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MULTINOMIAL LOGISTIC REGRESSION APPROACH 

FOR THE EVALUATION OF BINARY DIAGNOSTIC 

TEST IN MEDICAL RESEARCH 

Alok Kumar Dwivedi1, Indika Mallawaarachchi2,  

Juan B. Figueroa-Casas3, Angel M. Morales4, Patrick Tarwater5 

ABSTRACT 

Evaluating the effect of variables on diagnostic measures (sensitivity, specificity, 

positive, and negative predictive values) is often of interest to clinical researchers. 

Logistic regression (LR) models can be used to predict diagnostic measures of a 

screening test. A marginal model framework using generalized estimating 

equation (GEE) with logit/log link can be used to compare the diagnostic 

measures between two or more screening tests. These individual modeling 

approaches to each diagnostic measure ignore the dependency among these 

measures that might affect the association of covariates with each diagnostic 

measure. The diagnostic measures are computed using joint distribution of 

screening test result and reference test result which generates a multinomial 

response data. Thus, multinomial logistic regression (MLR) is a more appropriate 

approach to modeling these diagnostic measures. In this study, the validity of LR 

and GEE approaches as compared to MLR model was assessed for modeling 

diagnostic measures. All methods provided unbiased estimates of diagnostic 

measures in the absence of any covariate. LR and GEE methods produced more 

biased estimates as compared to MLR approach especially for small sample size 

studies. No bias was obtained in predicting sensitivity measure using MLR 

method for one screening test. Our proposed MLR method is robust for modeling 
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diagnostic measures of a screening test as opposed to LR method. MLR method 

and GEE method produced similar estimates of diagnostic measures for 

comparing two screening tests in large sample size studies. The proposed MLR 

model for diagnostic measures is simple, and available in common statistical 

software. Our study demonstrates that MLR method should be preferred as an 

alternative for modeling diagnostic measures. 

Key words: multinomial logistic regression, predictive values, sensitivity, 

specificity, acute appendicitis, pulmonary abnormalities, medical diagnostic test. 

1. Introduction 

Diagnostic tests are an essential component in medical care for confirming or 

establishing the disease diagnosis, evaluating disease prognosis, stratifying risk of 

disease, and screening for early detection. Clinical researchers conduct studies 

about diagnostic tests mainly for the purpose of either estimating the diagnostic 

accuracy of a test according to different patient or environmental characteristics 

or comparing diagnostic accuracy of different tests according to different patient 

or environmental characteristics. Very limited statistical methods are available to 

evaluate the diagnostic measures in regression framework (Leisenring et al., 

1997). Studies are required to develop robust statistical methods to analyze data 

from diagnostic studies and assess the properties of available statistical methods. 

In this study, we proposed a statistical regression method to analyze data from 

diagnostic studies.      

In diagnostic studies, an investigational/new test is often referred to as 

screening/diagnostic test and a definite diagnostic test is referred to as the 

reference or gold standard test. When the screening test and reference test are 

measured in a binary outcome then various measures are required to assess the 

performance of screening tests in relation to the reference test. Most commonly 

used diagnostic performance measures are sensitivity (P{positive test 

result|disease}), specificity (P{negative test result|no disease}), positive predictive 

value (P{disease|positive test result}), and negative predictive value (P{no 

disease|negative test result}) (Leisenring et al., 2000). Sensitivity and specificity 

are probabilities of the test result measured through a screening test, conditional 

on disease status measured through a reference test while a predictive value is the 

probability of disease conditional on the test result measured through a screening 

test. Clinical researchers are often interested in evaluating these four diagnostic 

measures of screening tests according to patient and clinical characteristics. 

Regression approaches are needed to address such clinical questions.  

Application of logistic regression (LR) in predicting common diagnostic 

measures including sensitivity (Se), specificity (Sp), positive predictive value 

(PPV), and negative predictive value (NPV) of a screening test according to 

patient or other environmental covariates was proposed by Coughlin et al. (1992). 

LR models for Se and Sp include reference test result as an independent variable 

while modeling PPV and NPV include screening test result as a predictor. We 
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refer to this modeling approach as adjusted LR models for diagnostic measures. 

The adjusted LR models have been used in clinical studies for evaluating 

diagnostic measures (Coughlin et al., 1992; Elie et al., 2008). Another alternative 

is the use of LR models for Se and Sp by restricting the analysis to disease and 

non-disease group respectively. Similarly, LR models can be used to model PPV 

and NPV by restricting the analysis to positive screening test result and negative 

screening test result respectively. We refer to the modeling approaches restricted 

to a group of individuals as subgroup LR models. Subgroup LR models have also 

been used in clinical studies (Carney et al., 2003; Laya et al., 1996).  Recently an 

application of LR model for predicting likelihood ratio was also developed 

(Janssens et al., 2005). Ordinary LR models are sensitive to small sample size and 

rare events (Nemes et al., 2009; King and Zeng, 2001). Thus, LR models may 

produce biased estimates of diagnostic measures. Therefore, we determined the 

bias in estimating diagnostic measures using adjusted and subgroup LR models in 

presence of a binary cofactor in various scenarios.   

