (Bell et al. 2015).) The predicted number of age 517 children
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in poverty for state j implied by its county model predictions is then };c ; pjiN;;. The
SAIPE production county model is an FH model for logarithms of the number of
children age 5-17 in poverty (Bell et al. 2015). Predictions from this model are
transformed to the original (unlogged) scale using a bias adjustment based on prop-
erties of the lognormal distribution and accounting for uncertainty due to estimating
regression parameters of the model. These predictions are then simply summed
across counties to yield state level predictions of the number in poverty.

Figure 6 plots percent differences of the state total estimates of the number
of age 5-17 children in poverty from the two county models — bivariate BLN and
SAIPE production — compared to the corresponding estimates derived from the
SAIPE state model. The percent differences are defined as 100 x (1 — SAIPE state
model estimate /aggregated county model predictions) so positive values indicate ag-
gregated county model predictions exceeding the state model predictions and nega-
tive values indicate aggregated county model predictions lower than the state model
predictions. The percent differences are plotted for 50 states, with states sorted
by their ACS sample sizes (number of addresses). We dropped Alaska because
it contained 5 of the 6 counties omitted from the modeling due to their not being
consistently defined for all years of our data, which prevented us from getting an im-
plied state poverty prediction for Alaska from the bivariate BLN model. The other
omitted county was in Texas, but it had inconsequential effects on the state total.

Somewhat greater percent differences are to be expected at the left of Figure 6
for the small states where the estimation uncertainty is highest. This tendency is
apparent in the plot. Apart from this, if we examine the blue solid dots in the plot,
we see that the percent differences for the bivariate BLN model appear to be usually
no more than a few percent. The corresponding percent differences for the SAIPE
production estimates (red circles) appear to usually exceed those from the bivari-
ate BLN, as well as being generally larger in magnitude. These impressions are
reflected by Table 1, which summarizes the distributions of the percent differences.

county model min 1% quartile median mean 3¢ quartile max
Bivariate BLN —6.3 —-1.2 -5 -3 .8 34
SAIPE production | —4.3 2 2.2 1.8 4.5 11.6

Table 1: Distribution (omitting Alaska — see text) of percent differences between the
state aggregates of county model predictions of 5-17 in poverty from the bivariate
BLN and SAIPE production models compared to the SAIPE state model estimates
for 2012.
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Figure 6: Percent differences between aggregated county model predictions of 2012
state total numbers of age 5-17 children in poverty and corresponding SAIPE state
estimates. Red circles = SAIPE production model (unraked predictions); blue solid
dots = bivariate BLN model.

Ideally we should take account of statistical uncertainty in the state level per-
cent differences, but this is complicated, particularly for the bivariate BLN, by the
dependence between the state and county model predictions due to both coming
from models fitted to ACS data. As a conservative indication, 90% prediction in-
tervals for the SAIPE state model predictions, expressed in multiplicative percent-
age terms, range from lows of around +1.7% for the largest states (California and
Texas) to highs of about +11% to +13% for some of the smallest (Wyoming, New
Hampshire, and DC). These figures should overstate the uncertainty in the percent
differences since we would expect positive dependence between the state and county
model predictions.

4. Conclusions

Several conclusions stand out from the empirical and theoretical results presented
in this paper. A general conclusion is that to achieve substantial variance reductions
by jointly modeling current and past data requires fairly high levels of dependence
over time in the random effects (model errors) of small area models. With modest
levels of dependence, variance reductions from including past data are likely to be
limited. A conclusion specific to the empirical example on modeling ACS poverty
estimates is that the regression covariates used in the models do a good job explain-
ing variation in poverty across counties and over time, leaving residuals with modest
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levels of dependence. Without these covariates in the models, the dependence over
time in the model errors is strong, and borrowing information from past data then
substantially reduces posterior (prediction error) variances.

