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COMPUTERISED RECOMMENDATIONS ON  

E-TRANSACTION FINALISATION BY MEANS OF 

MACHINE LEARNING 

Germanas Budnikas1 

ABSTRACT 

Nowadays a vast majority of businesses are supported or executed online. Website-

to-user interaction is extremely important and user browsing activity on a website 

is becoming important to analyse. This paper is devoted to the research on user 

online behaviour and making computerised advices. Several problems and their 

solutions are discussed: to know user behaviour online pattern with respect to 

business objectives and estimate a possible highest impact on user online activity. 

The approach suggested in the paper uses the following techniques: Business 

Process Modelling for formalisation of user online activity; Google Analytics 

tracking code function for gathering statistical data about user online activities; 

Naïve Bayes classifier and a feedforward neural network for a classification of 

online patterns of user behaviour as well as for an estimation of a website 

component that has the highest impact on a fulfilment of business objective by a 

user and which will be advised to be looked at. The technique is illustrated by an 

example. 

Key words: online behaviour, Google Analytics, Naïve Bayes classifier, artificial 

neural network.  

1. Introduction 

Practically all of nowadays businesses rely on websites and web services. The 

structure of their interaction with a customer can be represented as a two-phase 

process. During the first phase a user gets some information about a service, during 

the second phase the user finalises his (her) transaction with a website and/or leaves 

the website. A transaction finalisation is a website content dependent process – it 

might be a service ordering, commenting, Facebook likes, etc. It is extremely 

important for business owners to know how website guests behave online and if it 
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is possible to influence their actions. This paper addresses these issues and presents 

results of the research. 

The topic of the paper has a practical value. Analysis and understanding of web 

user behaviour is a key topic of a behavioural targeting. Behavioural targeting is an 

evolving area of a web mining that deals with optimisation of web online ads based 

on an analysis of web user behaviours. The research presented in the paper has 

some similarities to works in the considered field of the study. Methods of 

behavioural analysis investigate web surfing data gathered mainly from log files. 

The topic is actively investigated; examples of similar works include papers by 

(Angeletou, Rowe and Alani, 2011), (Dembczyński K., 2009), (Robinson D.J., 

2008). 

Approach by (Robinson D.J., 2008) suggests a method for monitoring user 

online behaviour. The method is implemented based on data pulled from log files 

where HTTP/GET requests are saved when a user clicks a hyperlink. These data 

are gathered using agent devices installed on a user’s computer. The approach uses 

Open Directory Project (Xian, Chen and Wang, 2014) for a categorisation of visited 

websites. The research emphasises the creation of behaviour profiles with respect 

to web page visitation event, frequencies and probability distributions, and 

causality relations or time-dependencies. 

The technique by (Dembczyński K., 2009) describes the problem of predicting 

behaviour of web users based on real historical data. The data are gathered from 

the user’s cookie files. An analysis is performed using a statistical decision theory. 

Paper by (Angeletou, Rowe and Alani, 2011) presents a method for modelling 

and analysis of user behaviour in online communities that include personal profiles, 

wiki, blogs, file sharing, and a forum. The approach implements behaviour 

modelling, role mining and role inference and is based on a statistical clustering. 

The approach proposed in the current paper differs from the works listed above 

by its application area – it operates at Internet level, while (Angeletou, Rowe and 

Alani, 2011) and (Robinson D.J., 2008) approaches operate at Intranet level. The 

approach proposed is similar to (Angeletou, Rowe and Alani, 2011) because they 

both use a dynamical update of estimations with respect to new data. 

The technique suggested in the paper consists of the following steps. At the 

beginning, in order to know the actual on-site user behaviour, user browsing 

activities should be formalised. The paper applies Business Process Modelling 

Notation (Drejewicz, 2012) for such formalisation. It enables a definition of data to 

be read off from a website during monitoring user browsing activities by means of 

Google Analytics (Clifton, 2012) tracking function. This permits to gather 

statistical data required for an analysis. The aim of such analysis is to build a model 

of user on-site behaviour (an earlier paper on that topic can be found in (Budnikas, 

2015)) – whether a website guest is willing to finalise a transaction or not. The 

statistical data are handled during the second step. The model used for the analysis 

is based on classic machine learning techniques – Naïve Bayes classifier and a 

feedforward artificial neural network – Multi-layer Perceptron model. In the third 

step, Naïve Bayes classifier is applied to analyse the actual website user browsing 
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activities based on gathered statistical data. In the fourth step, the two already 

mentioned techniques are used together in order to classify actual user online 

behaviour with respect to gathered statistical data. Depending on an outcome of the 

classification, the website may recommend a visit to that web page to an online 

user, which has the biggest impact on the transaction finalisation to be defined using 

auxiliary classification.  

