ECONSTOR

Working Paper
 Returns to Teaching Repetition - The Effect of ShortTerm Teaching Experience on Student Outcomes

IZA Discussion Papers, No. 12676

Provided in Cooperation with:

IZA - Institute of Labor Economics

Suggested Citation: Cuffe, Harold E.; Feld, Jan; O'Grady, Trevor (2019) : Returns to Teaching Repetition - The Effect of Short-Term Teaching Experience on Student Outcomes, IZA Discussion Papers, No. 12676, Institute of Labor Economics (IZA), Bonn

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^0]I Z A Institute of Labor Economics

Initiated by Deutsche Post Foundation

DISCUSSION PAPER SERIES

IZA DP No. 12676

Returns to Teaching Repetition - The Effect of Short-Term Teaching Experience on Student Outcomes

Harold E. Cuffe
Jan Feld
Trevor O'Grady

DISCUSSION PAPER SERIES

IZA DP No. 12676

Returns to Teaching Repetition - The Effect of Short-Term Teaching Experience on Student Outcomes

Harold E. Cuffe
Victoria University of Wellington
Jan Feld
Victoria University of Wellington and IZA
Trevor O'Grady
The College of New Jersey

OCTOBER 2019

Abstract

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity. The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world's largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society. IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ABSTRACT

Returns to Teaching Repetition - The Effect of Short-Term Teaching Experience on Student Outcomes*

Abstract

Teachers often deliver the same lesson multiple times in one day. In contrast to year-to-year teaching experience, it is unclear how this teaching repetition affects student outcomes. We examine the effects of teaching repetition in a setting where students are randomly assigned to a university instructor's first, second, third or fourth lesson on the same day. We find no meaningful effects of repetition on grades, course dropout, or study effort and only suggestive evidence of positive effects on teaching evaluations. These results suggest that teaching repetition is a powerful tool to reduce teachers' preparation time without negative effects on students.

JEL Classification:
 Keywords:
 121, 123
 teaching repetition, teacher experience, higher education

Corresponding author:

Jan Feld
School of Economics and Finance
Victoria University of Wellington
PO Box 600
Wellington 6140
New Zealand
E-mail: jan.feld@vuw.ac.nz

[^1]
1. Introduction

Assigning a single teacher to teach multiple sections of a course is a common practice meant to reduce the costs of delivering course content. However, the consequences for students of this timesaving arrangement - a practice we refer to as teaching repetition - are not well understood.

It is not immediately obvious whether teaching repetition benefits or harms students. One possibility is that teachers simply warm-up in the first section, and deliver the material more fluently in subsequent repetitions. Teaching repetition also allows teachers to learn on the job. For example, teachers who repeat the same lesson might incorporate student feedback from earlier sections. There is abundant evidence that year-to-year teaching experience positively affects teaching effectiveness (for review, see Harris \& Sass, 2011). We may therefore find evidence that these persistent improvements occur swiftly after each repetition. However, teaching repetition may also lead to worse student outcomes. The monotony of teaching the same lesson multiple times may lead to mental fatigue and a worse learning experience for the student. A lack of variety in teaching or other tasks is thought to be an important contributor to instructor "burnout" (see for example Kaikai \& Kaikai, 1990; or Maslach, Schaufeli, \& Leiter, 2001). More generally, neuroscientific evidence suggests that task repetition-related mental fatigue adversely affects performance, motivation and error correction in that task (Boksem, Meijman, \& Lorist, 2006; Lorist, Boksem, \& Ridderinkhof, 2005).

Beyond academic research, there is wider recognition that teaching repetition may entail tradeoffs related to teaching quality. For example, the Association of Departments of English recommends: "In general, the proper number of different courses likely to ensure excellent teaching is two or three; that is, there should be enough variety to promote freshness but not so much as to
prevent thorough preparation." ${ }^{11}$ (Emphasis added.) This recommendation highlights the perceived tension between time savings and the tedium of teaching repetition.

In this paper, we use a large administrative dataset from a Dutch business school to test how teaching repetition affects students' grades, dropout rates, how they evaluate their instructor, and the amount of time they put into studying for the course. Our empirical analysis focuses on comparisons of student outcomes across an instructor's sections of a course for a given term. Importantly, students in our setting are randomly assigned to sections within each course they register for. After accounting for possible confounding variables, such as a section's start time, we interpret any observed differences in average outcomes for students in an instructor's later sections as the causal effects of teaching repetition.

Overall, our results show little evidence that teaching repetition benefits or harms students. In our main specification, most of our point estimates are small and none are statistically significant. For students in an instructor's second section (relative to the first section), we can rule out effects on grades that are below -5.1 percent and above 3.4 percent of a standard deviation based on the 95-percent confidence interval. In specifications where we do not control for section starting time, which is highly collinear with the number of repetitions, our effects are similar and even more precisely estimated. Here we can rule out economically meaningful effects on grades as well as student dropout rates and study hours. In these specifications, however, we do find that teaching repetition improves teaching evaluations between 3.4 and 5.3 percent of a standard deviation. While not affecting students' objective academic outcomes, teaching repetition may allow instructors to deliver the material in a way that is appreciated by students. We also find

[^2]suggestive evidence that the positive impact of repetition on teaching evaluations is larger for inexperienced instructors. Finally, we see no evidence that the effect of teaching repetition is different if the instructor had a break before having to teach a subsequent section. These results suggest that any adjustments to the course material instructors make in such a break does not affect their teaching effectiveness, and that short-term instructor fatigue is not a significant determinant of student outcomes.

We are one of the first studies to empirically examine the consequences of teaching repetition. The only other study is by Williams and Shapiro (2018) who use data from the US Air Force Academy to investigate how student fatigue, time of instruction and teaching repetition affect student outcomes. For identification, they also rely on random assignment of students to sections within a course. Their results show small positive effects of teaching repetition: students who are in an instructor's second compared to first section achieve 3 percent of a standard deviation higher grades. While Williams and Shapiro (2018) examine how multiple aspects of the university schedule affect students' grades, we focus on the effect of teaching repetition. In our more thorough analysis of the teaching repetition-aspect of scheduling, we consider a number of important outcomes beyond student grades and investigate heterogenous effects along a number of dimensions. The results of Williams and Shapiro (2018) and our study together allow us to draw robust conclusions: Teaching repetition does not harm students and has, if anything, only small positive effects. Universities can continue to benefit from the efficient use of staff time with schedules that allow for teaching repetition.

Besides the paper's direct policy relevance, our findings help reveal how teaching experience affects teacher productivity. Teaching repetition can be viewed as an intensive way of accumulating curriculum-specific experience which has been shown to improve teaching
effectiveness. For example, Ost (2014) uses data on 5th grade teachers in North Carolina to show that curriculum-specific experience improves a teacher's effectiveness, particularly for mathematics, even after controlling for general teaching experience. At the post-secondary-level, De Vlieger, Jacob and Stange (2018) use data from the University of Phoenix, a for-profit university, and find that teaching effectiveness in college algebra is positively related to curriculum-specific experience (sections taught) but uncorrelated with length of tenure at the university. In contrast to our study, these studies do not distinguish whether a teacher taught the same subject over a long period of time or within the same day. Our findings are consistent with work on the psychology of learning that shows that "re-studying a piece of information immediately after the first study episode is not an efficient way to proceed in order to learn effectively" (Gerbier \& Toppino, 2015, p. 50). Similarly, teaching productivity does not improve merely from quickly repeated delivery of course content, and instead must occur over a time horizon which allows for substantive reflection and reaction.