The diagnostic measures depend on the four cell frequencies generated from a 

2x2 table of screening test result and reference test result. The most natural way is 

to model the joint distribution of screening test result and reference test result. 

Typically, each diagnostic measure is modelled independently using LR as a 

function of risk factors. Since the diagnostic measures are computed using the 

joint distribution of screening test result and reference test result thus these 

measures are dependent. Independent modeling of these measures ignores 

dependency among these measures and that subsequently might affect the 

association of cofactors with these measures (Puggioni et al., 2008). Since the 

joint distribution of screening test result and reference test result follows a 

multinomial distribution, thus a multinomial logistic regression (MLR) can be 

used to estimate the diagnostic measures. We compared the performance of LR 

models and MLR model for estimating the common diagnostic measures using 

simulation studies and our published study data (Figueroa-Casas et al., 2014). We 

can easily extend the MLR model for comparing two or more screening tests. 

However, studies involving two or more screening tests often provide paired 

structure data since each patient usually undergoes through each screening test. 

Thus, such studies require accounting for clustering effects in the analysis. 

Sandwich error estimation is commonly used to analyze clustered data, repeated 

measures data, and data obtained through clustered randomized design. Such 

procedure provides robust variance estimation. Robust variance approach 

appropriately accounts for correlation structure in the dataset (Leisenring et al., 

1997; Liu, 1998). We suggest using a robust variance approach while modeling 

diagnostic measures using MLR method for two or more screening tests.  

A marginal model framework using generalized estimating equation (GEE) 

with logit link approach has been proposed to compare diagnostic measures 

between two or more screening tests. It has been advocated to use independent 

working correlation matrix for fitting marginal models for diagnostic measures 

with robust variance estimates (Leisenring et al., 1997; Leisenring et al., 2000). 
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As discussed earlier for LR models, adjusted GEE and subgroup GEE models can 

be fitted to compare diagnostic measures between two or more screening tests. 

Further, the individual approaches to modeling each diagnostic measure through 

GEE models do not account for dependency among these measures.  We also 

compared the individual modeling approach using GEE models and a joint 

modeling approach using MLR models for estimating diagnostic measures with 

simulation studies and real study dataset.    

The aim of this study was to propose an alternative regression approach to 

evaluating a binary diagnostic test based on joint distribution of a new test result 

with reference test result. Specifically, we evaluated the validity of the proposed 

MLR approach in estimating diagnostic measures and compared with subgroup 

and adjusted LR models of diagnostic measures.  In addition, we extended MLR 

approach to modeling more than one screening test for comparing diagnostic 

measures between screening tests and compared it with GEE approach to 

modeling diagnostic measures for more than one screening test. The applications 

of MLR approach for estimating and comparing diagnostic measures were 

illustrated using data from medical research studies.        

2. Methods  

2.1. Estimating diagnostic accuracy using a logistic regression (LR) model   

Suppose a diagnostic study involves a screening test (T) and a reference test 

(D). If both the screening test and reference test provide binary (positive/negative) 

results then data can be summarized using a 2x2 table as presented in Table 1. Se, 

Sp, PPV, and NPV can be estimated as a/(a+c), d/(b+d), a/(a+b), and d/(c+d) 

respectively. We need regression approaches to estimate these diagnostic 

measures in presence of significant patient characteristics or other clinical 

covariates. LR models (Coughlin et al., 1992) can be used to predict Se, Sp, PPV, 

and NPV in relation to cofactors.  

2.2. Multinomial logistic regression (MLR) for estimating diagnostic 

accuracy  

The common diagnostic measures are based on the four cell frequencies 

obtained from Table 1. The probabilities of these four cells follow a multinomial 

distribution. Thus, MLR can be used for estimating common diagnostic measures 

in presence of patient and environmental covariates. Data summarized in Table 1 

have unobserved probability pk corresponding to each of the 4 cells, where 
4

k

k=1

p =1.  

 

The joint probabilities for a screening test (T) and a reference test (D)  

would be:  

P(T=1 and D=1) = True positive probability = a/(a+b+c+d) 
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P(T=1 and D =0) = False positive probability = b/(a+b+c+d) 

P(T=0 and D =1) = False negative probability = c/(a+b+c+d) 

P(T=0 and D =0) = True negative probability = d/(a+b+c+d) 

A new outcome variable with four categories needs to be generated for 

applying MLR model. The four categories of the new outcome variable (Y=1, 2, 

3, and 4) will be true positive (Y=1: T=1 and D=1), false positive (Y=2: T=1 and 

D=0), false negative (Y=3: T=0 and D =1), and true negative (Y=4: T=0 and D 

=0) as described in Table 1. We can fit MLR models by considering any one 

category as a reference category. For example, if we consider the false negative 

(Y=3) as a referent category then it compares the likelihood of true positive over 

false negative which is equivalent to fitting LR model for Se of screening test T. 

At the same time this model also provides comparison of true negative over false 

negative which is equivalent to fitting LR model for NPV of screening test T. 

Thus, a single MLR model can be used to predict Se, Sp, PPV, and NPV of a 

screening test. However, at least two LR models (one for Se and one for Sp) are 

needed to estimate all four diagnostic measures.  

