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INFERENTIAL ISSUES IN MODEL-BASED SMALL 

AREA ESTIMATION:  

SOME NEW DEVELOPMENTS 

J. N. K. Rao1 

ABSTRACT 

Small area estimation (SAE) has seen a rapid growth over the past 10 years or so. 

Earlier work is covered in the author's book (Rao 2003). The main purpose of this 

paper is to highlight some new developments in model-based SAE since the 

publication of the author's book. A large part of the new theory addressed 

practical issues associated with the model-based approach, and we present some 

of those methods for area level and unit level models. We also briefly mention 

some new work on synthetic estimation of area means or totals based on implicit 

models. 

Key words: area level models, complex parameters, informative sampling, model 

misspecification, robust estimation, unit level models. 

1. Introduction  

The author's 2003 Wiley book (Rao 2003) provided a comprehensive account 

of the theory and methods of model-based small area estimation (SAE), which 

borrows strength through explicit models linking related small areas. Model-

based SAE, both in theory and applications, has seen rapid growth over the past 

10 years due to growing demand for reliable small area statistics. In a review 

paper, Pfeffermann (2013) says “The diversity of new problems investigated is 

overwhelming, and the solutions proposed are not only elegant and innovative, 

but also very practical”.   
The main purpose of this paper is to highlight some new developments in 

model-based SAE since the publication of the author's 2003 book.  A large part of 

the new theory addressed practical issues associated with the model-based 

approach, and we present some of those methods for area level and unit level 

models. We also briefly mention some new work on synthetic estimation of area 

means or totals based on implicit models.  
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2. Synthetic estimation based on weight sharing 

Let iY  be the total of a variable of interest y  for domain (or area) i . Let s  be 

a probability sample from a finite population with associated inclusion 

probabilities k and values ,ky k s  . Then, a basic area-specific direct estimator 

of iY  is given by the expansion estimator 

( )

ˆ
i k kk s i

Y w y


 ,                                   (2.1) 

where ( )s i is the subsample of units belonging to area i and 1/k kw  .  

Improved direct estimators (such as generalized regression estimators) can 

also be obtained using supplementary population information. Such direct area 

estimators are not useful or feasible for SAE if area-specific samples of 

inadequate sizes or no samples are available.   

We first present synthetic estimation of small area totals based on weight 

sharing. The basic idea behind weight sharing is to produce weights 
ijw  for each 

area i and each unit j s   that satisfy the calibration property 

,    1,...,ij j i

j s

w x X i m


           (2.2) 

and the weight-sharing property 

1

,       
m

ij j

i

w w j s


               (2.3) 

where iX  is the known area total of an auxiliary vector variable x . The weight-

sharing (WS) synthetic estimator of the area total iY  is given by  

ˆ
iWS ij j

j s

Y w y


 .                          (2.4) 

The weight-sharing property ensures that the associated estimators ˆ
iWSY

 
add 

up to the direct estimator ˆ
j j

j s

Y w y


  of the population total 
1

m

ii
Y Y


 , and 

the calibration property improves the efficiency of the estimator. The use of the 

same weight, ijw , for all variables of interest used as y  to produce small area 

estimates is of practical interest, particularly in micro-simulation modelling that 

can involve a large number of variables of interest. The estimator ˆ
iWSY  borrows 

strength from other areas because it makes use of all the sample values ,jy j s . 

Schirm and Zaslavsky (1997) proposed an iterative method of finding the 

weights ijw that satisfy (2.2) and (2.3), but it uses a model on the weights ijw  of 

the form exp( )T

ij j i jw x    , where  and i j   are unknown coefficients.  
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Randrianasolo and Tille (2013) avoid modelling the weights 
ijw  by minimizing 

an information distance measure between the weights  and ij jw w  subject to the 

constraints (2.2) and (2.3), separately for each i . They used a two-step iteration 

by letting 
ij j ijw w q  such that the fractions 

ijq  satisfy 
1

1
m

iji
q


  for each

j s .  