2. Background

2.1 Empirical Setting

Our data come from a Dutch business school and cover the academic years 2009-10 to 2014-15. ${ }^{2}$ This business school offers bachelor's, master's and PhD programs in business studies, economics, finance and econometrics. An academic year consists of four regular teaching terms of eight weeks. In these terms students typically take two courses at the same time. For brevity, we refer to each

[^3]course-term-year combination as a course. For example, we refer to ECON 101 taught in term 1 of 2011 and ECON 101 taught in term 1 of 2012 as separate courses. In a typical course, all students attend three to seven lectures together and twelve two-hour tutorial meetings in sections of up to 16 students. In this paper, we focus on the effects of repeated teaching across sections of these tutorials over the course of one day.

We exclude a number of observations due to deviations from the standard scheduling procedure, apparent mistakes in the data or missing data on key control variables (see Appendix A1 for more details). After these exclusions, we observe 10,898 students and 83,195 student course enrolments.

Table 1, Panel A shows summary statistics for our estimation sample. Thirty nine percent of students are female. The average age of students is 21 years and a majority of them are either Dutch (31 percent) or German (44 percent). On average, we observe each student for 7.6 different courses in our estimation sample.

We also observe 731 different instructors, who vary in their seniority from bachelor's and master's students (46 percent), PhD students (23 percent) to more senior instructors including postdocs, lecturers, and assistant, associate and full professors (31 percent). Each instructor teaches between one and four sections, with the average teaching load being 2.5 sections per course. In more than 99 percent of the cases, the instructor teaches all of their sections within a single day.

All sections in a given course cover the same material and have the same assignments. For a typical section meeting, students discuss assigned readings or solutions to exercises with their section peers. Students are expected to prepare the course material beforehand. Instructors are expected to prepare the same material thoroughly enough that they are able to answer students' questions and to structure the session by, for example, deciding the order to discuss the course
material. The main role of the tutorial instructor during the section meetings is to guide the discussion and help students when they are stuck.

Table 1: Descriptive Statistics

	$\begin{aligned} & (1) \\ & \mathrm{N} \\ & \hline \end{aligned}$	(2) mean	$\begin{array}{r} (3) \\ \text { ds } \\ \hline \end{array}$	$\begin{gathered} (4) \\ \text { min } \\ \hline \end{gathered}$	$\begin{array}{r} (5) \\ \max \\ \hline \end{array}$
Panel A: Individual characteristics					
Student level:					
Female	10,898	0.39	0.49	0.00	1.00
Age	10,898	21.17	2.50	15.93	44.25
Dutch	10,898	0.31	0.46	0.00	1.00
German	10,898	0.44	0.50	0.00	1.00
Bachelor student	10,898	0.64	0.44	0.00	1.00
Courses per student	10,898	7.63	6.27	1.00	33.00
Instructor level:					
Student instructor	731	0.46	0.49	0	1
PhD student instructor	731	0.23	0.41	0	1
Senior instructor	731	0.31	0.45	0	1
Instructor-course level:					
Sections per course	2,928	2.49	0.98	1.00	4.00
Panel B: Student outcomes					
Academic Outcomes:					
Grade	77,269	6.70	1.76	1	10
Dropout	83,195	0.07	0.26	0	1
Course Evaluation Survey Responses:					
Evaluate the overall functioning of your tutor in this course with a grade (1-10)	27,144	7.77	1.98	1	10
The tutor sufficiently mastered the course content (1-5)	27,144	4.31	0.95	1	5
The tutor stimulated the transfer of what I learned in this course to other contexts (1-5)	27,144	3.94	1.08	1	5
The tutor encouraged all students to participate in the (tutorial) group discussions (1-5)	27,144	3.60	1.18	1	5
The tutor was enthusiastic in guiding our group (1-5) The tutor initiated evaluation of the group functioning (1	27,144	4.07	1.10	1	5
5)	27,144	3.64	1.22	1	5
Self-study hours per week	26,918	14.25	8.32	0	90

Note: This table is based on our estimation sample.

We observe 7,292 total sections. Figure 1 shows that of these 7,292 sections, 42 percent are an instructors' first section for a given course $(2,900)$. Thirty-three percent $(2,431), 19$ percent $(1,411)$ and 8 percent (550) are an instructor's second, third and fourth sections, respectively. This is the variation we exploit to estimate the effect of teaching repetition. We draw from this figure that there exists a non-trivial number of students receiving course material as part of an instructor's third or fourth repetition. However, the unequal distribution of observations across repetitions suggests that we should expect more precise estimates of the effects of one or two repetitions relative to three or four.

Figure 1: Number of Sections of Different Order

[^4]
2.2 Outcome Variables

We investigate four outcomes related to teaching effectiveness or perceived teaching effectiveness: 1) a student's grade in the course, 2) an indicator for whether the student dropped out of the course, 3) an index of student evaluations of the instructor across several dimensions, and 4) a student's self-reported study hours per week for the course. Table 1, Panel B shows summary statistics for these outcomes.

Course grades often consist of multiple graded components, such as the presentation grade, participation grade, or final exam grade. The graded components and their weights differ by course, with most weight usually given to the final exam. In a typical course, final exams are graded by the course coordinator and all section instructors, with each grading the same set of exam questions for all students in the course. Students' participation and presentations are typically graded by their section instructor, but this usually constitutes a small part of students' overall grades.

Course grades are assigned on a scale from 1 to 10 with 5.5 being the lowest passing grade. The average grade in our sample is 6.7. In our empirical analysis we standardize course grades to have a mean of zero and standard deviation of one over the estimation sample to facilitate the interpretation of our results.

Students drop out when they register for a course but their final grades are missing in the official records. The dropout rate for our sample is 7 percent.

Students are prompted to fill out course evaluations at the end of the term, which include questions about the course, the instructor, and the student's experiences in the class. Generally, teaching evaluations gauge students' satisfaction with instructors and courses but are not a direct measure of teaching effectiveness. Indeed, there is ample evidence that comparing teaching - 8 -
evaluations across instructors is a poor measure of their relative effectiveness as a teacher (Uttl, White, \& Gonzalez, 2017). Despite this, changes in an instructor's teaching evaluations across section repetitions can reveal qualities of the classroom experience that evolve as an instructor repeats lesson material, such as how instructors gain apparent confidence with the material or loose enthusiasm from fatigue, without reflecting fixed characteristics of the instructor (e.g. grading style, attractiveness). For universities and instructors, there is additional cause for understanding the determinants of student evaluation scores because promotion and retention is often tied to such measures.

We use six questions to measure the instructors' teaching effectiveness. These questions measure instructors' (1) overall functioning, (2) mastery of the course content, (3) ability to transfer course content to other contexts, (4) encouragement of student participation, (5) enthusiasm in guiding the group, and (6) whether the instructors' initiated the evaluation of the group functioning . (See Panel B of Table 1 for the wording of the instructor evaluation items). Appendix Table A1 gives the correlation matrix for these six variables. All of the variables positively correlate with one another, with the strongest correlation occurring between instructors' overall functioning and their mastery of the course content (questions 1 and 2), and the weakest correlation between instructors' mastery of the course content and their initiation of the evaluation of the group functioning (questions 2 and 6).

To broadly assess how teaching repetition affects students' perceptions of an instructor's effectiveness, we first combine these evaluation variables using principal factor analysis. This exercise identifies a single principal factor, which we standardize to have mean zero and a standard deviation of one, and use as our dependent variable measuring student's subjective assessment of instructor performance.

