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IMPROVED SEPARATE RATIO AND PRODUCT 
EXPONENTIAL TYPE ESTIMATORS IN THE CASE OF 

POST-STRATIFICATION 

Hilal A. Lone1, Rajesh Tailor2  

ABSTRACT 

This paper addressed the problem of estimation of finite population mean in the 
case of post-stratification. Improved separate ratio and product exponential type 
estimators in the case of post-stratification are suggested. The biases and mean 
squared errors of the suggested estimators are obtained up to the first degree of 
approximation. Theoretical and empirical studies have been done to demonstrate 
better efficiencies of the suggested estimators than other considered estimators. 

Key words: finite population mean, post-stratification, bias, mean squared error. 

1. Introduction 

The problem of post-stratification was first discussed by Hansen et al. (1953). 
Ige and Tripathi (1989) studied the properties of classical ratio and product 
estimators of population mean in the case of post-stratification. Chouhan (2012) 
studied the Bahl and Tuteja (1991) estimators in the case of post-stratification. 
Many researchers including Kish (1965), Fuller (1966), Raj (1972), Holt and 
Smith (1979), Agrawal and Pandey (1993), Lone and Tailor (2014), Jatwa (2014), 
Lone and Tailor (2015), Tailor et al. (2015) contributed significantly to this area 
of research. 

Bahl and Tuteja (1991) envisaged a ratio and a product type exponential 
estimator of population mean in simple random sampling. Following 
Srivenkataramana (1980) and Bondyopadhyayh (1980), Lone and Tailor (2014, 
2015) proposed dual to separate ratio and product type exponential estimators in 
the case of post-stratification. 

Let us consider a finite population . A sample of size n 
is drawn from population  using simple random sampling without replacement. 
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After selecting the sample, it is observed which units belong to  stratum. Let  

  be the size of the sample falling  in  stratum such that . Here, it 

is assumed that  n  is so large that the possibility of  being zero is very small.  

Let  be the observation on  unit that fall in   stratum for study 
variate y and be the observation on  unit that fall in   stratum for 
auxiliary variate  x, then 

:  stratum mean of the study variate  

:  stratum mean of the auxiliary variate  x, 

: Population mean of the study variate  and 

:  Population mean of the auxiliary variate  x.  

In the case of post-stratification, the usual unbiased estimator of population 
mean   is defined as  

         
                   (1.1) 

 

where  

  
is the weight of the  stratum and is the sample 

mean of  sample units that fall in the   stratum. 

Using the results from Stephen (1945), the variance of  to the first degree 
of approximation is obtained as 
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where  . 

Separate ratio and product type estimators of population mean Y  in the case 
of post-stratification are defined as 
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Up to the first degree of approximation, biases and mean squared errors of the 

estimators RPSŶ  and PPSŶ  are obtained as 
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where   
h

h
h X

YR =1   and  
h

h
h Z

YR =2 . 

2. Improved separate ratio exponential type estimator  

We suggest the improved separate ratio exponential type estimator for 
population mean Y  in the case of post-stratification as 
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where   0≥ha . 

To obtain the bias and mean squared error of the suggested estimator )(ˆ ha
PSY , 
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Now, by expanding the exponential function on the right-hand side, we get 
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Now, taking expectation of both sides of (2.2), the bias of the suggested 

estimator )(ˆ ha
PSY  to the first degree of approximation is obtained as 
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Squaring both sides of (2.2) and then taking expectation, we get the mean 

squared error of the suggested estimator )(ˆ ha
PSY  up to the first degree of 

approximation as  
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which is minimized for 
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Putting (2.5) in (2.4), we get the minimum mean squared error of the 

estimator )(ˆ ha
PSY  up to the first degree of approximation as  
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Putting (2.5) in (2.1), we get the asymptotic optimum estimator (AOE) in the 

class of estimators  )(ˆ ha
PSY  as 
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3. Estimator based on estimated optimum 

It is obvious that the estimator )( 0ˆ ha
PSY  in (2.7) requires prior information of 

),( 1 hhR β , which can be obtained easily from previous surveys. If the investigator 

is unable to guess the value of ),( 1 hhR β , the only alternative he is left with is to 
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replace ),( 1 hhR β  in (2.7) by its consistent estimate 
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Up to the first degree of approximation, the mean squared error of the 

estimator )ˆ( 0ˆ ha
PSY  is given by 
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which is the same as given in (2.6) 

4. Efficiency comparisons of the suggested improved ratio exponential 
type estimator )(ˆ ha

PSY  with PSŶ  and RPSŶ . 