2.3. Comparing diagnostic accuracy using generalized estimating equation 

(GEE) and MLR methods 

The data needs to be reorganized for comparing diagnostic measures of two or 

more screening tests using GEE or MLR methods. Suppose we have “n” subjects 

who underwent two screening tests, then it will be 2n records in a reorganized 

dataset. In this approach, an indicator variable (Z) is defined to classify each 

record for each specific test. In other words, each subject will have two records 

corresponding to each test. Suppose a subject has data on three variables: D, T1 

(screening test 1), and T2 (screening test 2) in an original dataset, then that subject 

will have two records: D, T, Z=1 with T=T1 and D, T, Z=0 with T=T2 in a 

reorganized dataset. The logit or log link under the GEE framework can be 

applied in the reorganized dataset to compare the diagnostic measures between 

two screening tests (Moskowitz and Pepe, 2006). The equations for developing 

GEE models of diagnostic measures are published (Leisenring et al., 1997; 

Leisenring et al., 2000). MLR models using a robust variance approach can be 

used to compare diagnostic measures between two or more screening tests by 

modeling a new dependent variable Y (as described in section 2.2) in the 

reorganized dataset.  The details of LR and MLR models can be found in the 

Appendix.  
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3. Data analysis 

3.1. Simulation studies.  

The performance of MLR as compared with LR models for estimating 

diagnostic measures was evaluated using Monte Carlo simulation studies.  We 

first created a unique ID variable and a variable (X) from a Bernoulli distribution. 

We then created a random reference test variable (D) from the Bernoulli 

distribution with a mean equal to probability (p) 

Logit(p)=a1+a2*X , where 0≤p≤1 

After that we randomly created a binary screening test (T) for each subject 

from the Bernoulli distribution having a mean p . The p was determined using 

the following function: 

Logit( p )=b1+ b2*D – b3 *(1-D), where 0≤ p ≤1 

where a1 and b1 are regression intercepts. The a2, b2, and b3 are regression 

coefficients.   

First, we compared the bias in all common four measures of diagnostic 

accuracy estimated using LR and MLR models in the absence of any cofactor. 

Then, we focused only on comparing the bias in the estimate of Se of the 

screening test T. The true Se for screening test T in relation to reference test D 

was obtained and compared with Se estimated using adjusted LR, subgroup LR, 

and MLR approaches.   

The comparison of MLR and GEE methods for estimating diagnostic 

measures of two screening tests was also evaluated in various simulation studies 

as described for a single screening test. We randomly created two binary 

screening tests (T1 and T2) for each subject from the Bernoulli distributions 

having  mean
† *p  and p respectively. The 

† *p  and p were determined using the 

following functions: 

Logit(
†p )=c1+ c2*D – c3 *(1-D) + u1 , where 0≤

†p ≤1 

Logit(
*p )=d1+ d2*D – d3 *(1-D)+ u2, where 0≤ 

*p ≤1 

where c1 and d1 are regression intercepts. The c2, c3, d2, and d3 are regression 

coefficients. To introduce correlation between two screening tests, a random 

effect component (u1, u2) was included for the outcome of each test. The u1 and u2 

were drawn from a bivariate normal distribution with a known correlation 

structure. The true Se for screening test T1 and T2 in relation to reference test D 

were obtained and compared with the estimated Se for each test obtained using 

adjusted GEE, subgroup GEE, and MLR approaches.   

The percent relative bias in the estimate was reported.  Each simulation study 

was conducted for a small sample size (100) as well as a large sample size (500). 

Each simulation study was also conducted for low prevalence (<10%) and 
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moderate prevalence (20-30%). The effect of different prevalence of a binary 

cofactor was also examined. Each simulation study was repeated for 1000 

simulations. The percent of relative bias was estimated using average of [(true 

diagnostic value – estimated diagnostic value)*100/true diagnostic value] from 

1,000 random data sets. The choice of regression coefficients in the above models 

was made according to the simulation study. Statistical package STATA 12.1 was 

used for data analysis.   

3.2. Real data analysis  

 To demonstrate our proposed strategy, we used data from two studies (study I 

and study II). In study I (single screening test), we were interested in assessing the 

accuracy of chest radiographs (chest x-ray) to identify bilateral pulmonary 

infiltrates consistent with acute respiratory distress syndrome in relation to 

computed tomography (CT, reference test). We used a subgroup LR model to 

determine the clinical characteristics associated with diagnostic performance 

measures of chest radiographs. A total of 90 patients met the inclusion criteria and 

had near simultaneous chest radiograph and CT results to evaluate for specified 

pulmonary abnormalities. The prevalence of these pulmonary abnormalities was 

74% determined using CT (Figueroa-Casas et al., 2014). In the present study, we 

compared the results of subgroup LR models with our proposed MLR model to 

assess factors associated with the diagnostic measures of chest radiograph. For 

study II (two screening tests), we used our motivating study data on acute 

appendicitis. In study II, a total of 200 patients were evaluated with computer 

tomography (CT) for the diagnosis of appendicitis. The prevalence of acute 

appendicitis was found as 95.5%. The surgery residents and radiologists reviewed 

independently CT for each patient and made diagnosis for acute appendicitis. For 

each patient, we have pathological diagnosis for acute appendicitis. In this case, 

pathological diagnosis was considered as a reference test. The aim of this study 

was to compare the accuracy of CT readings with surgical residents as compared 

with radiologists. We compared the Se, Sp, PPV, and NPV of CT reading with 

surgical residents and radiologists in relation to pathological findings using GEE 

with logit link and robust variance estimation. MLR was also performed to 

compare Se, Sp, PPV, and NPV of CT reading with surgical residents with 

radiologists. The results of subgroup LR, subgroup GEE, and MLR approaches 

were reported using regression coefficient (RC), standard error (SE), and p-value.  

