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SOME CLASSES OF MODIFIED RATIO 
 TYPE ESTIMATORS IN SAMPLE SURVEYS 

A. K. P. C. Swain1, Manjula Das2 

ABSTRACT 

In this paper some classes of modified ratio type estimators with additive and  
multiplicative adjustments made to the simple mean per unit estimator and  
classical ratio estimator are suggested to obtain more efficient ratio type 
estimators compared to the classical one. Their biases and mean square errors  are 
obtained and compared with first order approximations. 

Key words: ratio type estimator, simple random sampling, bias, mean square 
error, efficiency. 

1. Introduction 

In sample surveys  it is usual practice to look for information on auxiliary 
variables which are either available from official records or can be collected 
inexpensively in the course of investigation. In the case of single auxiliary 
variable the ratio estimator and the regression estimator are two classical 
estimators making use of the auxiliary  information to improve the efficiency of 
the finite population parameters such as population mean, total, variance, etc. 
Although simple to compute, the ratio estimator is always less efficient than the 
linear regression estimator in large samples. 

But the theory of linear regression is not very much appropriate for the sample 
survey situations(Cochran,1953) and requires that  the assumptions such as: 
(a) existence of linearity of regression of y  on x  in the population; 
(b) constancy of residual variance; 
(c) infinite nature of population;  

should be approximately satisfied, but are rarely satisfied in finite population 
sampling. 
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This has motivated some research workers to look for different techniques to 
form ratio type estimators whose mean square errors approximate to that of the 
approximate mean square error of the linear regression estimate in large 
samples.Srivastava(1967) modified the ratio estimator with power transformation 
of the ratio of the population mean to the sample mean whose minimum  mean 
square error to first approximation equals to that of the linear regression 
estimator.Srivastava(1971) proposed a class of estimators having minimum mean 
square error equal to that of the linear regression estimator,provided certain 
regularity conditions are satisfied. In this paper we make a variety of additive and 
multiplicative adjustments to the simple mean per unit  estimator and classical 
ratio  estimator so that their large sample mean square errors attain the minimum 
mean square bound of Srivastava’s class of estimators, which is in fact the large 
sample mean square error  of the linear regression estimator. The proposed classes  
of estimators are compared as regards their large sample biases. 

Let 1 2( , ,......, )NU U U U= be a finite population of  N distinct  and 
identifiable units. Let y  and x  denote the study variable and auxiliary variable 

respectively taking paired values ( , )i iY X  on the unit ( 1,2,..., )iU i N= .Assume
x  to be positively correlated with y . Further, assume that y  and x  are 
positively measured. 

Define   
1
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C C Cρ= = , ρ  being the correlation coefficient between  y  and x .The 

population regression coefficient of y  on x  is defined as 
2
yx

x

S

S
β = . 

    Let 1 2, ,...., nu u u be a  simple random sample  s  of size n units drawn 
without replacement from U .We observe  paired values ( , ), 1,2,...,i iy x i n=  on 
the sampled units. 

Define
1 1

1 1,
n n

i i
i i

y y x x
n n= =

= =∑ ∑ , 
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2 2 2 2

1 1

1 1( ) , ( )
1 1

n n

y i x i
i i

s y y s x x
n n= =

= − = −
− −
∑ ∑ , 

1

1 ( )( )
1

n
yx i i

i
s y y x x

n =
= − −

− ∑  and 
yr
x

= .The sample regression  coefficient of 

y  on x  is defined as 
2
yx

x

s
b

s
= . 

To estimate the population mean Y  of the study variable y ,the classical 

ratio estimator ˆ
RY  is defined by 

ˆ ( )R
XY y
x

= ,                        (1.1) 

where  X   is assumed to be known in advance. 

It is well known (Cochran,1953)that ˆ
RY  is a biased estimate of the population 

meanY  with bias to (1 / )O n  given by  

2 2ˆ( ) ( ) ( 1)R x y x xBias Y Y C C C Y C
R
βθ ρ θ= − = − −  

                                                    = 2( 1) xY K Cθ− −  ,where K
R
β

=    (1.2) 

1 1( ), yC
n N

θ = −  and xC   being the coefficients of variation of y  and x   

respectively,. 

