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Does Light Touch Cluster Policy Work?
Evaluating the Tech City Programme*

Despite academic scepticism, cluster policies remain popular with policymakers. This paper 

evaluates the causal impact of a flagship UK technology cluster programme. I build a simple 

framework and identify effects using difference-in-differences and synthetic controls on 

rich microdata. I further test for timing, cross-space variation, scaling and churn channels. 

The policy grew and densified the cluster, but has had more mixed effects on tech firm 

productivity. I also find most policy ‘effects’ began before rollout, raising questions about 

the programme’s added value.
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1/ Introduction  

 

Clusters have been a well-known feature of urban economies since Marshall first identified 

them in 1918. A vast literature explores their determinants and characteristics (Duranton and 

Kerr, 2015). Cluster policy is more controversial. Popularised by Michael Porter in the 1990s 

(Porter, 1996; 2000), it is accepted by policymakers, but disliked by many academics. Clusters 

– industrial districts of co-located, interacting firms – typically have market and co-ordination 

failures. In theory, public policy could then improve cluster welfare. But clustering results from 

many firm and worker decisions; so market failures are complex; and this complexity may lead 

to policy failure (Duranton, 2011, Martin and Sunley 2003).  

 

The scale of these challenges is an empirical question. However, the literature evaluating 

cluster policies is small, and the set of robustly designed evaluations smaller still (see reviews 

by Duranton (2011), Chatterji et al (2014), and Urraya and Ramlogan (2013)). The handful of 

recent examples includes Falck et al (2010), Martin et al (2011), Nishimura and Okamuro 

(2011), Viladecans-Marsal and Arauzo-Carod (2012), Engel et al (2013) and Ben Abdesslem 

and Chiappini (2019). 

 

This paper develops a rigorous impact evaluation of a flagship UK cluster programme. It also 

tests a recent iteration of cluster policy. Rather than Porter-style cluster mapping, or applying 

insights from evolutionary economics (Nathan and Overman, 2013), programmes today often 

use ‘light touch’ interventions (Markusen and Gadwa, 2010). These include marketing, 

business support and network-building, delivered by local government or by a bespoke agency. 

These approaches seek to learn from past policy failures by ‘going with the grain’ of cluster 

microfoundations. If successful, they hold lessons for other cities with technology clusters. 

 

I study the 'Tech City' cluster policy that launched in London in late 2010. This programme 

aimed to grow the cluster of technology companies (c. 2,800 firms) centred on Shoreditch and 

Old St roundabout (Figure 1).  

 

Figure 1 about here 
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The cluster had been growing for years without direct policy input (Foord, 2013; Nathan and 

Vandore, 2014; Jones, 2017). It came to prominence in 2008 with a wave of media attention 

about 'Silicon Roundabout' (Butcher, 2013; Foord, 2013; Nathan et al., 2018). In November 

2010, then-Prime Minister David Cameron announced the Tech City policy. The initiative 

aimed to ‘accelerate’ the cluster (Cameron, 2010), since expanding to cover the whole UK.1   

 

The programme included a range of light-touch interventions. Place branding and marketing 

aimed to grow the cluster and attract foreign investment. Business support programmes 

targeted selected local firms, with tax breaks for early-stage investors. Policymakers also made 

extensive attempts to improve public-private networks and firm-firm co-ordination, including 

establishing a ‘one-stop shop’, the Tech City Investment Organisation (TCIO).2 

 

Proponents claim this mix has worked well. The cluster is larger than it was, with firm growth 

in all parts of the zone (Figure 2, top panel). VC dealflow in London tech as a whole has 

increased substantially, from £384m in 2013 to £1.8bn in 2018,3 and a number of high-profile, 

highly-valued companies have developed, including Last.FM, Songkick, Transferwise, 

Farfetch and Deliveroo. At the same time, cluster rents have risen, including relative to 

comparable submarkets (bottom panel). There is also extensive anecdotal evidence of 

displacement of smaller firms.4   

 

Figure 2 about here 

 

Clusters involve both positive and negative feedback loops. As they get larger and denser, 

agglomeration economies get stronger. However, such growth also raises crowding, and 

competition for market share. I argue that the Tech City policy mix could plausibly contribute 

                                                           
1 The programme has since gone through several evolutions and expansions. In late 2014 TCIO was rebranded 

‘Tech City UK’ and refocused on cities across the country. Tech City UK rebranded as Tech Nation from Spring 

2018, confirming its UK-wide remit. 
2 All except the tax incentives were spatially focused on the Old St area, but policymakers did not draw formal 

boundaries. A potential Olympic Park linkup was dropped as unfeasible within a year. 
3 https://media.londonandpartners.com/news/london-and-uk-top-european-tech-investment-tables, accessed 9 

May 2019; https://www.ft.com/content/0ff8687c-8f52-11e4-b080-00144feabdc0, accessed 15 August 2018. 
4 https://www.theguardian.com/media-network/2016/apr/12/startups-abandon-tech-city-commercial-rent-soars-

east-london-shoreditch; https://www.uktech.news/news/tech-london-advocates-spiralling-rent-costs-are-

hampering-startup-growth-20150417. Both accessed 15 August 2018.  

https://media.londonandpartners.com/news/london-and-uk-top-european-tech-investment-tables
https://www.ft.com/content/0ff8687c-8f52-11e4-b080-00144feabdc0
https://www.theguardian.com/media-network/2016/apr/12/startups-abandon-tech-city-commercial-rent-soars-east-london-shoreditch
https://www.theguardian.com/media-network/2016/apr/12/startups-abandon-tech-city-commercial-rent-soars-east-london-shoreditch
https://www.uktech.news/news/tech-london-advocates-spiralling-rent-costs-are-hampering-startup-growth-20150417
https://www.uktech.news/news/tech-london-advocates-spiralling-rent-costs-are-hampering-startup-growth-20150417
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to all three channels. As the cluster was growing pre-policy, and has continued to grow since, 

I need to identify any additional policy effects relative to the counterfactual of continued no-

policy development.  

 

To do this I apply theoretical frameworks developed by Arzaghi and Henderson (2008), 

Duranton (2011) and Kerr and Kominers (2015). I first look at key economic changes in the 

area between 1997 and 2017, using rich microdata plus a range of other sources. Next, I use 

difference-in-differences and synthetic controls to identify policy effects on cluster size, 

density and local tech plant performance. I explore mechanisms with four further pieces of 

evidence. I run placebo-in-time tests to identify effect timing; use treatment intensity analysis 

to explore within-cluster shifts; test for high-growth tech firm activity; and run a before-and-

after analysis of tech plant entry/exit patterns, for UK and foreign-owned firms.  