The paper is structured in the following way. The second section gives a 

formalisation of browsing activities with respect to a website category as well as 

data needed to monitor a website. The third section presents a sketch of a procedure 

to gather statistical data from a website and to handle possible inconsistency cases. 

Machine learning data analysis methods used in the proposed technique are 

discussed in the fourth section, namely – Naïve Bayes classifier and Multi-layer 

Perceptron model, whose structure and parameters are given too. The fifth section 

illustrates the technique proposed. Conclusions summarise main results achieved 

and state future work directions.  

2. Website formalisation 

Surfing on websites usually differs with respect to types of these sites. Open 

Directory Project (ODP) differentiates the following website types: Arts, Business, 

Computers, and 13 more instances. These types generalise manually selected 

websites in different languages and are used in various kind of research including 

the suggested in this paper. Classification of websites into types helps in 

understanding possible kinds of behaviour. Specification of sub-types and its 

instances is actual for understanding behaviour cases. The paper considers an 

instance of the Consumer Goods and Services sub-type of a business type with 

respect to ODP classification. Each browsing activity on websites, especially on 

business sites, can be logically divided into two parts – introductory part, which 

usually includes list of services, descriptions, etc., and (transaction) finalisation 

part, which could be expressed by paying for services, commenting, Facebook likes 

and so on. According to Figure 1, the introductory logical part of a browsing 

activity may consist of Product Category Selection, Product Selection, Product 

Related Information Viewing, Delivery and Company Information Viewing; while 

Check-out and Payment browsing activity corresponds to the logical part – the 

transaction finalisation. 

Formalisation of browsing activity makes it possible to understand user on-site 

behaviour that can be monitored by using various techniques, e.g., Google 

Analytics (Clifton, 2012) tracking function.  
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Figure 1. A generalised view of user behaviour on “Consumer Goods and Services” 

sites using Business Process Modelling Notation. 

Source: (Budnikas, 2015). 
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A 5-tuple 

<e, y, u, t, m>, where  

e is user browsing session during which website pages are visited; 

y is a category of a product viewed by a user. As e-commerce website may 

contain a huge number of products (even of the same category), products are 

differentiated only if they belong to the different categories; 

u is a user that is identified by a cookie file. A cookie is a small text file that 

contains user visiting on-site specific information; 

t  is a kind of an activity or a task performed by a user on the website page like 

“Product Category Selection”, “Viewing Product Price Comparison” (see 

Figure 1); 

m is activity t start time moment which application is twofold. First, it is used to 

know a sequence number of a web page visit for the first time during a session. 

Second, it is used to count revisits to the same web page. 

defines data needed for monitoring user online activities. These data also set 

requirements for database table where browsing activity statistical data are stored. 

3. Gathering statistical data 

In order to classify user actual on-site behaviour, a training data set should be 

collected from the site. The technique suggested in this paper uses Event Tracking 

method, which is a part of Google Analytics tracking code (Clifton, 2012). It 

enables recording user interactions with website elements, such as web page, 

embedded AJAX page element, page gadgets, and Flash-driven element and so on. 

Additionally to tracking function, a cookie file is used for unique user identification 

(Nikiforakis, Acar and Saelinger, 2014). 

During a session of website browsing information about visited pages is 

collected and stored in the following form  

〈𝑒, 𝑦, 𝑢, 𝑡1, … , 𝑡𝑛−1, 𝑟𝑡1
, … , 𝑟𝑡𝑛−1

, 𝑠𝑡1
, … , 𝑠𝑡𝑛−1

, 𝑡𝑓〉, 

where 𝑡𝑓 corresponds the final task, 𝑠𝑡𝑖
 – means a sequence number of the 𝑡𝑖-th web 

page visit for the first time during the e-th session and𝑟𝑡𝑖
 is a counter of revisits to 

the same 𝑡𝑖-th web page. For example, Table 1 record R1 represents a situation that 

a user during his/her first session has visited Product Properties (𝑡4), Product Price 

Compare (𝑡9) and Delivery (𝑡11) web pages and has not finalised the transaction – 

Check-out and Payment task (𝑡𝑓) has not been accomplished and web page 𝑡4 has 

been visited first in a sequence (𝑠𝑡4
=1) and was revisited twice. Task designations 

have the following meanings: 0 means a web page has not been visited (i.e., a task 

has not been accomplished) and 1 means that a web page has been visited. User 
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next session (see record R2 of Table 1) consists of visits to the same pages (it is 

marked by grey background colour in the table) that resulted in the transaction 

finalisation.  