Further, up  to  terms of (1 / )O n , the mean square error of   ˆ
RY   is given by  

2 2 2ˆ( ) ( 2 ),R y x y xMSE Y Y C C C Cθ ρ= + −             (1.3) 

ˆ
RY   is more efficient than y  

                                                   if    1 ( )
2

x

y

C
C

ρ >                                            (1.4)

 
Besides ratio method of estimation, linear regression method of estimation is  

another early method initiated by Watson (1937), making use of auxiliary 
information in sample surveys. The simple regression estimate of the population 
mean Y  is given by  

( )lry y b X x= + − ,                                           (1.5) 
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where b  is the linear regression  coefficient of y  on x , calculated from the 
sample. 

The mean square error of lry  to (1 / )O n  
is  given by  

2 2 2( ) (1 )lr yMSE y Y Cθ ρ= −                              (1.6) 
Both ratio and regression estimators are biased estimators and biases decrease 

with increase in the sample size. Comparing (1.3) and (1.6) it may be seen that  in 

large samples ˆ
RY  is always less efficient than lry  unless the regression line of y  

on x  passes through the origin, in which case they have  equal efficiency. 
 Srivastava (1967) suggested a class of power transformation estimator 

ˆ ( )SR
XY y
x

α= ,                                         (1.7) 

where  α  is a real number to be suitably chosen. The optimum value of 
ˆ( )SRMSE Y ,when optimized with respect to α , gives the expression given in 

(1.6). 
 

Walsh ( 1970) suggested an alternative  class of ratio-type estimator 
where ix  is transformed to iz  such that 

(1 )i iz x Xα α= + −  

Hence, (1 )z x Xα α= + −   and Z X= . 
 
As such, modified ratio type estimator is formed as 

ˆ
(1 )WR

y yY Z X
z x Xα α

= =
+ −

              (1.8) 

To first order approximations of the optimum mean square error of ˆ
WRY is 

given by 
2 2 2ˆ( ) (1 )WR yMSE Y Y Cθ ρ= − , as given in (1.6). 

                Srivastava (1971) proposed a generalized class of estimators given by 

( )gt yH u=                         (1.9) 

where /u x X=  and (.)H  is a parametric function satisfying certain 
regularity conditions as given in Srivastava (1971), such as 

(i) (1) 1H =  
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(ii) The first and second order derivatives of H  with respect to u  exist and are 
known constants at  a given point 1u = . 

He also showed that the asymptotic mean square error of gt  cannot be 

reduced further than 2 2 2min. ( ) (1 )g yMSE t Y Cθ ρ= − , which is the 
approximate mean square error of the linear regression estimator, which is the 
lower bound to  mean square error of class of estimators gt .Prabhu-
Ajgaonkar(1993) has noted that an optimum estimator does not exist uniformly in 
the class gt . 

Srivastava (1980) defined another wider class of estimators as 

( , )wt H y u=                                         (1.10) 

where ( , )H y u  is a function of y  and u , satisfying certain regularity 
conditions specified by him. He showed that asymptotic minimum mean square 
error of wt  cannot be reduced further than that given in (1.6).  

Thus, ratio estimator ˆ
RY , Srivastava’s  power transformation estimator ˆ

SRY  

and Walsh’s estimator ˆ
WRY  are the  special cases of gt .The wider class wt

includes regression estimator besides ratio estimator, power transformation 
estimator and  many others.  

Swain (2013) proposed a class of estimators 

ˆ ( ) (1 )( )g h
SWR

X xY y
x X

δ

α α = + −  
,            (1.11) 

which is  also a subclass of gt and  where , ,g hα  andδ  are free real  constants  

to be suitably chosen  and also the  asymptotic  mean square error ˆ
SWRY  is  equal 

to asymptotic mean square error of the linear regression estimator given in (1.6). 
Both ˆ

SRY  and ˆ
WRY  are the special cases of ˆ

SWRY , which can be further 
generalized as 

*ˆ ( ) (1 )( )g h
SWR

AX B Ax BY y
Ax B AX B

δ
α α
 + +

= + − + + 
, 

( ) (1 )( )g hX d x dy
x d X d

δ
α α
 + +

= + − + + 
,            (1.12) 

where /d B A=  and , , ,g h dα andδ  are free parameters to be suitably chosen. 
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We may arbitrarily specify any four of the aforesaid parameters and minimize 
the approximate mean square error with respect to the remaining one and the 
resulting mean square error equals the approximate mean square error of the 
linear regression estimator which is the lower bound to the mean square error of 
the class of estimators defined by gt . To choose best estimator in this class the 
survey practitioner should select those set values for  the unspecified parameters 
for which the first order bias is zero or approximately so. 