 

I have three main results. First, the policy increased tech firm activity and densified the cluster, 

especially for ‘digital technology’ (mainly hardware and software). Here, plant counts rose 

27% and job counts rose 44%, creating 108 extra plants and 1167 extra jobs in the post-policy 

period. For ‘digital content’ activities that historically dominated the cluster (such as 

advertising, media, design and web services), plant counts rose 7.9%, giving 367 extra plants 

overall. Effects on content employment are only marginally significant.  Overall digitech plant 

density rose 21% and job density 81%, with activity clustering in the 250m zone around Old 

St roundabout. By contrast, digital content activity de-densified from the inner to the outer 

parts of the cluster. This is consistent with increased crowding, both within tech industry space 

and between tech/non-tech activities. This tight geography of moves also holds for in/out-

movers, who mainly come from the rest of London.  

 

Second, these shifts did not always raise tech firm productivity. For digital tech firms, I find a 

marginally significant drop in revenue/worker, with consistently positive effects only after 

2015. By contrast, digital content firms’ productivity rises 13.9% in the post-policy period. 

Churn has risen substantially, with the share of new entrants to the market doubling from 

2009/10 to 2016/17. But I find no evidence that policy affected high-growth episodes via 

Schumpterian competition. This is consistent with crowding and competition channels 

dominating agglomeration channels for newer, smaller digitech firms. For larger, more 

established digital content firms, agglomeration effects seem to be strongest.   
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Third, I raise questions about the policy’s added value. For some policymakers, a bigger, denser 

cluster is proof of success. Across a broader range of outcomes, the picture is less positive. The 

policy changed the composition of the cluster, arguably overheating parts of it. Entry was 

driven by UK-owned firms, rather than foreign investment. Most critically, I find clear 

evidence that most policy ‘effects’ began before 2011, when the cluster first came to media 

attention. Year by year outcome changes in 2008-10 are always larger than those in 2011-17. 

For digital tech firm productivity, I find suggestive evidence of a negative policy effect. 

Consistent with theory, this suggests that policy weakened the net benefits of cluster location 

(Duranton, 2011).  Light-touch cluster policy can have some positive impacts. But as sceptics 

have argued, cluster interventions remain fundamentally challenging.  

 

This is the first impact evaluation of the Tech City programme that I am aware of.5 The paper 

also adds to a small set of studies on the East London tech milieu (Foord, 2013; Nathan and 

Vandore, 2014; Martins, 2015; Jones, 2017), plus a related set of studies covering London’s 

post-industrial economic evolutions (see inter alia Hall (2000), Hamnett and Whitelegg (2007), 

Hutton (2008), Pratt (2009), and Harris (2012)). More broadly, the paper adds to the sparse 

cluster policy evaluation literature, and to the larger, related literature on economic area-based 

initiatives.6 The closest comparator is probably Falck et al (2010), who look at the effects of 

high-tech cluster policies in Bavaria. Viladecans-Marsal and Arauzo-Carod (2012) test policies 

to attract firms into a planned 'creative district', but do not examine firm-level outcomes. Ben 

Abdesslem and Chiappini (2019) do look at firm outcomes, but for a top-down programme 

aimed at optical/photonic manufacturing. 

 

 

2/ Data and definitions  

 

I explore the cluster using multiple data sources. I start with the 9th edition of the Business 

                                                           
5 In 2017 the UK Department of Culture, Media and Sport published an evaluation of Tech City UK, with 

exploratory analyses of three business support programmes. Estimates of economic benefits have ‘a strong 

‘health warning’ attached’ (p. iv). The report is available at: https://bit.ly/2U8nSTP, accessed 9 May 2019.  
6 See Neumark and Simpson (2014), Glaeser and Gottlieb (2008), Kline and Moretti (2013) and What Works 

Centre for Local Economic Growth (2016) for reviews.  

https://bit.ly/2U8nSTP
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Structure Database, hence BSD (Office of National Statistics, 2017). The BSD covers over 

99% of all UK economic activity and provides reliable postcode-level information for 

individual plants. I link live plants to 2011 Lower Super Output Areas (LSOAs), then aggregate 

the data to LSOA level.7 The resulting panel runs from 1997 – 2017, with 101,503 area*year 

observations for 4,835 LSOAs in Greater London. Further details are set out in Appendix A. 

As BSD cross-sections are taken in April of each year, I place the Tech City initiative in BSD 

year 2011, not 2010. For further controls I use 1991, 2001 and 2011 Census data, ONS Mid-

Year Population Estimates 1997-2016, and TfL stations data 1997-2017.  

 

As the cluster has no formal boundaries, I define it as a 1km ring around Silicon Roundabout, 

the consensus at policy introduction (Nathan and Vandore, 2014). Here, Tech City is the set of 

LSOAs whose centroids have a linear distance of 1km or less from the Eastings/Northings of 

the Old St roundabout.8  Following Arzaghi and Henderson (2008), I use 250m distance rings 

to divide cluster space. The area is thus constructed as 25 LSOAs, with 250m, 500 and 750m 

distance rings covering 1, 7 and 13 LSOAs respectively.9   

 

I define 'tech' industries using the ONS typology of science and technology sectors (Harris, 

2015). I distinguish ‘digital technology’ activities (mainly hardware and software industries) 

and ‘digital content’ (such as advertising, design, media and the creative industries, where 

product/services are increasingly online). Appendix A lists time-consistent SIC codes.  

 

I focus on three cluster outcomes. Cluster size is given by net LSOA tech plants and jobs in a 

given year.10 I measure cluster density using annual LSOA shares of tech plants and tech 

employment. I measure cluster performance using annual LSOA averages of tech firm revenues 

                                                           
7 Alternatives are a) working at plant level, rather than area level; b) using grid squares, rather than small 

administrative units. Given plants are mobile and there is substantial entry/exit from the cluster, plant-level 

analysis makes matching highly complex. Working in grid space is more feasible but would disallow the use of 

non-BSD controls, since these are not geocoded.  
8 E532774, N182493, from gridreferencefinder.com, accessed 1 October 2017. 
9 Other methods delivering similar results include: in step 1, calculating the mean centroid of the two 

'roundabout LSOAs'; in step 1, using each roundabout LSOA centroid. An alternative method delivering slightly 

larger numbers of LSOAs would be to change step 3 to include all LSOAs within the distance rings, regardless 

of whether their centroids fell within the relevant ring.  
10 Entrants minus exits. I lack occupational level data, so this is a measure of all jobs in a tech firm.  
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per worker, via enterprise-level BSD data.11 Firms’ revenue per worker is a rough measure of 

‘revenue productivity’. It will be driven up by improvements in labour productivity or TFP 

(reflecting increasing returns to scale); and driven down by rising market competition (lower 

revenue to the firm).  