As seen in Table 1, inconsistent data entries with respect to the visited web 

pages may exist in the gathered statistical data. An inconsistency case is when the 

same set of accomplished tasks in different data entries is followed by opposite 

finalisation tasks. A fragment of the pseudo-code of an algorithm used for the 

inconsistency case handling is presented next (see Figure 2). This fragment 

excludes variables 𝑠𝑡𝑖
and 𝑟𝑡𝑖

as they have no influence on inconsistency. Note also 

that if the same user visits a site repeatedly and his/her browsing activity is 

different, corresponding records do not join since separate records represent a real 

situation on browsing activities in a database. Such an approach also simplifies 

computations.   

 

Table 1. Illustration of statistical data fragment read off from a website 
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 e  y u 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡𝑓 … 𝑟𝑡4
  𝑠𝑡4

  

R1 1  1 1 0 0 0 1 0 0 0 0 1 0 1 0 … 2  1 … 

R2 2  1 1 0 0 0 1 0 0 0 0 1 0 1 1 … 0  3 … 

 

Source: own elaboration. 
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Algorithm  Handling of inconsistency cases in gathered statistical data  

 1:  𝛵𝐼 = ∅; 𝑇 = ∅ 

 2:  𝛵 = 𝑇⋃𝑡𝑖 |𝑡𝑖={𝑦𝑖, 𝑢𝑖 , 𝑡1
𝑖 , … , 𝑡𝑛−1

𝑖 , 𝑡𝑓
𝑖 } 

 3:  If  𝑡𝑓
𝑖 ≠  𝑡𝑓

𝑗
, where ∀𝑖, 𝑗, 𝑘: 𝑖 ≠ 𝑗; 𝑦𝑖 = 𝑦𝑗; 𝑡𝑘

𝑖 =  𝑡𝑘
𝑗

; 𝑡𝑖,𝑗 ∈ 𝛵⋃𝛵𝐼            

      then 

 4:   If  𝑢𝑖 = 𝑢𝑗,  𝑡𝑓
𝑖 ≠  𝑡𝑓

𝑗
,  𝑡𝑓

𝑗
= 0,  𝑡𝑘

𝑖 =  𝑡𝑘
𝑗
 then 

 5:             𝛵 = 𝛵⋃𝑡𝑖\𝑡𝑗 

 6:             𝛵𝐼 = 𝛵𝐼\𝑡𝑖\𝑡𝑗 

 7:   End If 

 8:  If  𝑢𝑖 ≠ 𝑢𝑗 ,  𝑡𝑓
𝑖 ≠  𝑡𝑓

𝑗
,  𝑡𝑓

𝑗
= 0,  𝑡𝑘

𝑖 =  𝑡𝑘
𝑗
 then  

 9:               𝛵𝐼 = 𝛵𝐼⋃𝑡𝑖⋃𝑡𝑗 

 10:           𝛵 = 𝛵\𝑡𝑖\𝑡𝑗  

 11:  End If 

 12: End If 

 13: GOTO 2 

Figure 2. A fragment of the algorithm for inconsistent data handling 

Source: own elaboration. 

The algorithm initialises an inconsistent data set 𝛵𝐼 and a statistical data set T. 

Further, the set T is supplemented with data about web page visits, a user, and a 

product category. If the transaction finalisation tasks 𝑡𝑓
𝑖  and 𝑡𝑓

𝑗
 in i and j data entries 

from the all data sets are different while the rest of accomplished tasks are the same 

for the same product category, two inconsistency handling options are available – 

described in the steps 4-7 and 8-11 respectively. If inconsistency has arisen in the 

browsing sessions by the same users 𝑢𝑖 and 𝑢𝑗, data entry 𝑡𝑖 corresponding to the 

transaction finalisation is added to the statistical data set T and excluded from the 

inconsistent data set 𝛵𝐼, while opposite data entry 𝑡𝑗 is excluded from all the sets. 

If inconsistency has arisen in browsing sessions by different users, inconsistent data 

entries 𝑡𝑖and 𝑡𝑗 are added to the set 𝛵𝐼 and excluded from the set T. The algorithm 

is repeated starting from the step 2 along with the arrival of data about next 

browsing session. 

4. Machine learning data analysis methods 

In spite of recent research in big data analysis that is common for well-known 

e-commerce sites, less known e-commerce websites still exist, whose customer 

visits and number of successful transaction finalisations are not so big. As statistical 

data are being gradually added to a database, the number of training data entries is 

not sufficient for some classification methods. This fact sets a premise to use a 

classification technique like Naïve Bayes classifier that works well with a 
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comparatively small set of training data. When the number of statistical data 

reaches the threshold corresponding to the minimal number of entries in a training 

data set that is sufficient for a classification with a predefined error level, Multi-

layer Perceptron (MLP) technique is applied additionally to Naïve Bayes classifier. 