3. Basic area-level model 

3.1. The model 

Let 
iY  be the mean of area i  and 

ˆ
iY  be a direct estimator of 

iY . Poverty rate 

iP   is a special case of 
iY  by letting 1y   if the welfare variable for a household 

is below a specified poverty line and 0y   otherwise. Estimation of poverty rates 

for small areas, such as municipalities, has received considerable attention 

worldwide in recent years. Data consists of direct estimators 
ˆ
iY  and associated 

vectors of area-level covariates iz  for the m  areas. Basic area-level model (also 

called Fay-Herriot (FH) model) consists of a linking model 

2

iid( )  , ~ N(0, )T

i i i i i vg Y z v v    
’
                 (3.1.) 

and a “matching” sampling model  

ind
ˆ ,  ~ (0, )i i i i ie e N   

’
                (3.2) 

where ie  is the sampling error with known variance i  and independent of iv

(Fay and Herriot 1979). If all the areas in the population are not sampled, we 

assume that the model holds for the sampled areas 1,...,i m . We do not 

consider informative sampling of areas which causes sample selection bias and 

the model, assumed for all the population areas, may not hold for the sample.  

Limitations of the FH model include the assumptions of known sampling 

variances i and zero mean sampling errors ie .The latter assumption may not 

hold for non-linear functions (.)g  even approximately if the area sample size is 

small. An unmatched sampling model of the form 
ˆ
i i iY Y h  with zero mean 

sampling errors ih  avoids the latter difficulty with the sampling model (3.2).  

Main advantages of the FH model are that it takes account of the sampling 

design through the model (3.2) on direct estimators and that it requires only area 

level covariates which are more easily available than unit level covariates. Current 
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applications of the FH model include the estimation of the number of school age 

children in poverty in the US counties and school districts (Luery 2011) and the 

estimation of household poverty rates for the Chilean Communas (Casas-Cordero, 

Encina and Lahiri 2014). In the first application, log( )i iY  and the direct 

county estimates ˆ
iY  of area totals iY  are obtained from the American Community 

Survey. In the second application, 
1sini iP   and the direct estimates 

iP  are 

obtained from a cross-sectional multi-purpose household survey. Excellent area-

level covariates, based on administrative sources, are available in both 

applications. 

3.2. “Optimal” estimation 

For known parameters 
2 and v  , the “best” predictor (BP) of i  under 

normality of the model errors iv  and the sampling errors ie  is given by  

ˆ ˆ( | ) (1 )B T

i i i i i i iE z          ,                      (3.3) 

where 
2 2/ ( )i v v i     . The estimator 

B

i  is model unbiased for i  in the 

sense that ( ) 0B

i iE    . It follows from (3.3.) that more weight is given to the 

direct estimator ˆ
i if the model variance 

2

v  is large relative to the sampling 

variance i , and more weight given to the synthetic estimator 
T

iz   if the 

sampling variance i is large. The mean squared error (MSE) of 
B

i  under the 

FH model is given by   

2 2

1( ) ( ) ( )B B

i i i i v i iMSE E g        ,                 (3.4) 

which shows that 
B

i  is significantly more efficient than the direct estimator ˆ
i  if 

i  is small. The estimator
1( )B

ig 
, obtained by back transformation, is 

commonly used to estimate the area mean iY . It is not optimal and also leads to 

model bias. In the Chilean application (Casas Cordero et al. 2014), the estimator 

of poverty rate iP  is given by 
2sin B

i .  

In practice, we replace 
2( , )v   in (3.3) by maximum likelihood (ML) or 

restricted ML (REML) estimators to get the empirical best (EB) predictor ˆEB

i of 

i . An empirical best linear unbiased predictor (EBLUP) without normality 

assumption, denoted by ˆH

i , has the same form as ˆEB

i , where the estimators of 

model parameters are obtained by a method of moments, see Rao (2003, 
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Chapter 7) for details. We denote the estimators of model parameters by
2ˆ ˆ( , )v  . 

The above methods of estimating 
2

v  can lead to 
2ˆ 0v  . A drawback of using 

zero estimate of 
2

v  is that the resulting EB estimate ˆEB

i  will attach zero weight 

to all the direct estimates ˆ
i  regardless of the area sample sizes. Giving a zero 

weight to the direct estimates for areas with large enough sample sizes is not 

appealing to the user, and substantial disagreement between EB and direct 

estimates can occur due to over shrinkage induced by the zero estimate of 
2

v . 

This problem attracted considerable attention in the recent literature, leading to 

alternative methods of estimating model parameters that avoid a zero value for
2ˆ
v

. Methods studied include data-based truncation (Wang and Fuller 2003) and 

maximizing an adjusted likelihood function (Li and Lahiri 2010 and Yoshimori 

and Lahiri 2014). 