 

 

3/ Background and descriptive analysis  

 

The Tech City area is located in a set of ex-industrial East London neighbourhoods between 

Islington, Tower Hamlets, Hackney and the City of London. It shares many characteristics of 

inner urban creative/technology districts such as Silicon Alley (New York) and SoMa (San 

Francisco) including a tight cluster shape, use of ex-industrial buildings, abundant social 

amenities and a gritty physical appearance (Zukin, 1995; Indergaard, 2004; Hutton, 2008). 

Cluster protagonists make extensive use of matching, sharing and learning economies that such 

tight co-location affords (Duranton and Puga 2004, Duranton and Kerr 2015). As with other 

milieux, the area’s gradual evolution from depressed ex-industrial neighbourhood to vibrant 

post-industrial district was ‘organic’, with no direct policy interventions until the Tech City 

programme (Pratt, 2009; Harris, 2012; Foord, 2013; Nathan and Vandore 2014).12 

 

The cluster is distinctive from the rest of Greater London, both in its overall characteristics and 

in tech industry evolution. Table 1 shows mean characteristics for Tech City LSOAs versus the 

average rest of Greater London LSOA in the pre-policy period, 1997-2010. Appendix table B1 

provides further detail. 

 

Table 1 about here 

 

The tech cluster is dominated by digital content industries. Content firms are more numerous, 

denser, have more employees and nearly double revenue productivity of digital tech firms. This 

                                                           
11 For single plant firms (over 98% of the observations), enterprise and plant-level figures are the same. For 

multi-plant firms, I assign shares of enterprise-level revenue to plants based on each plant's share of enterprise-

level employment.  
12 The cluster is not mentioned in two key 2000s policy frameworks: the 2003 City Fringe City Growth Strategy 

and the 2001 DTI UK cluster-mapping exercise.  
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is consistent with historical and case study evidence, which stresses the importance of the 

creative industries in the emergence London tech (Foord, 2013; Nathan and Vandore, 2014; 

Martins, 2015). The area’s industry and demographic mix is also very different from the 

average rest-of-London neighbourhood. In particular, tech activity is much denser.  

 

Figure 3 about here 

 

Figure 3 looks at LSOA firm and job shares for digital content over time (top row) and digital 

technology (bottom row), comparing the average Tech City neighbourhood with the average 

rest of London neighbourhood. The area maintains a well-above-average density of digital 

content activity. Plant density falls slightly post-policy, implying that other sectors are growing 

faster as a share of all firms. Digital technology activity is much sparser than digital content, 

and pre-policy, Tech City LSOAs are much closer to the rest of the capital in digital tech 

density. However, post-policy the two groups visibly diverge.   

 

Figures B1 and B2 show, respectively, LSOA net tech plant counts and tech plant average 

revenue per worker over time. As expected, plant counts are very much higher in Shoreditch 

than the average rest of London LSOA, with stocks accelerating in the 2010s. By contrast, tech 

plant revenue per worker is more uneven over time.  

 

 

4/ Analytical framework  

 

Following Duranton (2011) we can think of a cluster as a dynamic Marshallian production 

district. As the cluster grows, firms’ productivity rises (via agglomeration economies). At the 

same time, the costs of cluster location rise with cluster size (via crowding). Productivity and 

cost combine to give a net returns function that rises to a maximum – after which additional 

costs to firms in the cluster, usually expressed in rents, outweigh productivity gains. The exact 

slope of these curves is industry and location-specific, depending on the set of matching, 

sharing and learning economies (Duranton and Puga, 2004) and amenities (Currid, 2007; 

Hutton, 2008; Pratt, 2009) that local tech firms seek to access.  Competing land uses will also 

influence rents (Hamnett and Whitelegg, 2007). The framework is completed with a supply 

curve of workers and firms, which will be upward-sloping if agents are not perfectly mobile.  
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Kerr and Kominers (2015) argue that clusters are effectively a set of overlapping industrial 

districts. Firms enter to access features that improve their productivity and thus 

revenue/worker. As in Arzaghi and Henderson (2008), firms trade-off access to some set of 

matching / sharing / learning economies and amenities, against the costs of location (rents). 

They leave a given neighbourhood if location costs start to exceed productivity advantages. As 

that district fills up, net benefits decline; at some point movers / entrants shift to the 'next-best' 

district (specifically, the marginal entrant/mover will choose the next available site with the 

largest 'spillover radius'). Cost and spillover decay functions set the overall cluster shape. For 

industries such as tech, where face-to-face interaction is important, clusters tend to be small 

and dense.   

 

In this setting, the Tech City policy mix could have multiple impacts.  First, place marketing 

complements existing media exposure (see also Section 5). This may co-ordinate entry 

decisions to the location, raising the number of tech firms and jobs. Over time, success stories 

– such as high-profile ‘unicorns’ – reinforce this channel. Other things being equal, raised entry 

will increase cluster density of tech activity. Increased size and density should amplify 

agglomeration effects, increasing firm productivity and thus revenue / worker.  Note that 

incumbents, in established networks, may benefit most from these shifts.  

 

Second, other elements in the policy mix (business support, networking / co-ordination 

activities), if effective, will steepen the productivity curve and improve revenue productivity 

for a given cluster size. Networking and co-ordination activity may improve firm-firm 

matching, knowledge spillovers or both, feeding into firm performance.  Business support 

policies in Tech City have only targeted very small numbers of high-potential firms – typically 

50 or less – but may increase high-growth episodes for those companies.  

 

Third, higher entry may also induce crowding. Even if productivity is rising, cost increases 

may induce relocation if these outweigh productivity gains (i.e. if the net returns curve is 

sloping down). These relocations will likely be highly localised – to less central cluster 

locations or to neighbourhoods just outside it.  
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Fourth, higher cluster size/density also leads to higher market competition (Combes et al 2012). 