To measure self-study hours, we use the students' answers to the question of how many hours they studied (excluding time in lectures and tutorials).

Throughout the empirical analysis we use the maximum sample size possible for each student outcome. The sample for the dropout indicator includes everyone initially enrolled in the course, while the sample for course grades only includes those completing the course (93 percent of enrollees). Because responding to course evaluations is voluntary, the sample of instructor evaluation scores and study hours only includes students that chose to answer these questions on the course evaluation surveys at the end of the term (33 percent and 32 percent of enrolled students, respectively). Table A2 in the appendix shows that female students and students with higher GPAs are more likely to respond to course evaluations as well as some heterogeneity in response by nationality. This selective response implies that our effect estimates for these latter outcomes may not be representative of the broader student population. Importantly, however, section-order does not predict responses to instructor evaluations and study hours questions.

2.3 Assignment of Instructors and Students to Sections

An advantage of our setting is that students are randomly assigned to sections within a course conditional on scheduling conflicts. Scheduling conflict arises for about 5 percent of student-course registrations and are resolved by schedulers manually switching students between sections. From the academic year 2010-11, the business school additionally stratifies section assignment in bachelor's courses by student nationality to encourage a mixing of Dutch students and German students. Other papers using this data set have shown that student assignment to sections has the properties that we would expect under random assignment (e.g., Feld et al., in press). Instructors are assigned by schedulers to different sections within a course. For this assignment, schedulers do
not consider the characteristics of the students in the sections. About 10 percent of instructors indicate a time in which they are not available for teaching. While these constraints potentially affect instructors' time slots, the conditionally random assignment of students to sections ensures that students' characteristics will not predict whether they are in an instructor's first, second, third or fourth section.

Table 2: Randomization Check

	(1)	(2)	(3)	(4)
Dep. Variable:	GPA	Female	ID rank	Age
2nd Section	-0.045	0.012	-117.934	0.021
	$(-0.111-0.021)$	$(-0.011-0.035)$	$(-331.298-95.430)$	$(-0.064-0.106)$
3rd Section	-0.092	0.014	-280.668	0.099
	$(-0.208-0.024)$	$(-0.028-0.055)$	$(-647.187-85.851)$	$(-0.044-0.242)$
4th Section	-0.138^{*}	0.035	-321.486	0.126
$(-0.302-0.026)$	$(-0.024-0.095)$	$(-832.994-190.022)$	$(-0.076-0.327)$	
Observations	83,195	83,195		83,195
R-squared Section 1 avg outcome p-value joint significance of all section variables:	0.213	0.176	0.147	83,195

Note: All regressions include instructor-course-parallel-course fixed effects and indicator variables for section starting times. 95 percent confidence intervals based on standard errors clustered at the course-level are in parentheses. *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table 2 reports estimates from a regression of students' pre-enrollment characteristics on section order indicators and controls for section start time and instructor-course-parallel-course fixed effects. Out of the twelve coefficients estimated, we see no statistically significant differences in characteristics at the 5-percent level and only one at the 10-percent level. While student GPA is marginally lower in the fourth section relative to the first, the section-order coefficients from the GPA regression (or any other regression in Table 2) are not jointly significant. Overall, these results
show that pre-enrollment characteristics across an instructor's sections are roughly balanced conditional on controls.

3. Empirical Methodology

A number of challenges arise when estimating the causal effects of teaching repetition on student outcomes. For one, instructors teaching multiple sections of a course may be systematically different from instructors that do not. For instance, a more senior and experienced instructor may have a smaller course load and less repetitions than an inexperienced instructor. Similarly, teaching repetition may be more common in certain subject areas than others. Because instructor type and course subject are both likely to impact our student outcomes of interest, our analysis only compares student outcomes within instructor-course combinations. ${ }^{3}$

In institutions where students are in full control of their schedule, we may also be concerned about self-selection of students into earlier or later sections. This problem is largely alleviated by our empirical setting in which students are randomly assigned to sections within a course absent any scheduling constraints. Such scheduling constraints, however, may introduce bias in our estimates. For example, students taking a particularly difficult parallel course that is only offered in the morning may be more likely to end up in an instructor's later section. These students may be relatively high-achievers compared to their peers in earlier sections taking easier parallel courses (introducing positive bias), or these students may have higher workloads and less time to study (introducing negative bias). To account for this potential bias caused by scheduling constraints, we further restrict comparisons to be between students registered for the same parallel course.

[^5]We implement this strategy by estimating regression equation

$$
\begin{equation*}
y_{i j c s d}=\sum_{\tau=2}^{4} \beta_{\tau} \text { section }_{\tau j c s}+\lambda_{j c d}+\delta W_{j c s}+\gamma Z_{i c}+\varepsilon_{i j c s d} \tag{1}
\end{equation*}
$$

in which $y_{i j c s d}$ is student i 's outcome for instructor j 's s th section of course c for the term. The subscript d indicates the the student is also registered for parallel course d in that term.

The variables section $\chi_{\tau j c s}$ are a binary indicators for section $\tau>1$ that takes the value of 1 when $s=\tau$ and zero otherwise. ${ }^{4}$ The β_{τ} parameters represent teaching repetition effects as they measure the difference in outcomes in the τ th section relative to the first section for a given instructor-course combination.

The term $\lambda_{j c d}$ is an instructor-by-course-by-parallel course fixed effect. Our identification of teaching repetition effects therefore relies only on comparisons between students in an instructor's later sections of a course to their peers in the first section that have the same course plan as them. This flexible approach not only accounts for potential sources of bias discussed above, but also any interactions among those sources. We also show below that our results are similar when we only include instructor-by-course fixed effects.

One additional identification concern is that section order is correlated with tutorials' start times. For instance, studies such as Williams and Shapiro (2018) find that students tend to perform worse earlier in the day. As section repetitions necessarily come later in the day than the first section, we may mistake these time-of-day effects for repetition effects. Therefore we also control for $W_{j c s}$ a vector of indicator variables for time-of-day that the section meets.

[^6]The vector $Z_{i c}$ consists of student characteristics. These include indicator variables for each student's gender and nationality and cubic polynomials for students' GPA and age at the start of the course. Lastly, $\varepsilon_{i j s c d}$ is a mean zero error term. In all regressions, we estimate robust standard errors adjusted for clustering at the course level.

4. Results

4.1 Main Results

We begin by estimating the effects of teaching repetition on standardized grades. The estimates in column (1) of Table 3 support the conclusion that instructors cannot take experience gained in one section, and quickly apply it in subsequent sections in a way that improves student performance. Average grades in instructors' second sections are actually lower than in their first, but the decrease is less than 1 percent of a standard deviation and not statistically significant. The 95-percent confidence interval of this estimate allows us to rule out effects below -5.1 percent and above 3.4 of a standard deviation. For comparison, Williams and Shapiro (2018), find a 3 percent of a standard deviation improvement in average student grades for an instructor's second section compared to their first. ${ }^{5}$ Similarly, De Vlieger et al. (2018) find that students perform 3 to 4 percent of a standard deviation better on the final exam if the instructor has taught the course at least once before.

Point estimates for an instructors' third and fourth sections relative to their first suggest positive impacts of repetition on grades, but effect sizes are small and are not statistically

[^7]significant at conventional levels. The confidence intervals for these subsequent repetitions are also considerably larger, which is unsurprising given fewer observed instances of instructors teaching three and four sections of a course. We fail to reject the null hypothesis of a joint test of significance that all section indicator variables equal zero (reported in the final row of Table 3).