If outcomes of the two classification methods are different, a class that represents 

transaction non-finalisation is regarded as dominating. The threshold is calculated 

using the rule of thumb  

threshold = number of weights / error level 

where number of weights and error level are parameters of the MLP model. 

If estimation of actual user browsing activity shows transaction non-finalisation 

possibility and a user has visited at least 30% of all pages as described in website 

activity formalisation step, a website-to-user interaction procedure starts (note that 

30% level is set based on experiment outcomes). The purpose of the procedure is 

to estimate the web page with the highest impact on the transaction finalisation and 

suggest a user to visit that page. Estimation experiments use the classification 

technique to find maximal similarity to the desired class while considering distinct 

unvisited web pages.  

Figure 3. A structure of Multi-layer Perceptron model 

Source: own elaboration using NeurophStudio. 

     𝑒      𝑦      𝑢     𝑡1
𝑗
     𝑟

𝑡1
𝑗    𝑠

𝑡1
𝑗  … 𝑡𝑛−1

𝑗
  𝑟

𝑡𝑛−1
𝑗   𝑠

𝑡𝑛−1
𝑗  

c1 c2 
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Figure 4. A total error network graph for the MLP model with respect to the 

number of training data set equals 7800, max error level equals 0.005, 

and learning rate equals 0.15 

Source: NeurophStudio generated graph based on training process of the MLP. 

 

Naïve Bayes classifier is calculated using a classical formula (Russell, 2010): 

classify (𝑒, 𝑦, 𝑢, 𝑡1
𝑗
, … , 𝑡𝑛−1

𝑗
, 𝑟

𝑡1
𝑗 , … , 𝑟

𝑡𝑛−1
𝑗 , 𝑠

𝑡1
𝑗 , … , 𝑠

𝑡𝑛−1
𝑗 ) = 

argmax
𝑐∈{𝑐1,𝑐2}

𝑝(𝐶 = 𝑐) ∏ 𝑝 (〈𝑒, 𝑦, 𝑢, 𝑡𝑖
𝑗
, 𝑟

𝑡𝑖
𝑗 , 𝑠

𝑡𝑖
𝑗〉 |𝐶 = 𝑐)𝑛−1

𝑖=1 , where 

 

C denotes one of the possible classes representing the transaction finalisation (c1) 

or non-finalisation (c2). Note that 𝑡𝑓 is not used in the formula as defined in the 

classical approach because it corresponds the final task, which occurrence 

probability is evaluated. 

MLP uses data about browsing activity 𝑒, 𝑦, 𝑡1
𝑗
, … , 𝑡𝑛−1

𝑗
, 𝑟

𝑡1
𝑗 , … , 𝑟

𝑡𝑛−1
𝑗 , 𝑠

𝑡1
𝑗 , … , 𝑠

𝑡𝑛−1
𝑗  

as inputs and classify them into two opposite classes – c1 or c2. A structure of a 

feedforward neural network corresponding to a general website, which browsing 

activity is depicted in Figure 1, is presented further (see Figure 3). 

The MLP model presented in Figure 3 consists of one hidden layer with a 

neuron. Input and hidden layers have a bias (denoted by a bigger red circle). MLP 

uses back-propagation learning algorithm and hyperbolic tangent transfer function. 

A total error network graph for the considered MLP model (see Figure 4) shows an 

ability of the neural network to perform classification experiments at the predefined 

error level. 
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5. Experiment: recommendations based on analysis of user online 

behaviour  

An abstract website, which browsing activity diagram is presented in Figure 1, 

was used for an illustration of the proposed technique.  

 

Let us consider the situation when a statistical database contains 30 entries and 

user online activities form the following new data entry – see Table 2. 

Table 2. An example of a fragment of actual browsing activity by a user  

(record R31) 

 

 

 

Figure 5. Results of experimental estimations of probabilities in order to forecast 

and recommend a web page with the highest impact on the transaction 

finalisation. Data series denoted by markers correspond to existing 

probability of the actual browsing activity 

Source: own elaboration. 