This may simply involve higher overall churn. However, in a Schumpetarian setting (Aghion 

et al., 2009), a few more innovative 'winners' raise their productivity, while 'losers' shed 

revenue and staff or exit.  

 

Finally, cluster policy may also act as a positive signal to other industries to locate in the area, 

including developers and residential property. If growth in tech firms is balanced by growth in 

other activities, cross-sector competition for space may exacerbate tech firm relocation. It will 

also dampen changes in cluster density, and in extremis may decrease it, if other activities 

outcompete tech firms for space in the cluster.  

 

 

5/ Research design   

 

5.1 / Identification  

 

I look to identify the effect of the Tech City policy on cluster outcomes. As in Falck et al (2010) 

and Noonan (2013), the classical starting point is to compare changes in the treated area and 

control areas. Difference in differences gives a consistent ATT, conditional on observables and 

on parallel pre-trends in treated and control groups. Causal inference requires that LSOA-

specific time-varying unobservable characteristics affecting outcomes are independent of 

treatment status, conditional on included controls (Gibbons et al., 2016).  

 

There are two main identification challenges: not accounting for these will bias up estimates 

of the true policy effect. First, rising media attention around ‘Silicon Roundabout’ from 2008 

(Nathan et al., 2018; Foord 2013) could have induced firms and entrepreneurs into the area 

before the policy launched. Figure B3 gives a proxy of attention over time via counts of relevant 

Google searches pre and post-policy. While anticipation effects appear small, I check my main 

results using placebo-in-time tests. 

  

Second, time-varying unobervables may have driven both area selection and subsequent 

outcomes. Policymakers’ rationale for choosing Shoreditch is not clear-cut. By 2010 Ministers 

were claiming 'something special' for the Inner East London cluster (Cameron, 2010; Osborne 
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and Schmidt, 2012). Other accounts depict policy origins as chaotic (Butcher, 2013; Nathan et 

al., 2018), and thus as good as random compared to other tech hotspots in the city. To test, I 

use propensity score matching to identify observably similar tech hotspot LSOAs in London. I 

select the vector of observables from the recent empirical literature on urban technology and 

creative clusters (Florida, 2002; Indergaard, 2004; Hutton, 2008; Pratt and Jeffcut, 2009; Currid 

and Williams, 2010; Harris, 2012; Foord, 2013; Nathan and Vandore, 2014; Martins, 2015). If 

assignment is quasi-random, treatment and control areas should balance on observables.  

 

I match on the nearest neighbour and to avoid contamination, restrict to control LSOAs at least 

1km away from the cluster edge. Table B2 shows the matching results for the 25 Tech City 

LSOAs and 213 matched control LSOAs with the 25% highest propensity scores. Matching 

brings treatment and control groups substantially closer together, and t-tests suggest no 

significant differences (except in one case), but other diagnostics suggest the two samples 

remain unbalanced. Results of balancing tests for treated units and nearest neighbours are 

shown in Figure B4. I find significant pre-treatment 'effects' in both plant count regressions, 

and close-to-significant 'effects' in both plant density regressions.    

  

Taken together, timing, selection, balance and pre-trend issues suggest that conventional 

difference in differences may not give consistent estimates. My preferred approach is thus a 

synthetic control design, using the matched sample as a donor pool (Abadie et al 2010). Details 

of the synthetic control build are given in the next section.13 Crucially, the estimator gives a 

consistent ATT even in the presence of time-varying unobservables (Helmers and Overman 

2016, Becker et al., 2018). I follow the design of Becker et al (2018) and compare synthetic 

control results to difference-in-differences results for the matched sample. 

 

Given the lack of formal treatment and impact geographies, in extensions I use spatial 

differencing (Mayer et al., 2015) and treatment intensity approaches (Einio and Overman, 

2013; Faggio 2015; Gibbons et al., 2016) to allow policy effects to vary across 250m rings 

within cluster space.  

 

                                                           
13 An alternative to the synthetic control would be the interactive fixed effects design developed by Bai (2009) 

and elucidated by Gobillon and Magnac (2016). 
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5.2 / Estimation  

 

For the matched sample, a generalised difference in differences regression for LSOA i and year 

t is given by:  

 

 Yit = Ii + Tt + aTCit + Xbit-n + eit      (1) 

 

lnY is the log of tech firm counts or tech job counts; sharesof tech firms or tech jobs; or the log 

of tech firm revenue / worker. TC is a dummy variable taking the value 1 for Tech City LSOAs 

in the post-treatment period, and ai is the ATT for a Tech City LSOA. Control LSOAs are tech 

hotspots at least 1km away from the cluster edge.  

 

X is a set of time-varying controls. These cover local economic conditions (lags of LSOA all-

sector plant entry, LSOA all-sector revenue/worker, LSOA Herfindahl Index); tech-friendly 

amenities (LSOA counts of cafes and restaurants, bars/pubs/clubs, co-working spaces, galleries 

and museums, libraries, hotels, other accommodation, arts and arts support, venues, 

universities); infrastructure (the count of tube and rail stations in the LSOA); plus local area 

demographics (population size, shares of migrants and shares of under-30s in the local 

authority district surrounding the LSOA). I cluster standard errors on LSOAs and, given nearest 

neighbour matching, regress on the matched sample.  

 

The synthetic control is an extension of (1) where the synthetic control unit is a weighted 

average of the matched set of control LSOAs (Athey and Imbens, 2017).  Here, the outcome is 

the linear combination of the treatment effect for a Tech City LSOA and the outcome in 

synthetic Tech City:    

 

 lnYit = lnYN
it + aTCit        (2)  

 

The ATT for the treated unit – here, unit 1– is then given by:  

 

 â1 = Σi≥2 lnYit - WilnYit      (3)  
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Where Σi≥2 lnYit  is the sum of the weighted outcome for all the non-treated units, and W is a 

ix1 weights vector (w2, ... wi+1) where weights sum to one.14 The optimal set of weights W* 

minimises the difference between X1, the vector of pre-treatment characteristics of the 

treatment zone, and X0, the vector of pre-treatment characteristics for control LSOAs, where 

V is a vector of predictor importance.  