Table 3: The Effects of Teaching Repetition on Student Outcomes

Dependent Variable:	(1) Std. Grade	(2) Dropout	(3) Std. Eval.	(4) Hours
2nd Section	$\begin{gathered} -0.008 \\ (-0.051-0.034) \end{gathered}$	$\begin{gathered} 0.004 \\ (-0.008-0.016) \end{gathered}$	$\begin{gathered} 0.050 \\ (-0.065-0.166) \end{gathered}$	$\begin{gathered} -0.302 \\ (-1.123-0.519) \end{gathered}$
3rd Section	$\begin{gathered} 0.012 \\ (-0.064-0.087) \end{gathered}$	$\begin{gathered} 0.008 \\ (-0.014-0.030) \end{gathered}$	$\begin{gathered} 0.083 \\ (-0.118-0.284) \end{gathered}$	$\begin{gathered} -0.839 \\ (-2.226-0.548) \end{gathered}$
4th Section	$\begin{gathered} 0.018 \\ (-0.088-0.124) \end{gathered}$	$\begin{gathered} 0.009 \\ (-0.021-0.040) \end{gathered}$	$\begin{gathered} 0.132 \\ (-0.142-0.407) \end{gathered}$	$\begin{gathered} -1.159 \\ (-3.135-0.816) \end{gathered}$
Observations	77,269	83,195	27,144	26,918
R-squared	0.569	0.290	0.551	0.412
Section 1 avg outcome	. 028	. 072	-. 033	14.415
p-value joint significance of all section variables:	. 4221	. 9020	. 7966	. 5536

Note: All regressions include fixed effects for instructor-course-parallel-course combinations and section starting time, cubic polynomials for student GPA and age and indicators for student gender and nationality. 95 percent confidence intervals based on standard errors clustered at the course level are in parentheses.

Although we do not find evidence that teaching repetition affects student grades in the course, teaching repetition may still affect students in other ways. For example, instructors who are better at maintaining student interest might see fewer students dropout midway through the term and receive higher teaching evaluations from students. In column (2) of Table 3, we report estimates of teaching repetition effects for a linear probability model of dropout. Overall, we find small and statistically insignificant effects of teaching repetition on the probability of course dropout. Comparing second to first sections, we can rule out effects on dropout rate below - 0.8 and above 1.6 percentage points. Point estimates continue to be small for other sections (less than 1 percentage point) but are measured with slightly less precision.

Similarly, in column (3), we find little evidence that teaching repetition leads to better teaching evaluations. Even as the point estimates rise slightly with repetition, the p-value for the joint significance of our section order variables indicates the absence of a strong systematic relationship.

It remains possible that we do not observe effects of teaching repetition because of students' offsetting behaviour. This might occur, for example, if first section students increase their independent study time to compensate for poorer instructional quality. In column (4), we consider teaching repetition's effects on self-reported weekly study hours. The estimated effects on study hours are small and statistically insignificant, with second section students spending only approximately 2 percent less time (18 minutes) studying each week, relative to first section students. The point estimates rise somewhat, as do their standard errors, for subsequent sections. However, as before, the effect sizes are small, and the section order variables are not jointly significant. This indicates that students across all sections devote similar amounts of time to study.

4.2 Robustness

We probe the robustness of our main results with two additional specifications. First, we estimate the model reported in Table 3 without controls for section starting time, which are highly collinear with teaching repetitions. Second, we relax our sample restrictions and include fewer control variables. More specifically, in this second specification, we only exclude observations which represent an exception to the standard section assignment procedure at the business school and observations where the instructor teaches more than four sections in a given course. This leaves us with a substantially larger estimation sample of 107,661 student-course observations (see

Appendix A1 for the sample restrictions). In this specification, we only control for instructorcourse fixed effects, effectively comparing mean outcomes of students in the same course taught by the same instructor.

Figure 2 compares the point estimates from the two modified specifications described above to the baseline estimates from Table 3 (see also Table A3 in the appendix). The effects in the alternative specifications are much more precisely estimated than the baseline effects, as evidenced by narrower confidence intervals. The results provide additional support that teaching repetition has no economically significant effect on students' grades, dropout and study effort.

We do, however, see positive and statistically significant repetition effect estimates on teaching evaluations in these specifications. This finding occurs because of increased precision, not because of increases in point estimates. The estimated effects of being in an instructor's second, third and fourth section on instructor evaluations are between 3.4 and 5.3 percent of a standard deviation. When estimating the effect of teaching repetition on each evaluation item separately, we show that the positive point estimates are driven by instructors receiving better scores on overall evaluation, content mastery, and ability to transfer what students learned to other contexts (see Figure A1 in the appendix). While these estimates may be influenced by section starting time, we interpret them as suggestive evidence that teaching repetition leads to more positive teaching evaluations.

Figure 2: Robustness

Std. Eval.

Hours

- Main model (MM)	
- MM with minimal controls/sample restrictions	

Note: This figure shows estimates from three specifications for each dependent variable. The point estimates from the first specification are from our main results reported in Table 3. The point estimates from the second specification are from regressions without controls for section starting time. The point estimates from the third specification are from regressions with minimal sample restrictions and no controls except for instructor-course fixed effects. Vertical lines indicate 95 -percent confidence intervals based on standard errors clustered at the course level.

One concern for the interpretation of our results is that section-level curving of presentations and participation may attenuate the effect of teaching repetition on student grades. For these graded components, the instructor may intentionally adjust grades to ensure similar averages across all sections they teach. If student grades on presentations and participation are
affected by teaching repetition, section-level curving would obscure this part of the effect on course grades. ${ }^{6}$

To address this concern, we separately estimate the effect of teaching repetition on grades in first-year courses in which grades are entirely based on final exam performance and therefore unaffected by curving at the section level. Results in Panel A of Table A4 in the appendix show slightly larger effect size estimates for this sample though still small (1 percent to 8 percent of a standard deviation) and not statistically significant (p-value of joint test: 0.36) suggesting that the absence of effects on grades in our main model is not driven by section-level curving. ${ }^{7}$

4.3 Heterogeneity by Prior Teaching Experience

A common finding is that the marginal returns to experience diminish over an instructor's career (Papay \& Kraft, 2015). It may therefore be that inexperienced instructors receive a larger benefit from teaching repetition, relative to more-experienced colleagues. We investigate this possible heterogeneity by stratifying the sample of students based upon whether their instructor is a student (bachelor's, master's or PhD) or a more senior instructor (postdocs, lecturers, and assistant, associate and full professors).

Panel A of Table 4 shows the effects of teaching repetition in courses taught by students. For these instructors, the effects of repetition on grades, the probability of dropping the course and study hours appear as before - small and statistically insignificant. Unlike Table 3, column (3)

[^8]suggests economically relevant and statistically significant positive effects of repetition on teaching evaluations for instructors. Students and PhD students receive 16 percent, 24 percent and 29 percent of a standard deviation higher evaluations in their second, third and fourth section, respectively. However, these effects are less precisely estimated than those in Table 3 and the F-test for joint significance for all section indicators fails to reject the null hypothesis. We therefore interpret these results as merely suggestive evidence that teaching repetition improves teaching evaluations for instructors who are students.

Panel B of Table 4 shows the same estimates for senior instructors. For these instructors, we do not see any evidence that teaching repetition affects student grades, their probability of dropping out of a course, or their teaching evaluations. There is, however, some indication that being in a senior instructor's second, third and fourth section reduces students study hours. Yet, the point estimates are not statistically significant and we fail to reject the joint significance tests that all section indicators equal zero. Therefore, we are not inclined see repetition by senior instructors as a relevant factor affecting students' study hours.