4. Results  

We found no bias in estimating Se, Sp, PPV, and NPV using either LR 

(adjusted or subgroup) or MLR methods in the absence of any cofactors. Table 2 

shows the percent bias in estimating Se using subgroup LR, adjusted LR, and 

MLR methods.  Subgroup LR model provided biased estimate of Se in the range 

of 0.06% to 31% while adjusted LR model provided biased estimate of Se in the 
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range of 0.68% to 38.6% when sample size was 100.  There was less bias in the 

estimate of Se using subgroup LR and no bias using MLR models when sample 

size was 500. However, we obtained biased estimates of Se in the range of 1.43% 

to 15.2% using adjusted LR models for sample size 500. The bias in the estimate 

of Se using LR model was found larger when the prevalence of disease was not 

similar between the two levels of a cofactor as compared to when the prevalence 

of disease was similar between the two levels of a cofactor. There was no bias 

obtained in estimating Se using MLR in any scenario.    

Table 3 demonstrates the percent bias in estimating Se using subgroup LR, 

adjusted LR, and MLR models when the prevalence of disease was moderate (20-

30%) for sample size n=100 and n=500. The bias in the estimate of Se using 

subgroup LR model was less than 8% when the sample size was small while no 

bias was obtained when the sample size was high (n=500). The bias in the 

estimated Se using adjusted LR model was obtained from 1% to 19.8% when the 

sample size was 100 while the bias in the Se using adjusted LR was obtained from 

0.35% to 8.47% when the sample size was 500.  No bias in any situations was 

obtained in estimating Se using MLR model.  

In summary, the subgroup LR model always provided less biased estimate of 

Se as compared to adjusted LR model in any scenario. The bias in the estimate of 

Se was found to be higher when the prevalence of disease was different in 

different levels of a cofactor. Further, LR model with low prevalent cofactor 

provided large bias in the estimate of Se as compared to LR model with high 

prevalent cofactor. The two methods, subgroup LR and MLR, provided unbiased 

estimate of Se when the disease prevalence was more than 20% and cofactor 

prevalence was moderate (50%). MLR method always provided an unbiased 

estimate of Se in any scenario.  

Table 4 illustrates the comparison of subgroup LR model and MLR model to 

evaluate factors associated with the diagnostic measures of chest x-rays in 

identifying bilateral pulmonary infiltrates consistent with the diagnosis of acute 

respiratory distress syndrome. Subgroup LR models provided slightly different 

estimates of regression coefficients and p-values as compared to MLR models. 

Slightly lower p-values were obtained in the subgroup LR models as compared to 

MLR models.  We further developed LR and MLR models including only gender 

variable as a cofactor using study I data. We did not find bias in the estimates of 

diagnostic measures obtained using subgroup LR and MLR models when we 

included only gender variable. However, less than 3% bias in the estimates of 

diagnostic measures was obtained using adjusted LR model in study I dataset.    

No bias was obtained in estimating any diagnostic measures using different 

methods for two screening tests in the absence of cofactors. The absolute percent 

relative bias in the estimate of Se using GEE and MLR methods for different 

scenarios is shown in Table 5 when the disease prevalence was low. The bias in 

the estimate of Se was found to be almost similar with subgroup GEE method and 

MLR method when disease prevalence was low and cofactor prevalence was 

50%. However, slightly lower bias in the estimate of Se was obtained using MLR 
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method as compared to subgroup GEE method when disease prevalence varied 

according to covariate strata. Less than 10% bias in the estimate of Se was 

obtained using subgroup GEE and MLR methods when cofactor prevalence was 

50%. Adjusted GEE approach provided large bias in the estimate of Se as 

compared with subgroup GEE and MLR methods. Similar bias pattern was 

obtained across different methods for estimating Se when cofactor prevalence was 

20%. The bias was found to be larger with each method when cofactor prevalence 

was low.     

The absolute percent relative bias in the estimate of Se using GEE and MLR 

for different scenarios is shown in Table 6 when the disease prevalence was 

greater than 20%. The range of bias in the estimate of Se using subgroup GEE 

model and MLR model was found to be 1.71%-5.81% for small sample size 

(n=100) and 0.33%-3.76% for large sample size (n=500) when cofactor 

prevalence was 50%.  The bias was less than 9% with subgroup GEE and MLR 

models in an equal prevalence scenario and when the cofactor prevalence was 

20%. The subgroup GEE and MLR models both produced bias in estimate of Se 

up to 16% when cofactor prevalence was 20% and disease prevalence was not the  

same in different strata.  Adjusted GEE method provided very large bias in the 

estimate of Se in most of the scenarios.  