 

 W* = min(X1 - X0W)`V(X1 - X0W)`     (4) 

 

Setting V and X appropriately is crucial (Kaul et al., 2018; Ferman et al., 2018). V is usually 

chosen to maximise the overall pre-treatment 'fit' of the synthetic unit, specifically to minimise 

the treatment-control gap in the outcome. This is given by the root mean squared of the 

predicted error (RMSPE) (Abadie et al., 2010).  V can also be chosen through cross-validation, 

where the pre-treatment period is split in two: optimal V minimises the RMSPE in the training 

period and the validation period (Cavallo et al., 2013). Alternatively, V can be an identity 

matrix (Gobillon and Magnac, 2016). The latter has the attractions that predictor importance is 

identical across all regressions, and that outcomes and controls can be fitted together for all 

pre-treatment periods. I use this approach, and run robustness checks on alternative 

specifications of V and W.  

 

Reassuringly, synthetic Tech City is more closely matched to Tech City than the matched 

sample as a whole. Table 2 compares mean pre-treatment outcomes and control variables for 

the Tech City area, synthetic Tech City and matched LSOAs for the log of digital tech plants. 

Table B3 replicates this for all other outcomes. Table B4 shows the LSOAs chosen for the 

synthetic control and the weights assigned, for all outcomes of interest. 

 

Table 2 about here 

     

Inference for synthetic controls is done through permutation. Abadie et al (2010, 2015) first 

calculate yearly treatment 'effects' for each donor pool unit, comparing distributions for the 

treated and donor units in the post period. If the placebo runs generate effect sizes smaller 

                                                           
14 Strictly speaking, in diff-in-diff specifications â gives the ATT for the average Tech City LSOA, while in 

synthetic control specifications â1 gives the ATT for a single Tech City zone with characteristics averaged 

across all Tech City LSOAs. I treat these as equivalent.  
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(larger) than the treatment unit, this suggests a real (spurious) treatment effect. Placebo effects 

may be large for units poorly matched pre-treatment. To fix this, Galiani and Quistorff (2016) 

suggest weighting treatment and placebo effects by pre-treatment RMSPE.15   

 

For the overall ATT, Abadie et al compare the ratio of post/pre-treatment RMSPE for the 

treated unit, R1t, and the donor units, Rjt. A large post-treatment RMSPE indicates a gap 

between the treated unit and the synthetic control, suggesting a true effect; however, a large 

pre-treatment RMSPE suggests that the synthetic control does not fit the data well before the 

policy, so the effect may be spurious. The test statistic p then calculates the probability that any 

placebo effect 'fit' is larger than that of the treatment unit. It can be interpreted as a p-value:  

 

 p =  Σi ≠ 1 1 (| Rjt | ≥ | R1t | ) / N       (5) 

 

 

 

6/ Overall policy effects   

 

Estimates of overall policy impact are given below. The next section explores what is driving 

these. 

 

Figure 4 shows results for cluster size. The left column shows changes in log digital tech and 

digital content plant counts in Tech City versus synthetic Tech City. The right column shows 

effect sizes for Tech City and 213 placebo units. Effect sizes are weighted by pre-treatment 

RMSPEs, so these graphs show relative effect size controlling for fit.  

 

Figure 4 about here 

 

I find clear policy effects on digitech firm counts, with smaller change in content firm counts. 

Placebo tests show that the digitech result is more robust than for digital content. In 2017, 

digitech effects are around 28 times higher than the nearest placebo, controlling for pre-

                                                           
15 The more common alternative, as proposed by Abadie et al (2010), is to use a cut-off to remove poorly-

matched placebos: for example, only including controls with a pre-treatment RMSPE up to five times the treated 

unit. 



 

15 

 

treatment fit; for digital content, the figure is less than 10 times, and one placebo often shows 

a larger (random) effect than the policy. Figure B5 repeats the analysis for employment, this 

time showing clear increases in digitech jobs but not digital content. For all outcomes, there 

are signs of pre-policy treatment-control divergence, an issue I return to in the next section.   

 

Table 3 about here 

 

The top panel of Table 3 gives point estimates. Diagnostics show that the estimator fits the data 

well. Diff-in-diff results show similar coefficients, although there are differences in effect 

robustness.  

 

Since Y is in logs, â can be interpreted as a percentage. In my preferred estimates, the policy 

increases digitech plant counts by 27%, or 4 net extra plants post-2011 compared to the pre-

treatment mean. The cluster-wide effect is 25*4 = 108 extra plants across 25 LSOAs. For digital 

content, the policy effect is 7.9%, 15 extra plants per LSOA or 382 overall. The policy adds 47 

net digitech jobs per LSOA (a 44.4% rise), cashing out at 1167 additional jobs overall post-

2011. For digital content, a 12.3% increase gives over 6,000 additional jobs cluster-wide, but 

this effect is only marginally significant. 

 

Figure 5 about here 

 

Figure 5 looks at changes to cluster density. I find a clear and growing policy effect on the 

treated area’s share of digital tech plants, additional to natural change. Overall effects on digital 

content plant density are close to zero. Figure B6 repeats the analysis for employment shares. 

Here we see clearly increased job density, especially for digital content. In both cases, there 

are signs of pre-policy divergence.  

 

The middle panel of Table 3 shows the corresponding ATTs. As Y is now in shares, â gives 

the ATT across all treated units. Synthetic control and DID estimates have similar magnitudes, 

although significance differs.  For the former, the policy adds 1.3 percentage points to shares 

of digitech plants and 3.1 percentage points to shares of digitech jobs, compared to the no-

policy counterfactual. Effects on digital content plant density are marginally significant, but 

digital content job density rises 4.9 percentage points. Given pre-treatment means, these 
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translate to a 21% increase in the share of digitech plants, an 86% change in digitech job shares, 

and a 27% change in digital content job shares. Notably, percentage changes in plant density 

are lower than raw counts, consistent with increased competition for space from non-tech 

activity.  

 

Figure 6 about here 

 

Figure 6 looks at tech firm performance, measured by log tech firm revenue / worker in the 

LSOA. For digital tech firms, while the overall post-policy effect is small and barely 

significant, we can see that the policy initially lowered revenue productivity to 2013, compared 

to the counterfactual, but increased it from 2015. Year-by-year estimates are significant for 

2013, 2014 and 2017. For digital content firms, the policy led to consistently higher 

revenue/worker across the post-policy period, with significant year-on-year effects except for 

2017. Again, there are signs of pre-policy divergence.  

 

Point estimates in the bottom panel of Table 3 are very similar for digitech, but there is some 

divergence for digital content between synthetic control and diff in diff. The synthetic control 

estimator gives a marginally significant 4.3% productivity decline for the average digital tech 

firm across the whole post-policy period. For digital content firms, the policy adds 13.9% 

revenue productivity to the average digital content firm, significant at 5%.  