Simulation results suggest that the EB estimator ˆYL

i , based on the Yoshimori 

and Lahiri (YL) estimator of 
2

v , performs better in terms of MSE than the EB 

estimator ˆLL

i  based on the Li and Lahiri (LL) estimator of 
2

v .  

3.3. MSE estimation 

3.3.1. Unconditional MSE 

A difficulty with the EB estimator ˆEB

i  is that no closed-form expression for 

its MSE is available except for a few special cases. This difficulty has attracted a 

lot of attention in the SAE literature, leading to second-order approximations to 

MSE( ˆEB

i ) which in turn are used to derive second-order unbiased estimators of 

MSE. In particular, in the case of REML estimators of model parameters, a 

second order unbiased MSE estimator is given by  

2 2 2

1 2 3
ˆ ˆ ˆ ˆmse( ) ( ) ( ) 2 ( )EB

i i v i v i vg g g      ,           (3.5) 

where the leading term 
2

1
ˆ( )i vg    is given by (3.3) with 

2 2ˆ replaced by v v   

and the remaining two terms in (3.5) are of lower order and account for the 

estimation of 
2 and v  respectively (see Rao 2003, section 7.1.5 for details). 

The MSE estimator of ˆ
YL

i  is obtained from (3.5) by substituting the YL estimator 

of 
2

v  for 
2ˆ
v .The two MSE estimators are second –order unbiased in the sense 

that the bias is of lower order than 1/ m  for m large.  
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If 
2

v  is suspected to be small relative to sampling variances i , then it could 

result in either a zero value or a very small value of 
2ˆ
v . In such cases, the second 

order unbiased MSE estimator (3.5) may lead to severe overestimation. An 

alternative is to conduct a preliminary test of the null hypothesis 
2 0v   at a 

reasonable test level, say 0.2, and then use the following MIX estimator of  

MSE( ˆEB

i ): 2 (0)ig  if the null hypothesis is not rejected or 
2ˆ 0v  , otherwise use

ˆmse( )EB

i given by (3.5). Similarly, a MIX estimator of MSE( ˆYL

i ) uses 

2

2 ,
ˆ( )i v YLg   if the null hypothesis is not rejected, otherwise  ˆmse YL

i . Simulation 

studies suggest that the MIX estimators perform better than the second order 

unbiased estimators in terms of relative bias when 
2

v  is small (Molina, Rao and 

Datta 2015).  

The analytical approximation (3.5) based on linearization is valid for the EB 

estimator ˆEB

i , but not readily extendable to MSE estimation for the estimator of 

area mean given by 
1 ˆ( )EB

ig 
. On the other hand, parametric bootstrap is readily 

applicable to general estimators.  We describe the method for estimating  

MSE( ˆEB

i ), but the method follows along the same lines for estimating the MSE 

of general estimators. Assuming normality of  and i iv e  and 
2ˆ 0v  , we generate 

a bootstrap sample {( *
ˆ( , ), 1,..., }i iz i m   in two steps: (1) Generate *i  from 

2ˆ ˆ( , )T

i vN z   independently for 1,...,i m . (2) Generate *
ˆ
i  from *( , )i iN   .  

From the bootstrap data *
ˆ{( , ), 1,... }i iz i m  compute the estimate *

ˆEB

i  in the 

same manner as ˆEB

i  computed from the sample data ˆ{( , ), 1,..., }i iz i m  . 

Repeat the above steps a large number, B , of times to get B bootstrap EB 

estimates * *
ˆ ˆ(1),..., ( )EB EB

i i B   and the bootstrap values of i , denoted by 

* *(1),..., ( )i i B  . A bootstrap MSE estimator is then given by  

1 2

* *

1

ˆ ˆmse ( ) [ ( ) ( )]
B

EB EB

B i i i

b

B b b  



  .        (3.6) 

Noting that the bootstrap FH model is a replica of the FH model for the 

sample data, it follows that 
2 2 2

1 2 3
ˆ ˆ ˆ ˆmse ( ) ( ) ( ) ( )EB

B i i v i v i vg g g      .  