In the following some adjustments are made to y  and ˆ
RY  to construct some 

classes of modified ratio type estimators to provide more efficient  estimators of 
the population mean Y , and the proposed  classes of estimators, which are sub-
classes of Srivastava’s (1971,1980) classes of estimators,are compared as regards 
their biases and mean square errors. 

2. Proposed classes of estimators 

Consider the following classes of estimators, where ( )H u  is as defined by 
Srivastava (1971). 

 

[ ]1 ( )T y H u µ=  

2
1

( ) (1 )
T y

H uµ µ
 

=  + − 
 

[ ]3
ˆ ( )RT Y H u µ=  

4
ˆ

( ) (1 )
RYT

H uµ µ
=

+ −
 

5 (1 ( ))T y H uµ= + −  

6 (1 ( ))RT Y H uµ= + −


 
 

Expanding ( )H u  by the value 1 in the second order Taylor’s series we have 

[ ]
2

2
1 12

1( ) 1 ( 1) (1) ( 1)( ) ( 1) ( ) ......
2u u

H HH u H u H u u
u u

= =
∂ ∂

= + − = + − + − +
∂ ∂

    (2.1) 

Assuming 1 1u − < , the higher order terms can be neglected and we write 

2
1 1 21 ( 1) ( 1) ....T y u H u H

µ = + − + − +  
,                                               (2.2) 
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where 1 1( )u
HH
u =

∂
=

∂
 and 

2
2 12

1 ( )
2 u

HH
u

=
∂

=
∂

 denote the first and second order 

partial derivatives of H  with respect to u  and are the known constants. 

Thus, we write 

2
1 0 1 1 21(1 )(1 ......)T Y e e H e H µ= + + + + ,                                             (2.3) 

where 0
y Ye

Y
−

=  and 1 1e u= − . 

Expanding (2.3) in power series we have  

2 2 2
1 0 1 1 2 1 1 21 1

( 1)(1 ) 1 ( ) ( ) ......
2

T Y e H e H e H e H eµ µµ − = + + + + + +  
. 

To first order of approximations 

2 2 2 2 2
1 11( ) ( 2 )y x yxMSE T Y C H C H Cθ µ µ= + +                                        (2.4) 

2 2 2
1 1 1 2 1

( 1)( ) ( ) ( )
2yx x xBias T B T Y H C H C H Cµ µθ µ µ −

= = + +                (2.5) 

where 2 2
1( ) xE e Cθ=   and 0 1( ) yxE e e Cθ= . 

Differentiating 1( )MSE T  with respect to µ  and putting it equal to zero, we 
have optimum µ  given by  

1
opt

K
H

µ = − . 

Thus, the optimum mean square error of 1T  obtained by substituting the 
optimum value of 1H  in (2.4)  is  given by  

2 2 2
1( ) (1 )yMSE T Y Cθ ρ= − ,                                          (2.6) 

which is equal to  that of the large sample mean square error of the linear 
regression estimator given by (1.6). 

Also, the bias of 1T   with optimum µ  is given by          

Bias ( 1T )= 22 1
1

( )( )
2 x

H K HYK K C
H

θ
 +
− − + 
 

                                             (2.7) 

Proceeding as before we find to (1 / )O n  
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2 2 2
2 3 4 5 6( ) ( ) ( ) ( ) ( ) (1 )yMSE T MSE T MSE T MSE T MSE T Y Cθ ρ= = = = = −  

22
2

1
( ) x

HBias T YK C
H

θ= −  

3( )Bias T = [ ] 22 1
1

(1 )(1 ) ( )
2 2 x

H H KY K C
H

θ +
− − +  

4( )Bias T = 22
1

(1 )( 1) x
HK C
H

θ − +  

5( )Bias T = 22
1

( ) x
HYK C
H

θ−  

6( )Bias T = 22
1

1
( ) x

HYK H C
H

θ −  

The biases and mean square errors of different classes of estimators are 
summarized in Table 1. 