Table 7 delineates a comparison of  subgroup GEE and MLR models for 

determining the differences in diagnostic performance of radiologist CT reading 

for the diagnosis of appendicitis as compared to surgical residents after adjusting 

cofactors. Both approaches showed that CT reading with radiologist for the 

diagnosis of appendicitis had significantly higher Se and lower Sp than CT 

reading with surgical residents. The p-values obtained from MLR models were 

slightly different than the p-values obtained using GEE models. The p-values for 

comparison of specificity between two screening tests were obtained as 0.02 and 

0.04 using MLR model and GEE model respectively after adjusting other 

cofactors.  

5. Discussion  

The diagnostic measures of a screening test depend upon (1) the cell 

frequencies generated from a cross-tabulation of screening test result and 

reference test result, and (2) the study population and clinical characteristics. We 

need a regression approach to modeling diagnostic measures that describe joint 

distribution of screening test result and reference test result. We proposed MLR 

model as direct modeling approach to modeling each common diagnostic 

measure. We further extended our approach to comparing diagnostic measures of 

two or more screening tests. The validity of available regression approaches in 

estimating the diagnostic measures in different scenarios was also estimated in 

this study. We found that our proposed MLR approach provides unbiased 

estimates of diagnostic measures as compared to LR methods. We also found our 
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proposed MLR approach to be more appropriate for comparing two or more 

screening tests as opposed to adjusted GEE method.  

Adjusted LR method provided bias in the estimate of Se up to 19% for small 

sample size and 12.4% for large sample size, when disease prevalence was low 

(10%) and cofactor prevalence was 50%. This bias was increased to 31% when 

the prevalence of covariate was 20% for a low sample size and a low prevalence 

study. Coughlin et al. (1992) also found 25% bias in the estimate of Se when the 

prevalence was unequal across covariate strata. In our study, subgroup LR method 

provided bias in the estimate of Se up to 8% when the prevalence was unequal 

across covariate strata and prevalence of covariate was 50%. Coughlin et al. 

(1992) found 7% bias using subgroup model when the prevalence was unequal 

across covariate strata. In general, adjusted LR model provided biased estimate of 

Se in all scenarios. Additionally, subgroup LR model provided bias estimates for 

large sample size studies when disease prevalence was less than 10% and cofactor 

prevalence was 20%. Our proposed MLR method produced unbiased estimate of 

Se in all scenarios.  

It has been shown that ordinary LR model produces bias estimates for small 

sample size studies (Nemes et al., 2009;  Bergtold et al., 2011). LR model 

produces large bias when the sample size is small and the outcomes are rare (King 

and Zeng, 2001). Thus, obviously utilizing LR models for modeling diagnostic 

measures in such cases will produce biased estimates. Our study demonstrates 

that MLR is less sensitive to small sample size as compared with LR models for 

modeling diagnostic measures. Ye and Lord (2014) also showed that MLR model 

requires smaller sample size as compared with mixed logit model using crash 

severity data. Further, modeling diagnostic measures directly through MLR 

approach avoids the dependency problem that arises through individual modeling 

of each diagnostic measure using LR approach.    

In our real data example of accuracy of chest radiograph for detecting 

pulmonary abnormalities according to gender status, we found no bias in the 

estimates of any diagnostic measures using subgroup LR and MLR models while 

up to 3% bias was observed using adjusted LR model. It was expected to obtain 

unbiased estimates of diagnostic measures using subgroup LR model because 

disease prevalence (74%) and male gender prevalence (63%) were very high in 

the study. Slightly lower P-values were obtained in subgroup LR models as 

compared to MLR models. It has been observed that binary LR models for each 

pair of multi-response data underestimate the standard errors of the coefficients as 

compared with MLR model (Agresti, 2007). In other words, ignoring the 

dependency among diagnostic measures through individual modeling may 

provide smaller standard errors for the model parameters. Thus, individual 

modeling of each diagnostic measure using LR model may provide inappropriate 

inferences as opposed to our proposed MLR method of modeling diagnostic 

measures.  

Subgroup GEE and MLR approaches provided similar results for modeling 

diagnostic measures of more than one screening test. Subgroup GEE method 
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produced slightly higher biased estimates as compared with MLR model 

especially for studies with low sample size and low disease prevalence. Subgroup 

GEE and MLR approaches provided bias in the estimate of Se up to 9% when 

disease prevalence was low and up to 6%  when disease prevalence was greater 

than 20% with cofactor prevalence 50%. This bias increased up to 33% when 

cofactor prevalence was 20%. This bias can be eliminated by restricting the 

analysis to the specific cofactor strata in MLR or subgroup GEE models. Adjusted 

GEE approach produced biased estimate of Se in almost all scenarios.  

In our real data example for comparison of two screening tests, the Se of CT 

reading with radiologists was found larger than CT reading with residents. 

Another study observed no differences in diagnosing acute appendicitis though 

CT readings by radiology residents as compared with CT readings by radiology 

faculty (Albano et al., 2001). There were no differences observed between two 

approaches to comparing each diagnostic measure in the absence of any cofactors 

in study II dataset. It was expected that the MLR model for multi-response data is 

similar to modeling two separate logistic regressions in the absence of predictor 

and interaction (Fidler and Nagelkerke, 2013). Our simulation studies also 

confirmed these findings that the modeling diagnostic measures through GEE 

approach and MLR approach provide the same results in the absence of any 

covariates. Robust variance estimate and independent working correlation matrix 

were used in GEE models and robust variance estimate was used in MLR models. 