Comparing this approximation to (3.5) it follows that the bootstrap MSE 

estimator is not second order unbiased. It is possible to obtain second order 

unbiased bootstrap MSE estimators by generating second phase bootstrap samples 

from each first phase bootstrap sample (Hall and Maiti 2006).  
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3.3.2. Conditional MSE 

In the previous subsection we presented some results on estimating the 

unconditional MSE of the EB estimator ˆEB

i . However, it is more appealing to 

consider the estimation of conditional MSE of ˆEB

i , treating the small area 

parameters i  as fixed unknown parameters. The conditional MSE is given by 

2ˆ ˆMSE ( ) [( ) | ]EB EB

p i i iE     , where 
1( ,..., )T

m   .  

Expressing ˆ ˆ ˆ ˆ as ( )EB EB

i i i ih     , where 1
ˆ ˆ ˆ( ,..., )T

m    and 

ˆ ˆ ˆˆ( ) (1 )( )T

i i i ih z       , an exactly unbiased estimator of conditional MSE is 

given by  

2ˆ ˆ ˆmse ( ) 2 [ ( ) / ] ( )EB

p i i i i i ih h          .           (3.7) 

Datta, Kubokawa, Molina and Rao (2011a) gave an explicit expression for the 

derivative in the second term of (3.7) when REML estimators of model 

parameters are used.    

The conditional MSE estimator (3.7) can take negative values and it can be 

highly unstable. Datta et al. (2011a) conducted a small simulation study under the 

conditional set-up for 30m   and found that its coefficient of variation (CV) can 

be very high (ranged from 13% to 393%), especially for areas with large sampling 

variances i . Therefore, the conditional MSE estimator is not reliable as the 

estimator of the conditional MSE, although conditionally unbiased. It would be 

worthwhile to study if the bootstrap MSE estimator (3.6) can track the conditional 

MSE and still perform well in terms of CV.  

3.4. Parametric bootstrap confidence intervals 

Bootstrap data *
ˆ{( , ), 1,..., }i iz i m   can be used to construct confidence 

intervals on i . Chatterjee, Lee and Lahiri (2008) proposed to use the bootstrap 

data to approximate the distribution of the pivotal 
2 1/2

1
ˆ ˆ( ) / [ ( )]EB

i i i i vt g    . 

The bootstrap value of it  is given by 
\* 2 1/2

* 1 *
ˆ ˆ ˆ( ) / [ ( )]EB EB

i i i i vt g    . In 

practice, we generate a large number, B , of bootstrap pivotals, denoted by 
* *(1),..., ( )i it t B , and determine the lower and upper points, 1 2 and q q  such that 

the area between the lower and  upper points of the empirical bootstrap 

distribution is equal to a specified nominal level 1  . A bootstrap (1 ) 

level interval on i  is then obtained from 1 2iq t q   as  

2 1/2 2 1/2

2 1 1 1
ˆ ˆˆ ˆ( ) [ { ( )} , { ( )} ]CLL EB EB

i i i v i i vI q g q g       1 2: ( , )i ic c   (3.8) 



498                                                                               J. N. K. Rao: Inferential issues in … 

 

 

Chatterjee et al. (2008) showed that, under regularity conditions and normality 

of  and i iv e  , the interval (3.8) is second order correct in the sense that the error 

in its coverage is lower order than 
1m
. The corresponding (1 )   level 

second order correct bootstrap interval on the mean 
iY  is obtained by back 

transformation as
1 1

1 2[ ( ), ( )]i ig c g c 
, provided ( )i ig Y  is a one-to-one 

function. 

Casas-Cordero et al. (2014) used bootstrap intervals for the poverty rates iP  

in Chilean Communas. In their case, the bootstrap confidence interval on the 

poverty rate iP  is given by 
2 2

1 2[sin ( ),sin ( )]i ic c . 

3.5. Practical issues 

We need to address several practical issues in implementing EB estimation 

under the FH model. Those issues include (i) covariates subject to sampling or 

measurement errors, (ii) unknown sampling variances i , (iii) linking model 

(3.2) incorrectly specified and (iv) benchmarking EB estimators to a reliable 

direct estimator at an aggregate level. We give a brief account of methods 

proposed to deal with the above practical issues. 