A second general conclusion is that a bivariate model for the current year’s
estimate and the average of the estimates for some number of immediately preced-
ing years may do about as well as an AR(1) model in borrowing information from
past data for small area predictions. In fact, in the example bivariate models did
slightly better than the corresponding AR(1) models. Additional comparisons could
be made to models with more general dependence structures, such as a higher order
AR model or a general 6 x 6 covariance matrix. While we intend to pursue this, we
are confident that this will not alter the main conclusions expressed in the preced-
ing paragraph. We also conjecture that bivariate models may do reasonably well in
comparisons to other time series models with stationary autocorrelations, such as
higher order AR models. It seems less clear whether this will be the case for models
with nonstationary dependence, such as random walks. Consideration of the bivari-
ate model is natural for the SAIPE application given that the ACS annually produces
5-year estimates for all U.S. counties and other small areas, and these 5-year pooled
sample estimates can be thought of as similar to 5-year averages of 1-year estimates.
While the bivariate model may seem less natural in other applications, it could be
considered as a somewhat simpler alternative to using a time series model.

Appendix: Calculating Prediction MSEs for the Bivariate and FH-AR(1)
Models

For extending the linear FH model to bivariate and AR(1) versions, let y;; be the
direct survey estimate for area i and time t = 1,...,T of population characteristic
Yy, so yiy = Yy + e; where e;; is the sampling error. For simplicity we assume the
model parameters are known (first order approximation) and also assume normality,
so that the best linear predictor (BLP) is the conditional expectation and the pre-
diction MSE is the conditional variance. With parameters assumed known we need
not explicitly consider the regression mean for E(Y; ), as this does not affect the
conditional variances, which are our focus here. Also, since the FH model assumes
independence over areas i, the BLP for area i then uses data for only that area, so
we simplify the notation by dropping the subscript i. We further simplify by assum-
ing that var(Y;) = var(i,) = o> and var(e,) = v are constant over time. Within this
simplified setup, we seek MSEs for the bivariate and FH-AR(1) predictors of Yr,
the most recent true population quantity, given datay = [y,...,yr]’.
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Letz=Ay =AY + Ae where A is a k x T matrix of the form

A 0 Anyi
[0, 1] ’ { yr (13
where y; = [y1,...,yr—1] and 0 is a (k— 1) x 1 vector of zeroes. For the FH-

AR(1) model k =T and A;; = Iy_1, while for the bivariate model k =2 and A;; =
(T —1)7'[1,...,1]. Letting £, = var(e), and similarly defining £, £,, and X, we
have £, =%, + X,, £, = AX,A’, and cov(e,z) = £,A’. From standard results on
conditional variance in a multivariate normal distribution, and since predicting e is
equivalent to predicting Y, then

var(Y|z) = var(e|z) = £, — XA (AL,A") 'AZ,.

We are assuming ¥, = v/, and we write X, = GfR, where R is the T x T correlation
matrix of Y. Then £, = 62(Al + R) where A =v/0? is the noise-to-signal ratio.
Thus,

var(elz) = vI—vA'[c2A(AI+R)A | Ay
= v{I-AA[A(AMI+R)A') 1A},

Let Q = [wje] = [A(Al + R)A'|"!. We are interested in the (7,7 )th element of
var(e|z), which is
/ !/ 0
var(Yr|z) = var(er|z) = v{l — A0, 1]A'QA [J } .
From the definition of A in equation (13), [0/, 1]JA" = [0/, 1], so that this reduces to
var(Yr|z) = v(1 — Aorr) (14)

where wrr is the (7,7 )th element of Q. The expression (14) is easily computed
given v, 62, and R. For our comparisons, R is the AR(1) correlation matrix given in
equation (9), which is determined solely by ¢. Hence, Q is determined by A and ¢.
Note that for the bivariate model, A is 2 X 7" and € is then a 2 x 2 matrix.

The prediction MSE of the univariate FH model is var(Yr|yr) = 62v/(c2 +v)
(Rao and Molina 2015, eq. (6.1.8)). The percent reduction in prediction MSE from
the FH-AR(1) or bivariate models relative to the univariate FH model is thus 100
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times

! var(Yr|z) ) o2 +v
var(Yrlyr) o2v

= 1—(1+M)(1-Aarr).

v(l —leT)

This expression depends on only A and ¢.
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