Despite this, GEE and MLR approaches produced slightly different estimates and 

p-values for comparing diagnostic measures between two screening tests. This 

further confirms that ignoring the dependency among diagnostic measures 

through individual modeling or choosing binomial marginal distribution for 

estimating diagnostic measures may provide inaccurate results as opposed to joint 

modeling of screening test result and reference test result using multinomial 

distribution. Further, it has been demonstrated that the MLR approach is not 

equivalent to modeling two separate logistic regressions for multi-response data 

in the presence of an interaction effect. The MLR approach should be preferred 

over two separate logistic regressions in the presence of a cofactor (Fidler and 

Nagelkerke, 2013; Miettinen, 1976).  

In simulation studies, we have considered only one binary cofactor for the 

sake of simplicity. The MLR approach can handle both categorical and 

continuous cofactors. We demonstrated the MLR modeling of common diagnostic 

measures in presence of a perfect reference test. This approach can also be used in 

the absence of a perfect reference test. This application is under investigation by 

us for a future publication. We have shown bias in the estimate of Se measure 

using different methods. Similarly, we can demonstrate for other diagnostic 

measures. This study has not provided an inferential comparison in evaluating the 

association of a cofactor with diagnostic measures using different methods.    
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6. Conclusions   

In this study, we showed MLR model can be used directly for modeling Se, 

Sp, PPV, and NPV as a function of covariates. We also demonstrated that MLR 

model can easily be extended for comparing diagnostic measures between more 

than one screening test. The correlation involved in multiple screening tests can 

be handled using robust variance approach available in statistical software. 

Developing MLR models for diagnostic measures is straightforward, simple, and 

available in common statistical software. In the absence of cofactors, all methods 

provided unbiased estimates of diagnostic measures. In general, all approaches 

provided very consistent results in many conditions. The MLR method always 

produced unbiased estimate of each diagnostic measure of a screening test. 

Subgroup LR method also produced unbiased estimate of each diagnostic 

measure in large sample size studies. The results of subgroup GEE and MLR with 

robust variance estimate for more than one screening test were found consistent. 

For small sample sizes, subgroup GEE and MLR approaches can produce bias 

estimates, especially with low prevalent cofactor. In such cases, a restricted 

analysis of covariate strata can be performed to correct the bias. Adjusted LR and 

adjusted GEE models should be avoided for predicting diagnostic measures. 

Subgroup LR and subgroup GEE models can be utilized for estimating diagnostic 

measures for large sample size studies. However, these methods may provide 

inaccurate inferences due to ignoring the dependency among the diagnostic 

measures. We suggest using MLR as an alternative and more appropriate 

approach to GEE with logit link and LR models for modeling Se, Sp, PPV and 

NPV.  
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APPENDICES 
 

Appendix 1. 

Table 1. Cross-tabulation of test results (T) with reference test (D) 

Test result1 References test Total 

 Positive Negative  

Positive a (True positive) b (False Positive) a+ b 

Negative c (False Negative) d (True Negative) c+ d 

Total a+ c b+ d a+ b+ c+ d 

 

 

 

Table 2. The percent relative bias in estimating Se using subgroup LR, adjusted LR, and 

MLR 

Disease prevalence 

<= 10%  

N=100 N=500 

Sub-

group 

LR 

Adjusted 

LR 
MLR 

Sub-

group 

LR 

Adjusted 

LR 
MLR 

When x=50%        

Equal prevalence  X=1 2.99 10.27 0.00 0.00 -12.46 0.00 

 

X=0 0.22 3.11 0.00 0.00 -6.30 0.00 

Unequal prevalence  X=1 7.60 19.10 0.00 0.00 -12.41 0.00 

 

X=0 0.80 6.60 0.00 0.00 -5.71 0.00 

When x=20% 

       Equal prevalence  X=1 22.85 33.01 0.00 0.46 -1.35 0.00 

 

X=0 0.00 -1.32 0.00 0.00 -1.20 0.00 

Unequal prevalence  X=1 31.00 38.60 0.00 1.37 15.21 0.00 

 

X=0 0.06 -0.68 0.00 0.00 -1.43 0.00 

*Se: 20-30%; Sp: 20-30%; Se: sensitivity; Sp: specificity, LR: logistic regression. 
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Table 3.  The percent relative bias in estimating Se using subgroup LR, adjusted LR, and 

   MLR 

Disease prevalence 

> 20%  

N=100 N=500 

Sub-

group 

LR 

Adjusted 

LR 
MLR 

Sub-

group 

LR 

Adjusted 

LR 
MLR 

When x=50%        

Equal prevalence  X=1 0.00 -3.58 0.00 0.00 -1.98 0.00 

 

X=0 0.00 -6.20 0.00 0.00 -1.59 0.00 

Unequal prevalence  X=1 0.19 -1.02 0.00 0.00 -5.23 0.00 

 

X=0 0.00 -4.34 0.00 0.00 -0.49 0.00 

When x=20% 

       Equal prevalence  X=1 2.95 14.29 0.00 0.00 -8.47 0.00 

 

X=0 0.00 -2.70 0.00 0.00 -0.50 0.00 

Unequal prevalence  X=1 8.08 19.82 0.00 0.00 -10.69 0.00 

 

X=0 0.00 -1.58 0.00 0.00 -0.35 0.00 

*Se: 20-30%; Sp: 20-30%; Se: sensitivity; Sp: specificity, LR: logistic regression. 