From (1.2), (1.6) and (2.4), it is observed that the suggested estimator )(ˆ ha
PSY  

would be more efficient than  

(i) the usual unbiased estimator PSŶ  if 
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5. Improved separate product exponential type estimator  

Improved separate product exponential type estimator for population mean Y  
in the case of post-stratification is being suggested as 









−+

−
=∑

= hhh

hh
L

h
hh

b
PS zbZ

ZzyWY h

)1(
expˆ

1

)( ,                           (5.1) 



STATISTICS IN TRANSITION new series, Spring 2015 

 

59 

where   0≥hb . 

The estimator )(ˆ hb
PSY  in terms of se ' can be written as 
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Using the standard procedure, the bias and mean squared error of the 

suggested estimator )(ˆ hb
PSY  are obtained as 
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which is minimized for 
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Putting (5.5) in (5.4), we get the minimum mean squared error of the 

estimators )(ˆ hb
PSY  to the first degree of approximation given as  
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with the same mean square as given in (5.6) 
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6. Estimator based on estimated optimum value of hob  

If the value of *
2 ,( hhR β ) is not known in advance, then it is advisable to 

replace them by its consistent estimate *
2

ˆ,ˆ( hhR β ) computed from the sample 
values. Hence, the estimator based on estimated optimum is 
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The mean squared error of the estimator )ˆ( 0ˆ hb
PSY  up to the first degree of 

approximation is given by 
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7. Efficiency comparisons of the suggested estimator )(ˆ hb
PSY  with PSŶ  

and PPSŶ  

From (1.2), (1.8) and (5.4), it is concluded that the suggested estimator )(ˆ hb
PSY  

would be more efficient than 
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8. Empirical study  

To judge the performance of the suggested estimators we are considering two 
natural population data sets, the descriptions of populations are given below:  

 

Population I- [Source: National horticulture Board] 

y : Productivity (MT/Hectare) 

x : Production in ‘000 Tons  and 

z : Area in ‘000 Hectare 

Constant Stratum I Stratum II 

hN  10 10 

hn  4 4 

hY  1.70 3.67 

hX  10.41 289.14 

hZ  6.32 80.67 

yhS  0.50 1.41 

xhS  3.53 111.61 

zhS  1.19 10.82 

yxhS  1.60 144.87 

yzhS  -0.05 -7.04 

xzhS  1.38 -92.02 
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Population II- [Source: Chouhan (2012)] 

y : Snowy days 

x : Rainy days  and 

z : Total annual sunshine hours 

Constant Stratum I Stratum II 

hN  10 10 

hn  4 4 

hY  149.7 102.6 

hX  142.8 91.0 

hZ  1629.9 2035.9 

yhS  13.46 12.60 

xhS  6.09 6.57 

zhS  102.17 103.26 

yxhS  18.44 23.30 

yzhS  -1072.8 -655.25 

xzhS  -239.25 -240.45 
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Table 8.1. Percent Relative Efficiencies of PSŶ , RPSŶ , PPSŶ , )( 0ˆ ha
PSY  and )( 0ˆ hb

PSY

with respect to PSŶ  

Estimators 
Percent Relative Efficiencies (PRE’s) 

Population I Population II 

PSŶ  100.00 100.00 

RPSŶ  593.50 98.72 

PPSŶ  116.84 176.97 

)( 0ˆ ha
PSY  643.41 106.82 

)( 0ˆ hb
PSY  123.44 179.35 

  

9. Conclusion 

Section 4 and 7 provides the conditions under which the suggested estimators 
)( 0ˆ ha

PSY  and )( 0ˆ hb
PSY  have fewer mean squared errors in comparison with usual 

unbiased estimator and separate ratio and product type estimators in the case of 

post-stratification. Table 8.1 shows that the suggested estimators )( 0ˆ ha
PSY  and 

)( 0ˆ hb
PSY  have higher percent relative efficiencies in comparison with usual unbiased 

estimator PSŶ , separate ratio and product type estimators RPSŶ  and PPSŶ . Thus, 
the suggested estimators are recommended for use in practice for estimating the 
population mean when conditions obtained in section 4 and 7 are satisfied. 
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