 

6.1 / Robustness checks  

 

Table B5 runs a series of specification checks on the synthetic control results. Tests 1-3 

progressively reduce the number of pre-treatment outcomes, with the third row running only 

controls as predictors. The fourth test uses a data-driven V as in Abadie et al (2010); this puts 

zero weights on controls, rendering them irrelevant (Kaul et al., 2018). The fifth and sixth tests 

split the pre-treatment period and use cross-validation to set V, as in Cavallo et al (2013). Tests 

7 and 8 match on trends, respectively long differences and first differences.   

 

In the spirit of Ferman et al (2018), these tests look for stability (or otherwise) of results across 

different specifications. These alternative specifications all use less information than my main 

estimator, so we should expect worse fit; at least some results to differ; some to be non-
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significant. Given the main results, I consider outcomes that are statistically significant in at 

least half the tests to be stable. On that basis, increases in digital tech plants and job counts, 

digitech and content plant density, and content job density are stable across specifications. 

Changes to digital content plant and job counts; digitech job density are less stable, with 

significant estimates in only 3/8 tests. For tech firm performance, signs and coefficients move 

around a lot, and none of the alternative specifications are significant. This is almost always 

driven by poor model fit. Given the volatility in revenue/worker over time (see Figure B2) this 

is not surprising.   

 

 

7/ Explaining policy effects   

 

The analysis throws up three main findings. First, compared to a no-policy counterfactual, the 

policy raised plant and job counts, especially for digital tech activity, with weaker and less 

stable effects on digital content. Second, cluster density has increased, particularly job density. 

Third, this bigger, denser cluster does not always increase tech firm productivity.  

 

Using Section 4’s framework, I explore the mechanisms behind these results. First, given the 

pre-policy divergence between Tech City and synthetic Tech City, I explore the dynamics of 

policy effects via placebo-in-time tests. Second, I dig into drivers of cluster size changes by 

identifying entrants, leavers and movers over time. This also provides insights into density 

(through in/out mover geography) and competition channels (via churn). Third, I use treatment 

intensity analysis to look at co-location patterns within the cluster. Finally, I test for 

Schumpeterian competition, focusing on effects for the subset of high-growth tech firms. This 

exercise also gives suggestive evidence on business support components of the policy mix.   

 

7.1/ Timing  

 

I start with the timing and spatial focus of overall policy effects. The cluster became well 

known through the media in 2008; a persistent policy criticism has been that government was 

'riding the wave' and adding little or nothing to existing growth trends. Conversely, it is possible 

that when policy went London-wide in 2014, the cluster received less attention and policy 

effects died away.  
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Table 4 about here 

 

Table 4 tests these hypotheses. Panel A shows the main synthetic control results. Panel B runs 

a placebo-in-time check (Abadie et al 2015), starting the policy in 2008 rather than 2011. In 

7/10 cases, I find a significant pre-policy effect. This is prima facie evidence that the Tech City 

programme 'rode the wave'. The 2008 productivity effect is much larger for digital tech firms, 

but much smaller for digital content firms. Panels C and D explore these dynamics in more 

detail: Panel C breaks out the 2008-10 component, while Panel D gives a simple 'effect/year' 

metric for 2008-10 and 2011-2017. In most cases, the 2008-10 effect/year is stronger than its 

2011/17 counterpart, consistent with no added value of the policy.  Strikingly, the policy shifts 

digital content firms' productivity to positive and significant, consistent with agglomeration-

driven growth. Conversely, statistically significant digitech productivity in 2008/10 turns non-

significant during 2011/17, suggesting a negative effect consistent with crowding, competition 

or both. I explore these channels further below. 

 

Panel E looks policy effects from 2011-2014, the programme phase where only the Shoreditch 

cluster was targeted. Coefficients here test the effect of the localised policy vs. the London-

wide policy. Results are almost all significant, and in 5/10 cases effects/year are weaker than 

the 2011/17 period, in line with the shorter timescale. In the other cases, I find a weakening 

effect of the policy, although the differences are very small. Overall, these findings go against 

the hypothesis that policy effects died off when the spatial focus changed. I speculate that self-

reinforcing cluster mechanisms help the policy 'work' despite refocusing.   

 

7.2 / Entry, exit and movers 

 

Next I look at patterns of plant entry, exit and movement in and out of the cluster. This helps 

explain drivers of cluster size change, as well as cost and competition-induced churn and 

patterns of firm movement. I combine plant-level cross-sections for three year pairs, 2009-10 

(pre-policy), 2013-14 and 2016-17. For each year pair, I flag plants present in the cluster in 

both years (stayers), those present only in the first year (leavers) and those present only in the 

last year (entrants). I decompose entrants and leavers into those moving from /to the rest of 

London, the rest of the UK, or arriving/leaving the dataset.  Results are given in Table 5.  The 
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top panel gives results for all tech firms. The bottom panel shows results for foreign-owned 

plants, with shares expressed as a fraction of all tech firms.   

 

Table 5 about here 

 

 

First, Panel A changes to cluster size are driven by a rising share of new entrants to the market, 

with a falling share of leavers overall. Leavers are dominated by plant exits, but the share of 

outmovers has also risen over time. Second, these dynamics are very largely driven by UK-

owned firms rather than foreign-owned businesses (Panel B). The share of new foreign-owned 

plants has consistently fallen since policy implementation. Third, in and outmovers typically 

come from / go to the rest of London rather than the rest of the UK, consistent with a tight 

cluster geography. Fourth, churn has risen, driven by new entrants, suggesting higher levels of 

competition in the cluster over time.   

 

7.3 / Co-location within the cluster  

 

As clusters get bigger and denser, higher costs lead firms to move. Urban tech clusters typically 

have tight shapes, implying that relocation geographies will be small. To explore, following 

Faggio (2015), I estimate a DID treatment intensity estimator for LSOA i in year t:  

 

 lnYit =  D250i + D500i + D750i + D1000i +  Tt  

  + a1TC250it + a2TC500it + a3TC750it + a4TC1000it  

  +  Xbit-n + eit         (6) 

 

Where D250-D1000 are dummies taking the value 1 for LSOAs in distance rings 0-250m, 250-

500m, 500-750m and 750-1000m from Old St roundabout. Coefficients of interest are â1- â4, 

which give the relative effect of treatment on LSOAs in that distance ring, versus control 

LSOAs.  