Covariates subject to sampling errors. The FH model assumes that the 

covariates iz  are population values not subject to sampling or measurement  

errors. However, some of the covariates might be obtained from an independent 

survey with much larger area sample sizes than the survey of interest. For 

example, Ybarra and Lohr (2008) studied the estimation of mean body mass index 

i   for 50 small areas in the US using direct estimates ˆ
i  obtained from the 2003-

2004 U. S. National Health and Nutrition Examination Survey (NHANES); 

NHANES values are obtained through medical examinations. They also used 

direct estimates ˆiz  of the mean self-reported body mass index iz , obtained from 

the 2003 U. S. National Health Interview Survey (NHS), as the covariate in the 

FH model. Area sample sizes for the NHANES are much smaller than those for 

the NHS and the direct estimates ˆiz  are reliable and strongly correlated with the 

direct estimates ˆ
i . Ybarra and Lohr (2008) derived an optimal estimator of i  

under the above set-up assuming that the variance of ˆiz  is known. This estimator 

has the same form as the naïve estimator ˆEB

i  with iz  replaced by ˆ
iz , but it 

attaches a larger weight to the direct estimator than the naïve estimator. The 

proposed estimator can lead to substantial gain in efficiency over the naïve 

estimator under the above set-up. Also, unlike the naïve estimator, it is never less 

efficient than the direct estimator. Marchetti et al. (2015) applied the Ybarra-Lohr 
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estimator to estimate poverty rates in Tuscany region of Italy, using ˆ
iz  derived 

from “big data” on mobility comprised of different car journeys automatically 

tracked with a GPS device. We predict that the use of big data will receive 

considerable attention in future SAE applications. 

Unknown sampling variances. The FH model assumes known sampling 

variances i . Wang and Fuller (2003) and Rivest and Vandal (2003) relaxed this 

assumption by substituting a direct estimator ˆ
i  based on unit level data, for the 

case of 
i iY  . The effect of estimating the sampling variances is to inflate the 

MSE of the EB estimator relative to the case of known sampling variances. As a 

result, the MSE estimator (3.5) with ˆ
i  substitute for i  is no longer second 

order unbiased and it could lead to significant underestimation of the true MSE.  

The above authors derived second order unbiased MSE estimators that contain 

an extra term arising from the estimation of i . On the other hand, if “smoothed” 

estimates ˆ
iS  of the sampling variances are used in the EB estimator, then no 

adjustment to the MSE estimator (3.5) is needed, provided the number of areas, 

m , is not small (Rivest and Vandal 2003).  

Incorrectly specified linking model. The EB estimator uses the assumed 

linking model to estimate the model parameters
2 and v  . Jiang, Nguyen and 

J. S. Rao (2011) suggested an alternative approach that does not appeal to the 

linking model to estimate the model parameters and uses only the sampling model 

(3.1). They minimize the total sampling MSE of the best estimators 

1( ,..., )B B B T

m    with respect to the model parameters. The total MSE is given 

by 
2(| |B

pE   ) 
2

1
( )

m B

p i ii
E  


  , where pE  denotes the expectation with 

respect to the sampling model conditional on 1( ,..., )T

m   . The resulting 

estimators of
2 and v  , called Best Predictive Estimators (BPEs), are then 

substituted into 
B

i  to get Observed Best Predictor (OBP) of i . Since the BPEs 

do not appeal to the assumed linking model, the associated OBPs may be more 

robust to misspecification of the linking model than the customary EBs. Empirical 

results showed that under correct specification of the linking model, the OBP and 

EB estimators perform similarly, and lead to considerable efficiency gains when 

the linking model is not correctly specified.   

Estimation of MSE of OBP estimator of i  is problematic because the 

assumed linking model is misspecified. A way around this difficulty is to estimate 

the conditional MSE of the OBP given , similar to (3.7) for the EB estimator. 

Jiang et al. (2011) proposed a second-order unbiased estimator of the conditional 
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MSE of OBP but it involves the term 
2ˆ ˆ( )OBP

i i   similar to the term 

2ˆ ˆ( )EB T

i iz   in (3.7). As a result, the proposed MSE estimator can be highly 

unstable as in the case of (3.7).  

Benchmarking methods. It is desirable in practice to ensure that the model-

based estimators of area means when aggregated agree with a reliable direct 

estimator. If i  is the area mean, then the EB estimators 
EB

i of area means do 

not satisfy this benchmarking property in the sense
1 1

ˆ ˆ ˆ,
m mEB

t t t tt t
W W   

   , 

where tW  is the known proportion of units in area t  and ̂  is the direct 

estimator of the aggregate mean.  