Table 4: Heterogeneous Effects by Instructor Academic Rank

Panel A: Student and PhD student instructors				
Dependent Variable:	(1) Std. Grade	(2) Dropout	(3) Std. Eval.	(4) Hours
2nd Section	$\begin{gathered} -0.027 \\ (-0.081-0.027) \end{gathered}$	$\begin{gathered} 0.005 \\ (-0.010-0.020) \end{gathered}$	$\begin{gathered} 0.155^{* *} \\ (0.028-0.283) \end{gathered}$	$\begin{gathered} 0.606 \\ (-0.518-1.731) \end{gathered}$
3rd Section	$\begin{gathered} -0.022 \\ (-0.115-0.070) \end{gathered}$	$\begin{gathered} 0.010 \\ (-0.019-0.038) \end{gathered}$	$\begin{gathered} 0.238^{* *} \\ (0.043-0.433) \end{gathered}$	$\begin{gathered} 0.450 \\ (-1.363-2.263) \end{gathered}$
4th Section	$\begin{gathered} -0.030 \\ (-0.161-0.101) \end{gathered}$	$\begin{gathered} 0.019 \\ (-0.019-0.057) \end{gathered}$	$\begin{gathered} 0.294^{* *} \\ (0.018-0.570) \end{gathered}$	$\begin{gathered} 0.549 \\ (-1.986-3.084) \end{gathered}$
Observations	38,678	41,916	13,228	12,983
R -squared	0.579	0.283	0.550	0.386
Section 1 avg outcome p-value joint significance of all section variables:	-.044 . 5735	.078 .6913	-.166 .1026	13.88 .4563
Panel B: Senior instructors				
2nd Section	$\begin{gathered} 0.021 \\ (-0.049-0.091) \end{gathered}$	$\begin{gathered} 0.003 \\ (-0.015-0.021) \end{gathered}$	$\begin{gathered} -0.043 \\ (-0.259-0.173) \end{gathered}$	$\begin{gathered} -1.086 \\ (-2.443-0.272) \end{gathered}$
3rd Section	$\begin{gathered} 0.066 \\ (-0.058-0.190) \end{gathered}$	$\begin{gathered} 0.004 \\ (-0.029-0.037) \end{gathered}$	$\begin{gathered} -0.044 \\ (-0.457-0.369) \end{gathered}$	$\begin{gathered} -1.786 \\ (-4.193-0.620) \end{gathered}$
4th Section	$\begin{gathered} 0.095 \\ (-0.076-0.266) \end{gathered}$	$\begin{gathered} -0.004 \\ (-0.050-0.042) \end{gathered}$	$\begin{gathered} 0.026 \\ (-0.550-0.601) \end{gathered}$	$\begin{gathered} -2.412 \\ (-5.861-1.036) \end{gathered}$
Observations	38,591	41,279	13,916	13,935
R-squared	0.559	0.300	0.547	0.437
Section 1 avg outcome p-value joint significance of all section variables:	.096 .5242	.066 .5973	.085 .4040	14.883 .4766

Note: All regressions include instructor-course-parallel-course fixed effects. Additional controls include cubic polynomials for student age and GPA as well as indicator variables for section starting time, student gender and student nationality. 95 percent confidence intervals based on standard errors clustered at the course level are in parentheses. *** p $<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Teaching repetition could be particularly valuable for instructors who teach a specific subject for the first time. We test this hypothesis, by estimating the main results separately by whether and instructors taught a specific curriculum - as identified by the course code - before. For this specification, we exclude observations from the first year of the dataset for which we do not observe prior teaching experience. Table A5 in the appendix shows that these results are qualitatively similar to the heterogeneous results by instructor career experience. There is no
evidence of teaching repetition affecting students' grades, drop-out probability or study hours. While not being statistically significant, the point estimates suggest that first-time instructors' teaching evaluations benefit from teaching repetition. ${ }^{8}$

4.4 Heterogeneity by Spacing of Repetitions

Are the positive returns to rapid teaching repetition offset by the more general effects of teaching fatigue? In this subsection we investigate whether the spacing of repetitions modulates the effect of teaching repetition. The psychology literature on how practice aids knowledge acquisition in students suggests that the timing and spacing of practice is quite important (Gerbier \& Toppino, 2015; Kang, 2016). Here, we investigate the possibility that making improvements from repetition requires some short downtime either to reflect on recent experiences or simply to work on implementing pedagogical changes (e.g. reorganizing materials) prior to the next section.

To estimate the effect of repetition spacing, we distinguish whether an instructor had a break, that is, did not teach a section (of the same or different course) immediately before the section under consideration. At this business school, each day consists of five two-hour teaching slots which are separated by 30 minutes to allow instructors and students to change rooms. Instructors who have a break have therefore at least 2 hours and 30 minutes to rest and potentially make changes for their next sections. Empirically, we estimate this effect of section spacing by including interaction terms of break with second and third section indicators (we do not observe a single instance where an instructor had a break before their fourth section).

[^9]Table 5: The Effects of Repetition With and Without Break before Section

	(1)	(2)	(3)	
Dependent Variable:	Std. Grade	Dropout	Std. Eval.	(4)
2nd Section	0.000	0.006	0.024	-0.195
3rd Section	$(-0.052-0.053)$	$(-0.008-0.021)$	$(-0.115-0.164)$	$(-1.130-0.740)$
	0.031	0.015	0.017	-0.576
4th Section	$(-0.073-0.135)$	$(-0.014-0.043)$	$(-0.250-0.284)$	$(-2.244-1.092)$
	0.046	0.017	0.044	-0.801
	$(-0.100-0.191)$	$(-0.022-0.056)$	$(-0.326-0.414)$	$(-3.155-1.553)$
2nd Section X break	0.016			
	$(-0.049-0.081)$	$(-0.009-0.031)$	$(-0.226-0.074)$	$(-0.858-1.421)$
3rd Section X break	0.022	-0.002	-0.037	0.188
	$(-0.042-0.086)$	$(-0.023-0.019)$	$(-0.204-0.130)$	$(-1.222-1.598)$
Observations	77,269	83,195		
R-squared	0.569	0.290	27,144	26,918
Section 1 avg outcome	.028	.072	0.551	0.412
p-value joint significance of all			-.033	14.415
break interactions:	0.7565	.5081	.609	0.8711
p-value joint significance of all				
section variables + interactions:	.6544	.8682	.7510	.8142

Note: All regressions include instructor-course-parallel-course fixed effects. Additional controls include cubic polynomials for student age and GPA as well as indicator variables for section starting time, student gender and student nationality. The reference group is the same as in Table 3: students taught in an instructor's first section. 95 percent confidence intervals based on standard errors clustered at the course level are in parentheses.

Table 5 shows the estimates of this fully interacted model. We see no evidence that having a break significantly changes the effects of teaching repetition. None of the eight interaction terms is significant at the 10 percent level. While these coefficients are less precisely estimated, the direction of the point estimates shows no obvious pattern: three coefficients suggest that having a break increases the benefits of section repetition (e.g. increases grades, lowers dropout rates), and five coefficients suggest the opposite. The F-test for joint significance of all interaction terms does not support the hypothesis that having a break modulates the repetition effect for any of the
outcomes we look at. Overall, we interpret these findings as evidence that potential positive effects from repetition are not modulated by short-term fatigue. ${ }^{9}$

5. Conclusion

While teaching repetition is pervasive in higher education, we know very little about how it affects teaching effectiveness. Overall, this paper finds evidence that teaching repetition neither hurts nor helps objectively measured teaching effectiveness. While we find some suggestive evidence that teaching repetition improves teaching evaluations, especially for inexperienced instructors, we can rule out economically meaningful effects of teaching repetition on students' grades, drop-out rates and study hours.