 

 

 e y  u 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 … 

… … …   … … … … … … … … … … … … 

R31 1 1  x 0 0 0 1 0 0 0 0 0 1 1 … 

Source: own elaboration. 
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Naïve Bayes classifier estimates the probabilities for the class c1 and c2: 

classify(𝑒, 𝑦, 𝑡1
31, … , 𝑡11

31, 𝑟𝑡1
31 , … , 𝑟𝑡11

31 , 𝑠𝑡1
31 , … , 𝑠𝑡11

31) =

= argmax
𝑐∈{𝑐1,𝑐2}

𝑝(𝐶 = 𝑐) ∏ 𝑝 (〈𝑒, 𝑦, 𝑢, 𝑡𝑖
31, 𝑟𝑡𝑖

31 , 𝑠𝑡𝑖
31〉 |𝐶 = 𝑐) = 𝑐2

11

𝑖=1

 

(0.29E-07 < 4.54E-07) 

Next, the procedure is being activated that experimentally estimates a web page 

to offer a user a visit, which has a maximal impact on the transaction finalisation. 

Figure 5 presents results of experimental estimations of probabilities of class 1 

(solid line) and class 2 (dashed line). Figure 5 vividly shows – website-to-user 

interaction will advise visiting Professional tests web page as it has a maximal 

impact on the transaction finalisation:  

classify(1,1, x, 0,0,0,1,0,0, 𝟏, 0,0,1,1, … ) = 𝑐1 
(24.73E-07 > 0.04E-07) 

Let us consider the situation when statistical database contains 7800 entries and 

user online activities form the following new data entry – see Table 3. 

 

Results of estimations by Naïve Bayes classifier: 

classify(𝑒, 𝑦, 𝑡1
7801, … , 𝑡11

7801, 𝑟𝑡1
7801 , … , 𝑟𝑡11

7801 , 𝑠𝑡1
7801 , … , 𝑠𝑡11

7801) =

= argmax
𝑐∈{𝑐1,𝑐2}

𝑝(𝐶 = 𝑐) ∏ 𝑝 (〈𝑒, 𝑦, 𝑢, 𝑡𝑖
7801, 𝑟𝑡𝑖

7801 , 𝑠𝑡𝑖
7801〉 |𝐶 = 𝑐)

11

𝑖=1

= 𝑐2 

 (4.61E-05 < 14.33E-05) 

MLP model has classified given data as class 2 with a score 0.967. 

Next, the procedure is being activated that experimentally estimates a web page 

to offer the user a visit, which has a maximal impact on the transaction finalisation. 

Figure 6 presents results of experimental estimations of data classification using 

MLP to class 1 (denoted as c1 (MLP)) or class 2 (denoted as c2 (MLP)). Several 

unvisited web pages were analysed – Brief info, Price compare and Company info.  

For comparative purposes, results of the experimental estimations using Naïve 

Bayes classification are presented too (classes 1 and 2 are denoted as c1 (NB) and 

c2 (NB) respectively). Figure 6 clearly shows that both classification methods work 

well and estimate the same outcome. A website-to-user interaction will advise 

visiting Price compare web page.  
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Table 3. An example of actual browsing activity by a user (record R7801) 

 

 

Figure 6. Results of experimental estimations of data classification using Multi-

layer Perceptron and Naïve Bayes classifier 

Source: own elaboration. 

Note that Price compare functionality of a website is quite sensitive to any 

business. Moreover, as stated in Shopping Cart Abandonment report (Mulpuru, 

Hult and McGowan, 2010), 27% of e-customers cancel their purchases due to a 

comparison of prices from different retailers. According to the author’s view, to 

overcome this issue, it is better to deal with this challenge on own website by 

applying the following policy. In order to offer a customer a product or a service at 

the lowest price, the mentioned Price compare functionality usually acts as follows. 

It offers an instant discount in case of an existence of a vendor that offers a lower 

price for the same product (if such a discount is possible with respect to a company 

price policy) or it includes vendors with poor customer ratings in the price compare 

list (if a discount cannot be applied). Obviously, giving a Price compare 

information, which is not profitable for a company − without any correction with 

regard to a website company − usually leads to a purchase cancellation, and should 

be avoided. 

 

 e y u 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 … 

… … …  … … … … … … … … … … … … 

R7801 1 2 y 0 1 1 1 1 1 1 1 0 0 1 … 

Source: own elaboration. 
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6. Conclusions 

1. The proposed technique permits one to estimate website user actual on-site 

behaviour with respect to the transaction finalisation using Naïve Bayes 

classification and feedforward neural network – Multi-layer Perceptron model 

that are based on previous visitors’ browsing activities.  

2. The technique permits one to define actions to recommend a website user who 

theoretically has an impact on his/her decision to finalise a transaction. 

Future works in this direction include widening the application of the technique 

to other areas as well as deepening the technique by applying other methods of 

multivariate analysis. 
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