 

 

Table 4.  Models of sensitivity, specificity and predictive values using subgroup LR and 

   MLR approaches 

Diagnostic models 
Subgroup LR MLR 

RC SE p-value RC SE p-value 

Se 

      
Female gender 1.722 0.807 0.033 1.683 0.806 0.037 

BMI(Kg/m2)>25 -0.761 0.854 0.372 -0.628 0.850 0.461 

Sp 

      
Female gender -1.596 1.025 0.120 -1.444 0.985 0.143 

BMI (Kg/m2)>25 -0.860 1.342 0.522 -0.426 1.273 0.738 

PPV 

      
Female gender -1.294 0.887 0.145 -1.310 0.888 0.140 

BMI(Kg/m2)>25 -0.460 1.156 0.690 -0.522 1.152 0.651 

NPV 

      
Female gender 1.526 0.918 0.096 1.548 0.912 0.090 

BMI(Kg/m2)>25 -0.380 1.050 0.718 -0.532 1.001 0.595 

BMI: Body mass index; Se: sensitivity; Sp: specificity; PPV: positive predictive value; 

NPV: negative predictive value, LR: logistic regression. 
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Table 5.  The absolute percent relative bias in estimating Se using subgroup GEE,   

   adjusted GEE, and MLR 

Disease prevalence 

<= 10% 

N=100 N=500 

Sub-group 

GEE 

Adjusted 

GEE 
MLR 

Sub-group 

GEE 

Adjusted 

GEE 
MLR 

When x=50%       

Equal prevalence  1.50-9.07 7.12-22.65 1.63-8.55 2.30-8.23 3.45-36.36 2.24-8.40 

Unequal prevalence  2.31-14.79 5.96-28.48 2.19-13.29 2.63-5.91 1.04-31.33 2.61-6.03 

When x=20% 

      
Equal prevalence  0.11-30.05 5.18-45.16 0.38-20.61 0.37-2.54 8.57-21.04 0.53-2.53 

Unequal prevalence  0.40-33.27 8.99-50.18 0.54-24.69 0.18-7.17 1.28-20.68 0.35-6.82 

*Se: 20-30%; Sp: 20-30%; Se: sensitivity; Sp: specificity, GEE: generalized estimating 

equation. 

 

 

 

 

Table 6.  The absolute percent relative bias in estimating Se using subgroup GEE, 

adjusted GEE, and MLR 

Disease 

prevalence > 20% 

N=100 N=500 

Sub-group 

GEE 

Adjusted 

GEE 
MLR 

Sub-group 

GEE 

Adjusted 

GEE 
MLR 

When x=50%       

Equal prevalence  2.68-5.60 1.35-26.82 2.64-5.81 0.72-2.58 6.14-16.65 0.69-2.62 

Unequal 

prevalence  1.71-4.04 2.51-26.70 1.71-4.37 0.35-3.71 5.18-19.67 0.33-3.76 

When x=20% 

      
Equal prevalence  0.70-8.91 4.45-19.64 0.64-8.31 0.11-9.09 4.01-27.92 0.09-9.14 

Unequal 

prevalence  0.53-15.54 4.17-29.08 0.49-14.11 0.15-11.75 5.88-33.10 0.12-11.77 

*Se: 20-30%; Sp: 20-30%; Se: sensitivity; Sp: specificity, GEE: generalized estimating 

equation. 
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Table 7.  Models of sensitivity, specificity and predictive values of diagnosing acute 

 appendicitis using subgroup GEE and MLR approaches 

Diagnostic models 
Subgroup GEE MLR 

RC SE p-value RC SE p-value 

Se 

      
Radiologist*  -1.994 0.543 0.000 -1.993 0.543 0.000 

Age (years) 0.001 0.014 0.955 0.001 0.014 0.964 

Male gender -0.022 0.503 0.964 -0.021 0.505 0.967 

WBC 0.028 0.059 0.634 0.028 0.060 0.636 

Sp 

      
Radiologist*  1.997 0.965 0.038 1.948 0.848 0.022 

Age (years) 0.009 0.045 0.838 0.015 0.046 0.741 

Male gender -0.470 1.746 0.788 -0.349 1.049 0.739 

WBC 0.049 0.211 0.816 0.030 0.121 0.807 

PPV 

      
Radiologist*  0.765 0.430 0.075 0.749 0.437 0.086 

Age (years) 0.031 0.036 0.384 0.029 0.035 0.406 

Male gender -0.211 0.870 0.808 -0.166 0.894 0.852 

WBC 0.196 0.057 0.001 0.192 0.057 0.001 

NPV 

      
Radiologist*  -0.888 0.823 0.281 -0.795 0.789 0.314 

Age (years) -0.005 0.028 0.857 -0.013 0.038 0.732 

Male gender -0.413 0.932 0.658 -0.203 0.928 0.826 

WBC  -0.137 0.121 0.258 -0.134 0.141 0.343 

WBC: white blood cells;*referent: surgical residents; Se: sensitivity; Sp: specificity; PPV: 

positive predictive value; NPV: negative predictive value, GEE: generalized estimating 

equation. 
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Appendix 2. 