The finding that university instructors' effectiveness is largely unrelated to teaching repetition has a number of implications. First, teaching repetition offers a promising way to reduce overall preparation time that does not harm students. Instructors do not appear to use the first section as a "trial" or "practice run" for later sections, and students in earlier sections are not disadvantaged relative to peers in later sections. A second conclusion is that instructors appear to need significant time to incorporate the lessons from teaching experience.

While Williams and Shapiro (2018) find positive effects of teaching repetition on grades, most of their data include classes following a seminar format with a single instructor. The

[^10]difference in our results suggest that teaching repetition effects may not generalize to the tutorial setting. One reason may be that repetition only improves certain aspects of teaching (e.g. presenting and introducing concepts) but not the skills more applicable to tutorials (e.g. guiding applications). A second reason may be that the effect of tutorial repetition on grades is harder to detect in our setting because all students follow the same lectures which also affect student grades. This rationale is consistent with our finding that teaching repetition improves evaluations of the tutorial instructor, an outcome that is not directly affected by what happens in lectures. In this light, results from Williams and Shapiro (2018) may better represent teaching repetition effects at small highereducation institutions and secondary schools where the single instructor format is more common, while our results are more applicable to the lecture-tutorial format that dominates instruction at large higher-education institutions.

We may also underestimate the total effect of teaching repetition within our setting if repetition affects all sections of the course similarly, including the first. For example, if faculty prepare more thoroughly for content that they must teach multiple times, then even students in the first sections will benefit from increasing teaching repetition. Here, simply looking at differences across sections within a term will underestimate the effects of teaching repetition on students.

Our estimates begin to reveal how course experience improves teaching productivity in the long-run, which is the concern of much of the current research on instructor experience. Given the lack of rapid improvement in teaching from short term repetition, our results support the idea that teachers need a period of reflection to be able to benefit from their teaching experience. In such a reflection period, teachers can see course evaluations, reflect on experiences, and make substantial changes to the curriculum. To answer how instructor experience translates into better student outcomes, future work should focus on mechanisms that operate on longer time horizons.

References

Boksem, M. A. S., Meijman, T. F., \& Lorist, M. M. (2006). Mental Fatigue, Motivation and Action Monitoring. Biological Psychology, 72(2), 123-132. https://doi.org/10.1016/j.biopsycho.2005.08.007

Boring, A. (2017). Gender Biases in Student Evaluations of Teaching. Journal of Public Economics, 145, 27-41. https://doi.org/10.1016/J.JPUBECO.2016.11.006

De Vlieger, P., Jacob, B., \& Stange, K. (2018). Measuring Effectiveness in Higher Education. In C. M. Hoxby \& K. Stange (Eds.), Productivity in Higher Education. Retrieved from http://www.nber.org/chapters/c13880.pdf

Fan, Y., Shepherd, L. J., Slavich, E., Waters, D., Stone, M., Abel, R., \& Johnston, E. L. (2019). Gender and Cultural Bias in Student Evaluations: Why Representation Matters. PLOS ONE, 14(2), e0209749. https://doi.org/10.1371/journal.pone. 0209749

Feld, J., Salamanca, N., \& Zölitz, U. Are Professors Worth It? The Value-added and Costs of Tutorial Instructors. Journal of Human Resources, in press. https://doi.org/10.3368/jhr.55.3.0417-8752R2

Feld, J., \& Zölitz, U. (2017). Understanding Peer Effects: On the Nature, Estimation, and Channels of Peer Effects. Journal of Labor Economics, 35(2), 387-428. https://doi.org/10.1086/689472

Gerbier, E., \& Toppino, T. C. (2015). The Effect of Distributed Practice: Neuroscience, Cognition, and Education. Trends in Neuroscience and Education, 4(3), 49-59. https://doi.org/10.1016/J.TINE.2015.01.001

Harris, D. N., \& Sass, T. R. (2011). Teacher Training, Teacher Quality and Student Achievement. Journal of Public Economics, 95(7-8), 798-812.
https://doi.org/10.1016/j.jpubeco.2010.11.009
Kaikai, S. M., \& Kaikai, R. E. (1990). Positive Ways To Avoid Instructor Burnout. Paper Presented at the National Conference on Successful College Teaching. Retrieved from https://eric.ed.gov/?id=ED320623

Kang, S. H. K. (2016). Spaced Repetition Promotes Efficient and Effective Learning. Policy Insights from the Behavioral and Brain Sciences, 3(1), 12-19. https://doi.org/10.1177/2372732215624708

Lorist, M. M., Boksem, M. A. S., \& Ridderinkhof, K. R. (2005). Impaired Cognitive Control and Reduced Cingulate Activity during Mental Fatigue. Cognitive Brain Research, 24(2), 199205. https://doi.org/10.1016/J.COGBRAINRES.2005.01.018

Maslach, C., Schaufeli, W. B., \& Leiter, M. P. (2001). Job Burnout. Annual Review of Psychology, 52(1), 397-422. https://doi.org/10.1146/annurev.psych.52.1.397

Mengel, F., Sauermann, J., \& Zölitz, U. (2018). Gender Bias in Teaching Evaluations. Journal of the European Economic Association. https://doi.org/10.1093/jeea/jvx057

Ost, B. (2014). How Do Teachers Improve? The Relative Importance of Specific and General Human Capital. American Economic Journal: Applied Economics, 6(2), 127-151. https://doi.org/10.1257/app.6.2.127

Papay, J. P., \& Kraft, M. A. (2015). Productivity Returns to Experience in the Teacher Labor Market: Methodological Challenges and new Evidence on Long-term Career Improvement. Journal of Public Economics, 130, 105-119. https://doi.org/10.1016/j.jpubeco.2015.02.008

Uttl, B., White, C. A., \& Gonzalez, D. W. (2017). Meta-analysis of Faculty’s Teaching Effectiveness: Student Evaluation of Teaching Ratings and Student Learning are not Related. Studies in Educational Evaluation, 54, 22-42.
https://doi.org/10.1016/j.stueduc.2016.08.007
Williams, K. M., \& Shapiro, T. M. (2018). Academic Achievement across the Day: Evidence from Randomized Class Schedules. Economics of Education Review, 67, 158-170. https://doi.org/10.1016/j.econedurev.2018.10.007

Appendix

A1 - Sample Restrictions

Our sample period covers the academic years of 2009-10 through 2014-15. Because they represent an exception to the standard section assignment procedure at the business school, we exclude the following observations: ${ }^{10}$

- Eight courses in which the course coordinator or other education staff actively influenced the section composition. One course coordinator, for example, requested to balance student gender across sections. The business school's scheduling department informed us about these courses.
- 21 sections groups that consisted mainly of students who registered late for the course. Before April 2014, the business school reserved one or two slots per section for students who registered late. In exceptional cases in which the number of late registration students substantially exceeded the number of empty spots, new sections were created that mainly consisted of late-registering students. The business school abolished the late registration policy in April 2014.
- 46 repeater sections. One course coordinator explicitly requested to assign repeater students who failed his courses in the previous year to special repeater sections.
- 17 sections that consisted mainly of students from a special research-based program. For some courses, students in this program were assigned together to separate sections with a more-experienced instructor.