 

In Table B6, the top row gives the cluster-level policy effect for the 1km zone, from the main 

analysis. Other rows decompose this effect into 250m ring increments. In line with the 

framework in Section 4, tech firms move small distances within cluster space, and there is some 

evidence of crowding out from core to periphery, with digital tech firms displacing content 
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firms. Specifically, aggregate increases in plant counts are clearly driven by entry to the cluster 

core. Drivers of tech job increases vary within industry space. Digital tech employment grows 

at the core, and to a lesser extent in the outermost ring; content employment increases in the 

periphery, with no change in the core. Cluster density shifts also vary within the tech industry. 

Digital tech activity gets more dense within the cluster core. However, digital content activity 

gets less dense in the core, and more dense in the periphery.  

 

7.4 / High-growth firms  

 

In the tech industry, the combination of increasing returns plus network effects often leads to 

winner-takes-all scenarios, where a few firms scale rapidly to dominate a market (Arthur, 1989; 

Brynjolffson and McAfee, 2014). We might expect an effective cluster policy to amplify these 

market dynamics. Even if average revenue/worker changes are zero, a few firms may 

experience rapid growth. In my framework, scaling indicates a form of Schumpetarian 

competition in the cluster, with a few innovative 'winners' (Aghion et al 2009). Testing for 

scaling also provide preliminary evidence on the effectiveness of targeted business support 

components of the policy mix. 

 

In my panel setting, firms move into and out of high-growth states (‘episodes’). I define high-

growth episodes using the OECD definition, as a tech plant that experiences revenue/worker 

or employment growth of at least 20% for any three-year period. 'Gazelles' are high-growth 

episodes for tech firms five years old or less. A plant may have more than one high-growth 

episode in the panel; in practice this is rare. Table B7 shows the average number of high-growth 

episodes by LSOA type, 2000-2010. The average Tech City LSOA experiences substantially 

more high-growth activity than the average control area. Figure B7 shows balancing tests for 

the various high-growth outcomes. It confirms that the parallel pre-trends assumption fails in 

a number of cases, so I run regressions using synthetic controls only.  

 

I specify the synthetic control as in the main analysis, but start the pre-treatment phase in 2000, 

the first year in which I can observe high-growth / gazelle plants. Table B8 gives results for 

high-growth episodes.16 The left hand panel gives results for revenue / worker high-growth 

                                                           
16 The scarcity of gazelle episodes means the algorithm fails to converge in almost all cases. 
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episodes, the right hand panel for employment growth. I find no positive policy effects in either 

case.  

 

 

8/ Conclusions  

 

Despite academic scepticism, cluster policies remain popular with policymakers. This paper 

evaluates the causal impact of a flagship UK technology cluster programme. I use rich 

microdata in a synthetic control setting to estimate overall impacts relative to continued 

‘organic’ growth, and the mechanisms behind these.  

 

I find that the policy substantively increased cluster size and density, most clearly for the 

younger, newer group of digital tech plants, and with increasing impact over time. But this 

larger, denser cluster seems not to have consistently increased tech firm productivity, with only 

digital content firms seeing higher revenue / worker in the post-policy period. The results imply 

that for these firms, size and density-driven agglomeration economies dominated changes in 

costs or competition; for smaller, younger digital tech firms, it was the converse.  Overall, the 

policy ‘worked’ in the basic sense of growing the cluster. For some policymakers this will 

count as success. From a broader welfare perspective, the results are more mixed. The policy 

changed the characteristics of the cluster, and overheated parts of it. In turn, distributional 

impacts are highly uneven, with only some firms experiencing economic benefits.  

 

Since the area was on an upward growth path before the policy rolled out, a key welfare 

question is to what extent the programme added value. For most outcomes, I find that policy 

‘effects’ began before the programme took place, and that annualised effect sizes are smaller 

in the post-policy period than the two years immediately preceding it, and in one case 

generating a negative impact. In my framework, this is consistent with policy weakening the 

net benefits of cluster location. An important theoretical critique of cluster policy is that the 

complexity of real world clusters’ microfoundations makes it hard to identify appropriate 

interventions, let alone enact them effectively (Duranton 2011). My results give some support 

to this reading, and suggest that even light touch cluster programmes require cautious 

implementation. Further, while we could reasonably expect similar effect sizes in other large 

cities with growing tech milieu, it is less clear that such interventions would work in smaller 
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cities and towns, or in rural areas.  

 

This paper’s limitations present opportunities for future research. First, I do not directly 

examine effects on firm formation: my data contains 99% of UK enterprises, but pre-revenue 

startups are disproportionately concentrated in sectors such as tech. Analysis using company 

registers could plug this gap. Second, while I control for it, I am unable to quantify the effect 

of growing angel and venture capital finance on firm growth. This may be an important means 

for SMEs to scale (Kerr et al., 2011). Third, my distributional analysis focuses on technology 

industry space. An alternative approach could explore outcomes for cluster entrants, or movers 

versus incumbents. Finally, I do not directly test the effect of business support programmes – 

such as the Future Fifty17 – in the policy mix. Evaluating their effectiveness and value for 

money is an important complement to this analysis.   

                                                           
17 https://technation.io/programmes/future-fifty/, accessed 15 August 2018.  

https://technation.io/programmes/future-fifty/
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Tables and figures.  

 

 

Table 1. Mean LSOA characteristics for Tech City neighbourhoods versus Rest of 

Greater London neighbourhoods, 1997-2010.  

 

Variable Tech City 
Rest of Greater 

London 

LSOA total plant entry 3.500 0.963 

ONS digital tech plant entry 0.251 0.088 

ONS digital content plant entry 0.677 0.109 

ONS digitech & content plant entry 0.929 0.197 

LSOA total plant count 259.646 75.356 

ONS digital tech plant count 15.954 4.323 

ONS content plant count 56.551 9.319 

ONS digitech & content plant count 72.406 13.616 

% plants ONS digital tech 0.063 0.071 

% plants ONS content 0.204 0.113 

% plants ONS digital tech & content 0.267 0.184 

LSOA total employment 4199.506 796.347 

ONS digital tech employment 172.891 22.266 

ONS content plant employment 898.126 74.236 

ONS digitech & content plant employment 1070.226 96.179 

% employment ONS digital tech 0.036 0.036 

% employment ONS content 0.182 0.073 

% employment ONS digital tech & content 0.218 0.109 

LSOA total revenue per worker 1.35e+05 17763.513 

Total ONS digital tech revenue 1829.877 438.710 

Total ONS content plant revenue 8838.698 1409.111 

Total ONS digitech & content plant revenue 10654.802 1838.854 

LSOA mean plant revenue per worker 274.280 110.875 

Mean ONS digital tech revenue per worker 86.119 85.264 

Mean ONS content revenue per worker 146.662 102.894 

Mean ONS digitech & content revenue per worker 142.313 92.411 

Observations 350 67144 

 
Source: BSD. Table compares pre-2011 means for an LSOA in the Tech City zone (25 LSOAs) for an LSOA in 

the rest of Greater London (c. 4800 LSOAs). 
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Table 2. Mean characteristics of Tech City vs. synthetic Tech City vs. matched sample 

of LSOAs, 1997-2010. 