Simple adjustments to the EB estimators to satisfy benchmarking include ratio 

benchmarking and difference benchmarking respectively given by  

ˆ ˆ ˆ( / )RB EB EB

i i t tW                                        (3.9) 

and  

ˆ ˆ ˆ ˆ( )DB EB EB

i i t tW      .                              (3.10) 

Steorts and Ghosh (2013) derived a second-order unbiased estimator of 

ˆ( )DB

iMSE   given by 
2

4
ˆ ˆ ˆmse( ) ( ) ( )DB EB

i i vmse g    , where the common term 

2

4
ˆ( )vg   is positive. This result shows that the effect of benchmarking is to 

increase the MSE. However, in their application to estimation of poor school age 

children in the USA they found negligible inflation in MSE due to difference in 

benchmarking.    

A limitation of RB and DB estimators is that a common adjustment factor is 

applied to all the EB estimators regardless of their precision. Alternative 

benchmarked estimators that avoid the above limitation have been proposed 

(Wang, Fuller and Qu (2008) and Datta et al. (2011b). Bell, Datta and Ghosh 

(2013) extended the Wang et al. method to multiple benchmark constraints. Two 

alternative methods (Wang, Fuller and Qu 2008) and You, Rao and Hidiroglou 

2013) provide self-benchmarking estimators of area means in the sense that 

estimators that automatically satisfy the benchmarking constraint are obtained. 

The method of You et al. (2013) replaces the estimator of   used in the EB 

estimator by an alternative estimator that depends on the benchmarking weights 

tW . On the other hand, the method of Wang et al. (2008) replaces the covariate 

vector 
T

iz  by ( , )T

i i iz W  in the linking model (3.2) and then uses the EB 

estimator of the area mean based on the augmented model. An advantage of both 

methods is that MSE estimation requires no new theory.  
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4. Basic unit level nested error models 

4.1. Estimation and MSE estimation  

In some applications, for example business surveys, unit level sample data

{( , ), 1,...,n ; 1,..., }ij ij iy x j i m   are often available for the sampled areas, 

where in is the sample size in area i . We assume that the area population means 

iX  of the auxiliary variables 
ijx are known for the estimation of area means 

iY .  

For the estimation of complex non-linear parameters, such as poverty 

measures, we need to know all the population values , 1,...,ij ix j N , where iN

is the number of population units in area i . We assume a basic unit level nested 

error model for the population and assume that the same model holds for the 

sample (Battese, Harter and Fuller 1988): 

T

ij ij i ijy x v e   ,                              (4.1) 

where 
2

iid~ (0, )i vv N   are random area effects independent of unit errors 

2

iid~ (0, )ij ee N  . Under the above set-up, unit level models can lead to 

significant efficiency gains over area level models, because the model parameters 
2 2( , , )v e    can be estimated more accurately using all the 

in n unit level 

observations. In some applications, it is more realistic to assume unequal error 

variances 
2 2 2

eij ij ek  , where 
ijk is a known constant (Stukel and Rao 1999). For 

example, in business surveys with a scalar covariate ijx , the choice 
2

ij ijk x  is 

often used. 

The area mean iY  may be approximated by 
T

i i iX v   , assuming that 

iN  is large. Then, the best estimator of i  is given by 

[ ( ) ] (1 )( )B T T

i i i i i i iy X x X         ,                 (4.2) 

where ( , )i iy x  are the area sample means and 
2 2 2/ ( / )i v v e in     . The 

estimator (4.2) is a weighted combination of the sample regression estimator of 

( )T

i i iy X x    and the regression synthetic estimator 
T

iX  . In practice, we 

replace the model parameters by suitable estimators 
2 2ˆ ˆ ˆ( , , )v e    , in particular 

REML estimators and the resulting EB estimator is denoted by ˆ EB

i .  

Note that (4.2) does not take account of survey weights, ijw , unlike the EB 

estimator (3.2) under the area level model. As a result, it is not design consistent 

as the area sample size increases, unless the weights are equal within each area. It 
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is desirable to ensure design consistency because in could be moderately large for 

some of the areas, for example California when the US states are regarded as 

areas. A pseudo-EB estimator, proposed by You and Rao (2002), avoids this 

difficulty by taking account of weights and at the same time ensuring self-

benchmarking.   