[^11]- 95 part-time MBA students, because these students are typically scheduled for special evening classes with only part-time students.
- 269 evening sections comprised of students who did not opt out of evening education.

We additionally excluded:

- 554 student-course observations where we did not have information on the starting time of at least one of the sections the instructors taught because for these observations, we would not be able to correctly identify the section order.
- 382 student-course observations where there appeared to be a mistake in the recorded schedule (e.g. the starting time of the first section was after the starting time of the second section or an instructor was scheduled to teach two different courses at the same day and time.)
- 19,341 student-course observations for which we do not observe past GPA which is an important co-variate in our analysis. Past GPA is missing for all students in the first year and first period of our data and for all students in their first period.
- 3,960 student-course observations for which we do not observe age. Most of these are exchange students.
- 384 student-course observations for students who were taught by an instructor who was teaching more than 4 sections of the same course in the relevant teaching period.
- 269 student-course observations for which the sections of the first and second day was at different times.
- 50 student-course observations with missing observations for section order
- 342 student-course observations for which we had fewer than three students per section after applying all sample restrictions.

APPENDIX TABLES

Table A1: Student Evaluation Variables Correlation Matrix

	Overall Functioning	Mastery	Knowledge Transfer	Encouraged Participation	Enthusiasm	Encouraged Evaluation
Overall Functioning	1.000					
Mastery	0.770	1.000				
Knowledge Transfer	0.753	0.690	1.000			
Encouraged Participation	0.614	0.478	0.569	1.000		1.000
Enthusiasm	0.767	0.650	0.710	0.602	0.527	1.000
Encouraged Evaluation	0.570	0.453	0.528	0.582		

Note: This table gives the correlations between the six student evaluation measures in our estimation sample. See Table 1, Panel B for more information about each variable.

Table A2: Test for Selective Survey Response

	(1)	(2)
Dependent Variable:	Response Eval.	Response Hours
2nd Section	$\begin{gathered} -0.005 \\ (-0.028-0.017) \end{gathered}$	$\begin{gathered} -0.009 \\ (-0.032-0.014) \end{gathered}$
3rd Section	$\begin{gathered} -0.013 \\ (-0.052-0.026) \end{gathered}$	$\begin{gathered} -0.023 \\ (-0.062-0.016) \end{gathered}$
4th Section	$\begin{gathered} -0.015 \\ (-0.071-0.040) \end{gathered}$	$\begin{gathered} -0.020 \\ (-0.075-0.035) \end{gathered}$
Female	$\begin{gathered} 0.054 * * * \\ (0.046-0.062) \end{gathered}$	$\begin{gathered} 0.057 * * * \\ (0.048-0.065) \end{gathered}$
GPA	$\begin{gathered} 0.043 * * * \\ (0.039-0.047) \end{gathered}$	$\begin{gathered} 0.046 * * * \\ (0.042-0.051) \end{gathered}$
Dutch	$\begin{gathered} -0.033 * * * \\ (-0.043--0.023) \end{gathered}$	$\begin{gathered} -0.024 * * * \\ (-0.034--0.014) \end{gathered}$
Belgian	$\begin{gathered} 0.034 * * * \\ (0.018-0.051) \end{gathered}$	$\begin{gathered} 0.028^{* * *} \\ (0.012-0.044) \end{gathered}$
Other Nationality	$\begin{gathered} 0.031 * * * \\ (0.019-0.044) \end{gathered}$	$\begin{gathered} 0.021^{* * *} \\ (0.010-0.033) \end{gathered}$
Missing Nationality	$\begin{gathered} 0.119 \\ (-0.035-0.274) \end{gathered}$	$\begin{gathered} 0.095 \\ (-0.071-0.261) \end{gathered}$
Observations	83,195	83,195
R -squared	0.270	0.267
Section 1 avg outcome	. 326	. 326
p -value joint significance of all section variables:	. 9266	. 4829

Note: All regressions include instructor-course-parallel-course fixed effects. Additional controls include cubic polynomials for student age as well as indicator variables for tutorial starting time. The base group for student nationality is German. 95 percent confidence intervals based on standard errors clustered at the course level are in parentheses. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table A3: Robustness

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Panel A: Main model without time controls}

\hline \& (1) \& (2) \& (3) \& (4)

\hline Dependent Variable: \& Std. Grade \& Dropout \& Std. Eval. \& Hours

\hline 2nd Section \& $$
\begin{gathered}
-0.008 \\
(-0.023-0.008)
\end{gathered}
$$ \& $$
\begin{gathered}
0.001 \\
(-0.003-0.006)
\end{gathered}
$$ \& $$
\begin{gathered}
0.049 * * \\
(0.009-0.089)
\end{gathered}
$$ \& $$
\begin{gathered}
0.018 \\
(-0.281-0.318)
\end{gathered}
$$

\hline 3rd Section \& $$
\begin{gathered}
0.007 \\
(-0.010-0.025)
\end{gathered}
$$ \& $$
\begin{gathered}
-0.000 \\
(-0.006-0.005)
\end{gathered}
$$ \& $$
\begin{gathered}
0.039 \\
(-0.008-0.087)
\end{gathered}
$$ \& $$
\begin{gathered}
0.011 \\
(-0.329-0.350)
\end{gathered}
$$

\hline 4th Section \& $$
\begin{gathered}
-0.002 \\
(-0.029-0.024)
\end{gathered}
$$ \& $$
\begin{gathered}
-0.002 \\
(-0.010-0.006)
\end{gathered}
$$ \& $$
\begin{gathered}
0.044 \\
(-0.017-0.106)
\end{gathered}
$$ \& $$
\begin{gathered}
-0.048 \\
(-0.539-0.443)
\end{gathered}
$$

\hline Observations \& 77,269 \& 83,195 \& 27,144 \& 26,918

\hline R-squared \& 0.569 \& 0.290 \& 0.551 \& 0.412

\hline Section 1 avg outcome p-value joint significance of all section variables: \& .028
.398 \& $$
\begin{aligned}
& .072 \\
& .8577
\end{aligned}
$$ \& -.033
.0964 \& 14.415
.9946

\hline \multicolumn{5}{|l|}{Panel B: Main model with minimal controls/sample restrictions}

\hline 2nd Section \& $$
\begin{gathered}
0.003 \\
(-0.012-0.018)
\end{gathered}
$$ \& $$
\begin{gathered}
-0.002 \\
(-0.005-0.002)
\end{gathered}
$$ \& $$
\begin{gathered}
0.046 * * * \\
(0.018-0.073)
\end{gathered}
$$ \& $$
\begin{gathered}
0.032 \\
(-0.194-0.257)
\end{gathered}
$$

\hline 3rd Section \& $$
\begin{gathered}
0.011 \\
(-0.007-0.030)
\end{gathered}
$$ \& $$
\begin{gathered}
-0.003 \\
(-0.007-0.001)
\end{gathered}
$$ \& $$
\begin{gathered}
0.034^{*} \\
(-0.001-0.069)
\end{gathered}
$$ \& $$
\begin{gathered}
0.081 \\
(-0.167-0.329)
\end{gathered}
$$

\hline 4th Section \& $$
\begin{gathered}
0.004 \\
(-0.024-0.032)
\end{gathered}
$$ \& $$
\begin{gathered}
-0.002 \\
(-0.009-0.004)
\end{gathered}
$$ \& $$
\begin{gathered}
0.053^{* *} \\
(0.006-0.099)
\end{gathered}
$$ \& $$
\begin{gathered}
-0.202 \\
(-0.601-0.197)
\end{gathered}
$$