Table 1. Biases and mean square errors 

Classes of Estimators optµ  Bias  optMSE  

[ ]1 ( )T y H u µ=  
1

( )K
H

−

 

22 1
1 2 x

H K HYK K C
H

θ
 +
− − + 
 

 
2 2 2(1 )yY Cθ ρ−

 

2
1

( ) (1 )
T y

H uµ µ
 

=  + − 
 

1

K
H

 22
1

x
HYK C
H

θ
 

−  
 

 
2 2 2(1 )yY Cθ ρ−

 

[ ]3
ˆ ( )RT Y H u µ=  

1

1 K
H
−

 

22 1
1

1(1 )( )
2 2 x

H H KY K C
H

θ +
− − +

 

2 2 2(1 )yY Cθ ρ−

 

4
ˆ

( ) (1 )
RYT

H uµ µ

 
 =

+ −  
 1

1K
H
−

 

22
1

(1 ) 1 x
HY K C
H

θ
 

− + 
 

 
2 2 2(1 )yY Cθ ρ−

 

[ ]5 1 ( )T y H uµ= + −  

1

KY
H

 22
1

x
HYK C
H

θ
 

−  
 

 
2 2 2(1 )yY Cθ ρ−

 

[ ]6
ˆ 1 ( )RT Y H uµ= + −  

1

( 1)K
H
−

 

22
1

1
x

HYK H C
H

θ
 

− 
 

 
2 2 2(1 )yY Cθ ρ−
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3. Some special cases of proposed classes of estimators 

By defining ( )H u  differently we may generate different classes of estimators 
and some of  them related to ratio and product estimators  are given in Table 2. 
 
Table 2. Estimators and their Biases excluding the common multiplier 
Class of estimators ( ) /H u x X=  Bias  ( ) /H u X x=  Bias  

[ ]1 ( )T y H u µ=  11 /T y x X µ =    ( 1)
2

K K −  
12 /T y X x µ =    

( 1)
2

K K −

 

2
1

( ) (1 )
T y

H uµ µ
 

=  + − 

 21
1

( / ) (1 )
T y

x Xµ µ
 

=  + − 

 0  
22

1
( / ) (1 )

T y
X xµ µ

 
=  + − 

 K  

[ ]3
ˆ ( )RT Y H u µ=  31

ˆ /RT Y x X µ =    ( 1)
2

K K −

 
32

ˆ /RT Y X x µ =    ( 1)
2

K K −

 

4
ˆ

( ) (1 )
RYT

H uµ µ

 
 =

+ −  

 41
ˆ

( / ) (1 )
RYT

x Xµ µ

 
 =

+ −  

 0  
42

ˆ

( / ) (1 )
RYT

X xµ µ

 
 =

+ −  
 

1 K−  

[ ]5 1 ( )T y H uµ= + −  51 1 ( / )T y x Xµ  = + − 
 

0  52 1 ( / )T y X xµ  = + − 
 

K  

[ ]6
ˆ 1 ( )RT Y H uµ= + −

 
61

ˆ 1 ( / )RT Y x Xµ  = + − 
 K  

62
ˆ 1 ( / )RT Y X xµ  = + − 

 

0  

 
We find (Table 2) the first order biases of 21 41 51, ,T T T  and 62T  vanish, 

having the same approximate mean square error as that of the linear regression 
estimator. Since the optimum value of µ  is a usually unknown parametric 

function K
R
β

= , we estimate it by its consistent estimator ˆ bK
r

=  from the sample. 