 

 

Estimating diagnostic accuracy using a logistic regression (LR) model   

 

Suppose a diagnostic study involves a screening test (T) and a reference test 

(D). LR models can be used to predict Se in relation to cofactors:  

' ' '

1D 2D 1 kD k

1D 2D 3D 1 kD k

Logit(P(T =1|D=1, X)=α +α *X +...+α *X                                                   (1a: sub-group)

Logit(P(T =1|D, X)=α +α *(D=1)+α *X +...+α *X                                    (1b: adjusted)

 

The equation (1a) is referred to as a subgroup model and the equation (1b) is 

referred to as an adjusted model. Substituting D=0 in the above equations will 

provide models for 1-specifcity. Thus, LR models can also be used to predict Sp 

in the presence of cofactors: 

' ' '

1 k1D 2D kD

1 k1D 2D 3D kD

Logit(P(T =0|D=0, X)=α +α *X +...+α *X                                                   (2a: sub-group)

Logit(P(T =0|D, X)=α +α *(D=0)+α *X +...+α *X                                    (2b: adjusted)

 

Possible LR models for predicting PPV and NPV are:  

' ' '

1T 2T 1 kT k

1T 2T 3T 1 kT k

Logit(P(D=1|T =1, X)=β +β *X +...+β *X                                                   (3a: sub-group)

Logit(P(D=1|T , X)=β +β *(T =1)+β *X +...+β *X                                    (3b: adjusted)

' ' '

1 k1T 2T kT

1 k1T 2T 3T kT

Logit(P(D=0|T =0, X)=β +β *X +...+β *X                                                   (4a: sub-group)

Logit(P(D=0|T , X)=β +β *(T =0)+β *X +...+β *X                                    (4b: adjusted)

 

In the above equations (1, 2, & 3), 
' '

1D 1D 1T 1T1D 1D 1T 1T
α ,α  α , α  β ,β , β ,and β    

are the intercepts while 
' ' ' '

2D kD 1D kD 2T kT 2T kT2D kD 2D kD 2T kT 2T kT
α .. α ,α ...α  α ....α , α ...α  β ...β ,β ...β , β ...β ,and β ..β   

 are the regression coefficients and X (X1….. Xk ) is the vector of k covariates.  

D and Ddenote the presence and the absence of disease respectively while T  

denotes positive test result and T  denotes negative test result. 

    

Multinomial logistic regression (MLR) for estimating diagnostic accuracy  

 

The MLR models for predicting a new outcome variable Y (1=true positive; 

2=false positive; 3= false negative; 4=true negative): 



222    A. K. Dwivedi, I. Mallawaarachchi, J. B. Figueroa-Casas, A. M. Morales, P. Tarwater  

 

 

      

1 2 1 k k

1 2 1 k k

P(Y=1|X)
log =μ +μ *X +...+μ *X                             Se model 

P(Y=3|X)

P(Y=4|X)
log =π +π *X +...π *X                               Sp model                   (5)

P(Y=2|X)

P(Y=1|X)
log

P(Y=2

 
 
 

 
 
 

1 2 1 k k

1 2 1 k k

=ρ +ρ *X +...ρ *X                               PPV model
|X)

P(Y=4|X)
log = + *X +... *X                              NPV model

P(Y=3|X)
  

 
 
 

 
 
 

  

where μ1 π1, ρ1, and τ1 are the regression intercepts and μ2…, μk, π2,…, πk, ρ2,…, 

ρk and τ 2,…, τ k are the regression coefficients and X (X1….. Xk) is the vector of k 

covariates. 

  

 

Comparing diagnostic accuracy using generalized estimating equation (GEE) 

and MLR methods 

 

The MLR described in the above equation (5) can be extended for two 

screening tests as:     

1 2 3 1 k k

1 2 3 1 k k

P(Y=1|Z,X)
log =μ +μ *Z+μ *X +...+μ *X

P(Y=3|Z,X)

P(Y=4|Z,X)
log =π +π *Z+π *X +...π *X                                                                 (6)

P(Y=2|Z,X)

P(Y=1|Z,X)
log

P(Y=2|Z,X)

 
 
 

 
 
 

 

 

1 2 3 1 k k

1 2 3 1 k k

=ρ +ρ *Z+ρ *X +...ρ *X

P(Y=4|Z,X)
log = + *Z+ *X +... *X

P(Y=3|Z,X)
   



 
 
 

 

where μ1, π1, ρ1, and τ1 are the regression intercepts and μ2…, μk, π2,…, πk, ρ2,…, 

ρk and τ 2,…, τ k are the regression coefficients and X (X1….. Xk) is the vector of k 

covariates in equation (6). The μ2 and π2 provide the comparison of sensitivities 

and specificities between two screening tests respectively whereas ρ2 and τ 2 

provide the comparison of positive predictive values and negative predictive 

values between the two screening tests respectively. 