Estimation of MSE ˆ( )EB

i  has received considerable attention, and second 

order unbiased MSE estimators have been derived using Taylor linearization, 

jackknife and bootstrap methods. Hall and Maiti (2006) relaxed the normality 

assumption of model (4.1) and obtained second order unbiased MSE estimators 

using a double-bootstrap method that matches the estimated second and fourth 

moments of  and i ijv e . The first phase bootstrap samples are used to obtain a first 

order MSE estimator, similar to (3.6) for the area level model, and its bias is then 

corrected using the second phase bootstrap samples. Regarding the choice of first 

phase and second phase bootstrap sample sizes, 1 2 and B B , Fuller and Erciulescu 

(2014) demonstrated that the choice 2 1B   and 1 / 2B R  leads to smaller 

bootstrap error than other choices of 1 2 and B B , where 1 2( 1)R B B  is the total 

number of bootstrap replicates. This result implies that one should select a single 

second phase bootstrap sample from each first phase bootstrap sample. 

Pfeffermann and Correa (2012) studied efficient methods of bootstrap MSE 

estimation for the normal case and proposed an empirical bootstrap bias 

correction method that performed significantly better than the Hall-Maiti method.  

4.2. Practical issues 

As in the case of the FH model, we need to address practical issues in 

implementing EB estimation under the basic unit level model (4.1). Those issues 

include (i) model misspecification, (ii) robust estimation in the presence of 

outliers, (iii) estimation of complex parameters, (iv) measurement errors in the 

covariates and (v) informative sampling. We give a very brief account of methods 

proposed to deal with the above issues. 

Model misspecification: Jiang, Nguyen and J. S. Rao (2014) extended their 

OBP method to the nested error model and studied its performance under 

misspecification of either the mean function ( ) Tm x x   or the variance of the 

unit error ije or both , assuming simple random sampling within areas. They also 

proposed a bootstrap estimator of MSE of the OBP estimator of area mean. An 

alternative approach to dealing with misspecification of mean function is to use a 

semi-parametric nested error model with unspecified mean function ( )m x . 

Opsomer et al. (2008) used a truncated polynomial spline basis to approximate the 

mean function for the scalar x  case and showed that it leads to a linear mixed 

model but it does not have a block diagonal covariance structure unlike model 
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(4.1). They obtained the EB estimators of area means and also proposed a 

bootstrap estimator of MSE.  

Robust estimation: Estimation of area means that are robust to outliers in the 

random effects iv  and/or unit errors 
ije  has received considerable attention in 

recent years. Sinha and Rao (2009) proposed robust EBLUP estimators and 

associated bootstrap MSE estimators. Their results suggest that the customary 

EBLUP (or EB) is robust to outliers in iv  but not to outliers in 
ije . They assumed 

mean zero random effects and unit errors. Computational issues associated with 

the Sinha-Rao method are addressed in Schoch (2012). Rao, Sinha and 

Dumitrescu (2014) extended robust EBLUP estimation to the semi-parametric 

spline models. Chambers et al. (2014) studied bias-adjusted robust estimators and 

associated MSE estimators using area-specific residuals. Jiango, Haziza and 

Duchesne (2014) developed efficient bias corrections using all the sample 

residuals.  

An alternative approach to REBLUP is the M-quantile method (Chambers and 

Tzavidis 2006). The method uses unit level data and assumes that all “M-

quantiles” of the conditional distribution of y  given x  are linear in x , but 

random area effects are not directly incorporated into the model. Tzavidis and 

Chambers (2005) studied bias-adjusted M-quantile estimators. 

Estimation of complex area parameters. Estimation of complex parameters, in 

particular poverty measures (poverty rate, poverty gap and poverty severity) has 

received considerable attention in recent years because of growing demand for 

reliable area-level poverty indicators. Molina and Rao (2010) developed EB 

estimators for complex parameters under a nested error model that uses log 

(welfare variable) as y . The EB method performed significantly better than a 

“simulated census” method widely used by the World Bank (WB) for poverty 

mapping in developing countries. Diallo and Rao (2014) relaxed the normality 

assumption by using skew normal (SN) distributions on  and/or i ijv e . Their 

results indicate that the normality based EB estimators are sensitive to non-

normality of ije  but not to non-normality of iv . Berg and Chandra (2014) also 

used nested error models for the log of the variable of interest, but their focus was 

on estimating area means of the variable of of interest.  