Thus, the estimators 21 41 51, ,T T T  and 62T  with estimated values of K  are 
given by 

 

21ˆ
( )( / ) (1 )

yT b bx X
r r

=
+ −
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41
ˆ

ˆ
( )( / ) (2 )

RYT
b r bx X

r r

=
− + −  

 

51ˆ ( )T y b X x= + −  

62
ˆˆ (1 )(1 ) ( )(1 )R

b X XT Y y X r r b
r x x

 
= + − − = + − − 

 
 

3.1. Bias and mean square error of 21 41 51ˆ ˆ ˆ, ,T T T  and 62T̂  

(i)                                          
21
ˆ

( / ) (1 )

yT b bx X
r r

=
+ −

 

Or  alternatively,      21
ˆ

( )( / )
y rT X
x b r b X x

 
=  + − 

                         (3.1) 

Define 
2 2

0 1 2 3 2, , ,yx yx x x

yx x

s S s Sy Y x Xe e e e
Y X S S

− −− −
= = = =  

Expanding 21T̂  using binomial series expansion with assumptions 1 1e <   

and 3 1e <   for all possible samples and keeping terms up to second degree  we 
have 
 

2
21 0 1 1 3 1 2 1
ˆ 1 ( ) ( ) ( 1)T Y e e e e e e e

R R R R
β β β β = + − + − + −  

+… 

 
To first order approximations, that is to (1 / )O n , 

2

21 2 2

( , )( , )( )ˆ( ) ( 1)( ) ( )yxx

yxx

Cov s xCov s xV xBias T Y
R R R S XX S X
β β β 

= − + − 
             

(3.2) 

where 2 03( )( , )
( 1)( 2)x

N N nCov s x
N N n

µ−
=

− −
               and 

12( )( , )
( 1)( 2)yx

N N nCov s x
N N n

µ−
=

− −
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with  
1

1 ( ) ( ) , 1, 2,3, 4,....
N

r s
rs i i

i
y Y x X i

N
µ

=

= − − =∑   (see Sukhatme, Sukhatme 

and Asok,1984) 
2 2 2

21
ˆ( ) (1 )yMSE T Y Cθ ρ= −                           (3.3) 

Under bivariate normality of ( ,y x )  or for symmetrical populations, 

2
21

1ˆ( ) ( )( 1) xBias T Y C
n R R

β β = −  
                                    (3.4)  

 

(ii)          41
ˆ

ˆ
( 1)( / ) (2 )

RYT b bx X
r r

=
− + −

=
2( 1)( / ) (2 )( / )

y
b bx X x X
r r
− + −

     (3.5) 

On expansion 2 2
41 0 1 3 1 2 1 1
ˆ ( ) ( ) ( 1) ........T Y Y e e e e e e e

R R R
β β β = + − + − + − +  

 

2
2 2

41 2
( , )( , )ˆ( ) ( 1) yxx

x
yxx

Cov s xCov s xBias T Y C Y
R R S XS X

β βθ
 
 = − + −
  

                        (3.6) 

2 2 2
41ˆ( ) (1 )yMSE T Y Cθ ρ= −                          (3.7) 

Under bivariate normal populations or for symmetrical populations 

                          2 2
41

1ˆ( ) ( 1) xBias T Y C
n R

β
= −                                                (3.8)  

 

(iii)        51ˆ ) ( )T y b X x= + −                                                                              (3.9) 

Expanding 51T̂  using Binomial series with assumptions 1 1e <  and 3 1e <  
we have 

51 0 1 3 1 2 1ˆ ( ) ( ) .......T Y Y e e e e e e
R R
β β = + − + − +  

 

Thus, 
2

51 2

( , )( , )ˆ( ) ( )yxx

x yx

Cov s xCov s xBias T Y
R S X S X
β 

= − 
  

(Sukhatme et al., 1984)  

(3.10) 
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and 2 2 2
51ˆ( ) (1 )yMSE T Y Cθ ρ= −                                 (3.11) 

Under Bivariate normality 51ˆ( )Bias T  vanishes. 

(iv)                          62
ˆˆ ˆ (1 ) ( )(1 )R opt

X XT Y X r r b
x x

µ
 

= + − = + − − 
 



         (3.12) 

Expanding 62T̂  using binomial series expansion with assumptions 1 1e <   

and 3 1e <   for all possible samples and keeping terms up to second degree  we 
have 

2
62 0 1 1 3 1 2 1
ˆ ( ) ( ) ( 1)T Y Y e e e e e e e

R R R
β β β = + − + − + −  

 

2

62 2 2

( , )( , )( )ˆ( ) ( 1) ( )yxx

yxx

Cov s xCov s xV xE T Y Y
R R S XX S X
β β 

= + − + − 
  

 