\hline Observations \& 99,746 \& 107,661 \& 38,237 \& 37,763

\hline R-squared \& 0.194 \& 0.081 \& 0.410 \& 0.253

\hline Section 1 avg outcome p-value joint significance of all section variables: \& .025
.6898 \& .075

.5955 \& -.031
.0055 \& 14.39
.555

\hline
\end{tabular}

Note: This Table shows the regression estimates which are displayed in Figure 2. Regressions shown in Panel A include instructor-course-parallel-course fixed effects, cubic polynomials for student age and GPA as well as dummy variables for student gender and student nationality. Regressions shown in Panel B are estimated on less restricted samples (see Section 4.2) and include controls for instructor-course fixed effects. 95% confidence intervals based on standard errors clustered at the course level are in parentheses. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table A4: Heterogeneous Effects by First-year vs. Non-first-year Courses
Panel A: First-year courses

Dependent Variable:	(1) Std. Grade	(2) Dropout	(3) Std. Eval.	(4) Hours
2nd Section	$\begin{gathered} 0.012 \\ (-0.050-0.074) \end{gathered}$	$\begin{gathered} 0.005 \\ (-0.017-0.027) \end{gathered}$	$\begin{gathered} 0.155^{*} \\ (-0.027-0.337) \end{gathered}$	$\begin{gathered} -0.427 \\ (-2.005-1.152) \end{gathered}$
3rd Section	$\begin{gathered} 0.051 \\ (-0.051-0.153) \end{gathered}$	$\begin{gathered} 0.009 \\ (-0.032-0.049) \end{gathered}$	$\begin{gathered} 0.175 \\ (-0.102-0.453) \end{gathered}$	$\begin{gathered} -0.784 \\ (-3.430-1.862) \end{gathered}$
4th Section	$\begin{gathered} 0.081 \\ (-0.064-0.227) \end{gathered}$	$\begin{gathered} 0.005 \\ (-0.053-0.062) \end{gathered}$	$\begin{gathered} 0.212 \\ (-0.156-0.581) \end{gathered}$	$\begin{gathered} -1.166 \\ (-4.673-2.341) \end{gathered}$
Observations	23,035	25,483	7,600	7,251
R-squared	0.599	0.246	0.507	0.175
Section 1 avg outcome p-value joint significance of all section variables:	$\begin{aligned} & -.268 \\ & .3584 \end{aligned}$.099 0.7402	-.175 .3202	11.838 0.9208
Panel B: Non-first-year courses				
2nd Section	$\begin{gathered} -0.016 \\ (-0.070-0.037) \end{gathered}$	$\begin{gathered} 0.003 \\ (-0.010-0.017) \end{gathered}$	$\begin{gathered} 0.014 \\ (-0.126-0.153) \end{gathered}$	$\begin{gathered} -0.270 \\ (-1.270-0.730) \end{gathered}$
3rd Section	$\begin{gathered} -0.001 \\ (-0.098-0.097) \end{gathered}$	$\begin{gathered} 0.007 \\ (-0.019-0.033) \end{gathered}$	$\begin{gathered} 0.056 \\ (-0.194-0.306) \end{gathered}$	$\begin{gathered} -0.985 \\ (-2.677-0.707) \end{gathered}$
4th Section	$\begin{gathered} -0.005 \\ (-0.141-0.130) \end{gathered}$	$\begin{gathered} 0.010 \\ (-0.024-0.044) \end{gathered}$	$\begin{gathered} 0.117 \\ (-0.230-0.463) \end{gathered}$	$\begin{gathered} -1.215 \\ (-3.720-1.291) \end{gathered}$
Observations	54,234	57,712	19,544	19,667
R-squared	0.539	0.334	0.573	0.468
Section 1 avg outcome p-value joint significance of all section variables:	.137 .6241	.061 0.9531	.014 .7106	15.233 .497

Note: All regressions include instructor-course-parallel-course fixed effects. Additional controls include cubic polynomials for student age and GPA as well as dummy variables for section starting time, student gender and student nationality. 95% confidence intervals based on standard errors clustered at the course level are in parentheses. ${ }^{* * *}$ $\mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1$

Table A5: The Effects of Repetition on Students by Prior Teacher Experience

Note: All regressions include instructor-course-parallel-course fixed effects. Additional controls include cubic polynomials for student age and GPA as well as indicator variables for section starting time, student gender and student nationality. 95 percent confidence intervals based on standard errors clustered at the course level are in parentheses. *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

APPENDIX FIGURE

Figure A1: The Effects of Repetition on Individual Student Evaluation Measures

[^0]: Terms of use:
 Documents in EconStor may be saved and copied for your personal and scholarly purposes.

 You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

 If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

[^1]: * We would like to thank Ulf Zölitz and Kevin Schnepel for helpful comments and Philip Babcock for his initial guidance and encouragement.

[^2]: ${ }^{1}$ See \quad https://www.ade.mla.org/Resources/Policy-Statements/ADE-Guidelines-for-Class-Size-and-Workload-for-College-and-University-Teachers-of-English-A-Statement-of-Policy accessed 2019/02/13.

 - 2 -

[^3]: ${ }^{2}$ For more detailed information on the institutional environment see Feld and Zölitz (2017) and Feld, Salamanca, and Zölitz (in press).

[^4]: Note: Figure 1 shows the number of sections in our estimation sample that are an instructors first, second, third and fourth section of a given course.

[^5]: ${ }^{3}$ Because the same subject taught in different terms is classified as separate courses in our data, our approach also precludes making comparisons across terms.

[^6]: ${ }^{4}$ For example, if the student is in section $s=2$ this means the student is taught by an instructor who has already run through the material once that day. In this case, the entire summation reduces to β_{2}.

[^7]: ${ }^{5}$ Our methodology is similar to Williams and Shaprio (2018), but not identical. We also estimated additional specifications that more closely align with theirs (unreported), and did not find evidence that our methodological differences drive the differences in our results. These additions included adopting the authors' assumptions regarding instructor fixed effects and clustering.

[^8]: ${ }^{6}$ Curving at the course-level may also affect the size of the estimated repetition effect on standardized grades, specifically if the curving method is not a simple linear transformation of raw scores. For example, if the grades for failing students are increased to just above the failing threshold, this would result in a compression of the observed grade distribution even after standardization, which could lead to attenuated repetition effect measurements relative to the effects present in the raw scores. Therefore our results should be interpreted as the effect of teaching repetition on observed grades that may or may not be curved.
 ${ }^{7}$ For completeness, Table A4 also shows results for our other outcomes as well as a sample of only non-first-year courses. We find no evidence of a statistically significant repetition effect (based on joint tests) in any of these models.

[^9]: ${ }^{8}$ We also estimated the effect of teaching repetition separately for mathematical and non-mathematical courses. In these unreported regressions, we do not see any significant heterogeneity by course type.

[^10]: ${ }^{9}$ Many other course or instructor characteristics could contribute to heterogeneity in the effects of teaching repetition. For example, there is emerging evidence that students may be particularly critical when evaluating female instructors' teaching performance (Fan et al., 2019; Mengel, Sauermann, \& Zölitz, 2018), especially in areas involving teaching delivery style and perceived knowledge of the material (Boring, 2017). In unreported regressions, we explore if the effect of teaching repetition on teaching evaluations also differs by instructor gender by estimating models in which we add interaction terms of section order dummies with an instructor gender indicator, but we do not find any statistically meaningful heterogeneity.

[^11]: ${ }^{10}$ Our teaching repetition and instructor break variables are constructed prior to these sample restrictions.