 

Measurement errors in covariates. Ghosh and Sinha (2007) formulated a 

functional measurement unit level error model with a scalar area level covariate 

ix  subject to measurement errors. They assumed that independent values ijx  of 

the true ix  are measured such that ijx  corresponds to ijy . Under this set-up they 

obtained a pseudo-EB estimators of area means. Datta, Rao and Torabi (2010) 

obtained more efficient pseudo-EB estimators by making fuller use of the 
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available data. A more realistic model assumes that the 
ijx  values are drawn from 

an independent survey (Arima, Datta and Liseo 2014). Ghosh, Sinha and Kim 

(2006) and Torabi, Datta and Rao (2009) studied structural measurement error 

models with stochastic ix . 

Informative sampling. Most of the recent SAE papers assumed non-

informative sampling in the sense that the assumed population model also holds 

for the sample. Under informative sampling, the survey design is related to the 

variable of interest given the predictor variables in the model, and in this case 

population model may not hold for the sample data. The pseudo-EB estimator of 

Rao and You (2012) uses the survey weights to ensure design consistency, but it 

is derived under non-informative sampling. However, empirical results suggest 

that it performs quite well in terms of bias under informative sampling unlike the 

EB estimator that ignores survey weights (Stefan 2005, Verret, Rao and 

Hidiroglou 2015).      

Pfeffermann and Sverchkov (2007) proposed a bias-adjusted EB estimator for 

unit level models under informative sampling by modelling the conditional 

expectation of sampling weights given the sample as a function of  and y x . They 

also studied the case of informative sampling of areas and units within areas. An 

alternative approach, when all areas are sampled, augments the unit level model 

(4.1) by including a suitable function of the selection probability ijp  of unit ( )ij  

as an additional covariate 
ijg  and then uses standard EB estimators based on the 

augmented model (Verret, Rao and Hidiroglou 2015). The augmented model 

approach performed well in empirical studies, but it assumes that the population 

mean,
iG , of the augmented variable is known. The selection of the augmenting 

variable may be based on plots of model (4.1) residuals against different choices 

of ijg . In particular, if ij ijg p is a suitable choice, then the mean 
1

i iG N   is 

known.  

5. Model selection and checking 

Model-based small area estimation heavily depends on the validity of the 

assumed model for the sample data. It is therefore important to use appropriate 

methods for model selection and then do checking of the selected model through 

residual analysis, influential diagnostics, etc. Most of the recent literature on 

model selection assumes non-informative sampling. Variable selection is an 

important component of model selection. Recent methods for variable selection in 

linear mixed models include fence methods (Jiang, J. S. Rao, Gu and Nguyen 

2008), conditional AIC for predictive performance (Vaida and Blanchard 2005) 

and Han (2011) for the FH model. Muller, Scealy and Welsh (2013) present a 

comprehensive review of model selection in linear mixed models. One major 



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

 

505 

problem with existing model diagnostics is the assumption of non-informative 

sampling. If sampling is informative, then the identified sample model may not 

hold for the population and hence it can lead to erroneous inferences. The 

augmented model approach of Verret et al. (2015) might be a way to get around 

this difficulty because the identified sample augmented model also holds for the 

population. Alternatively, the approach of Pfeffermann and Sverchkov (2007) to 

deal with informative sampling only requires fitting the model holding for the 

sample data and the sample model for the weights. Hence, the previous model 

diagnostics should apply under their approach. Pfeffermann (2013) reviewed 

recent method for model selection and checking. Both internal evaluations 

through model diagnostics and external evaluations, based on comparing 

estimates derived from models with reliable values obtained from external 

sources, play an important role in small area estimation.  

6. Concluding remarks 

We have focused on recent important developments related to the basic area 

level and unit level models and highlighted some practical issues in implementing 

model-based small area estimation, in particular EB (or EBLUP) methods. Due to 

space limitations, hierarchical Bayes (HB) method, based on assumed priors on 

model parameters, is not covered in this paper. The longest chapter in the author's 

2003 book is on the HB approach to SAE. It is a powerful approach and provides 

“exact” inferences for complex models. Also, we did not include recent 

developments in SAE based on generalized linear mixed models (GLMMs) used 

for unit level binary or count data. Many recent extensions of the basic models are 

also not covered in this paper. SAE is experiencing explosive growth and we will 

see many important new developments in both theory and applications in the next 

10 years. Review papers on SAE in the past 10 years include Rao (2005, 2008), 

Jiang and Lahiri (2006), Datta (2009) and Pfeffermann (2013). 
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