2

62 2 2

( , )( , )( )ˆ( ) ( 1) ( )yxx

yxx

Cov s xCov s xV xBias T Y
R R S XX S X
β β 

= − + − 
  

 

 (3.13) 
2 2 2

62
ˆ( ) (1 )yMSE T Y Cθ ρ= −                            (3.14) 

Under bivariate normality of ( ,y x ) or for symmetrical populations  

2( , )xCov s x  and ( , )yxCov s x  vanish and thus to (1/ )O n  

2
62

1ˆ( ) ( 1) xBias T Y C
n R

β
= −                                                       (3.15) 

3.2. Comparison of biases and mean square errors of 21 41 51ˆ ˆ ˆ, ,T T T  and 62T̂  

To first order of approximations, that is to (1 / )O n  
the mean square errors of 21 41 51ˆ ˆ ˆ, ,T T T  and 62T̂   are equal to that of the linear 
regression estimator. Further, 

(i)  21T̂   is less biased than the regression estimator   51T̂     if A B A+ <  

(ii)  41T̂   is less biased than the regression estimator 51T̂      if A C A+ <  

(iii) 62T̂  is less biased than the regression estimator 51T̂       if A D A+ <  
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where   
2

2
( , )( , )

( )yxx
yxx

Cov s xCov s x
A Y

R S XS X

β 
 = −
  

 

   2( 1) xB Y C
R R
β βθ  = −  

 

   2 2( 1) xC Y C
R
βθ= −  

   2( 1) xD Y C
R
βθ= −

 

Under bivariate normality or for symmetrical populations 

2
21

1ˆ( ) ( )( 1) xBias T Y C
n R R

β β
= −  

2 2
41

1ˆ( ) ( 1) xBias T Y C
n R

β
= −  

      51ˆ( ) 0Bias T =  

2
62

1ˆ( ) ( 1) xBias T Y C
n R

β
= −  

       21ˆ( ) ( 1)R xBias Y Y C
n R

β
= − −  

21T̂  is less biased than  41T̂  , if 1 / 2
R
β
< , and less biased than 62T̂ ,if 1

R
β
< . 

Thus, 21T̂  is less biased than both 41T̂ and 62T̂  ,if  1 / 2
R
β
< . 

41T̂  is less biased than 62T̂  if   
2( 1) 1

R
β
− <  

Further , 62
ˆ ˆRBiasY BiasT=  

4. Numerical  illustration           

To estimate the total number of milch animals in 117 villages of zone 4 of 
Haryana state of India in 1977-78 a simple random sample of size 17 was 
selected. The number of milch animals in the survey ( y ) and the number of milch 
animals in the previous census ( )x  were observed for each village in the sample 
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(Singh and Chaudhary, 1986). The estimated values of approximate bias except 
the common multiplier are given in Table 3.      

Table 3. Biases of estimators
 

Estimator Absolute Bias excepting common 
multiplier 

21T̂  0.01143 

41T̂  0.01155 

51T̂  0.01150 

62T̂  0.01137 

Comment: 62T̂  is least biased among the competitors. 

5. Conclusions 

(i) Without  assuming restrictive assumptions associated with the linear regression 
estimator ,the proposed modified ratio-type estimators 21T̂ , 41T̂  and 62T̂  are 

asymptotically as efficient as the linear regression estimator 51ˆ ( )lrT y . 
 
(ii) Under bivariate normality the first order bias of 51T̂  is zero. Further, 21T̂  is 

less biased than both 41T̂  and 62T̂  if 1 / 2
R
β
< , and 41T̂  is less biased than 62T̂  if   

2( 1) 1
R
β
− <

 
Further, ˆ

RY  and 62T̂  have same absolute bias  
 
(iii) Numerical illustration shows that up to first order of approximations 62T̂ is 

less biased than 21T̂ , 41T̂  and 51T̂  although the differences are marginal. 
 

 
(iv) ( )H u may also be defined as exponential functions of u  such as 
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[ ]( ) (1 )H u Exp uα= − ,where α  is a real constant, 
1( )
1

uH u Exp
u

− =  + 
 

1( ) uH u a −= ,where a  is a non-zero positive real constant,etc. 
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