 

Variable Tech City Synthetic Tech City  Matched sample  

Log digitech plants (1997) . 1.123 0.712 

Log digitech plants (1998) . 1.457 1.013 

Log digitech plants (1999) . 1.664 1.266 

Log digitech plants (2000) . 1.753 1.247 

Log digitech plants (2001) 1.895 1.857 1.238 

Log digitech plants (2002) 1.788 1.805 1.158 

Log digitech plants (2003) 2.231 2.220 1.559 

Log digitech plants (2004) 2.068 2.116 1.502 

Log digitech plants (2005) 2.101 2.075 1.464 

Log digitech plants (2006) 2.159 2.185 1.473 

Log digitech plants (2007) 2.184 2.209 1.503 

Log digitech plants (2008) 2.342 2.326 1.669 

Log digitech plants (2009) 2.303 2.282 1.666 

Log digitech plants (2010) 2.282 2.255 1.617 

Plant entry, all sectors 3.260 3.229 1.793 

Revenue / worker, sectors 258.774 255.562 134.660 

Herfindahl Index 0.136 0.136 0.146 

LSOA plants, all sectors 238.760 224.800 127.748 

LSOA jobs, all sectors 3836.394 3672.770 1467.235 

LSOA total cafes and restaurants 7.074 6.990 4.045 

LSOA total bars pubs and clubs 3.074 2.949 1.545 

LSOA total coworking spaces 1.523 1.971 1.658 

LSOA total musuems and galleries 0.169 0.161 0.156 

LSOA total libraries 0.311 0.302 0.084 

LSOA total other accommodation 0.063 0.062 0.065 

LSOA total arts and arts support 

activities 
10.669 11.277 5.596 

LSOA total supporting arts orgs 0.249 0.313 0.153 

LSOA total HEIs 0.506 0.513 0.255 

LSOA count of TFL stations 0.111 0.126 0.098 

LA population  187283.078 188829.734 2.36e+05 

LA share of non-UK born 0.309 0.307 0.348 

LA share of residents aged 18-29 0.229 0.230 0.241 

Observations 350 2982 2982 

 
Source: BSD 1997-2010, 1991/2001/2011 Census, ONS mid-year population estimates, TFL. Some 

observations suppressed to avoid disclosure.  
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Table 3. Policy effects on cluster size, density and performance. 

 

A. Cluster size 
Plants Jobs  

Digitech  Content Digitech  Content 

Synthetic control ATT 0.270*** 0.079** 0.440*** 0.123* 

p-value  0.005 0.023 0.005 0.061 

Pre-treatment RMSPE 0.024 0.023 0.028 0.035 

Average pre-treatment quality 1 1 1 1 

Diff-in-diff ATT 0.28*** 0.06 0.42*** 0.13 

  -0.104 -0.068 -0.131 -0.115 

Observations  4500 4646 4494 4639 

R2 0.8 0.91 0.8 0.87 

Pre-treatment mean  15.954 56.551 172.891 898.126 

  

B. Cluster density 
% plants % jobs 

Digitech  Content Digitech  Content 

Synthetic control ATT 0.013*** 0.02* 0.031*** 0.049*** 

p-value  0.005 0.084 0.009 0.009 

Pre-treatment RMSPE 0.001 0.004 0.002 0.003 

Average pre-treatment quality 1 1 1 1 

Diff-in-diff ATT 0.01* 0 0.02** 0.02 

  -0.007 -0.009 -0.008 -0.017 

Observations  4760 4760 4760 4760 

R2 0.58 0.7 0.47 0.6 

Pre-treatment mean  0.063 0.204 0.036 0.182 

C. Cluster firm performance 
Revenue / worker   

Digitech  Content   
Sythentic control ATT  -0.043* 0.139**   
p-value  0.07 0.042   
Pre-treatment RMSPE 0.045 0.032   
Average pre-treatment quality 0.986 0.986   
Diff-in-diff ATT -0.02 0.03   
  -0.062 -0.092   
Observations  4489 4637   
R2 0.35 0.48   
Pre-treatment mean  86.119 146.662   

 
Source: BSD / Census / ONS / TfL. Synthetic control panel shows p-values from permutation test on 2013 

placebos , pre-treatment error rate and proportion of placebos with pre-treatment error rate ≥ average of the 

treated unit. Regressions fit lagged outcome predictors 1997-2010 plus 1-year lags of LSOA all-sector plant 

entry, LSOA all-sector revenue/worker, LSOA Herfindahl Index, a vector of amenities (LSOA counts of cafes 

and restaurants, bars/pubs/clubs, co-working spaces, galleries and museums, libraries, other accommodation, 

arts and arts support, venues, universities), TFL station count, LA share of migrants, LA share of under-30s. 

Weights optimised defining V as an identity matrix. DID regressions fit LSOA and year dummies plus controls 

as above. Standard errors clustered on LSOA. * significant at 10%, ** 5%, *** 1%.  
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Table 4. Tech City policy effects: timing / falsification tests.  

 

Specification  Plants Jobs  % plants % jobs Ave rev/worker 
 Digitech  Content Digitech  Content Digitech  Content Digitech  Content Digitech  Content 
 

   
   

    
A. Main synthetic control ATT 0.270*** 0.079** 0.440*** 0.123* 0.013*** 0.02* 0.031*** 0.049*** -0.043* 0.139** 

p-value  0.005 0.023 0.005 0.061 0.005 0.084 0.009 0.009 0.07 0.042 

RMSPE 0.024 0.023 0.028 0.035 0.001 0.004 0.002 0.003 0.045 0.032 
 

          
 

          
B. Start treatment in 2008  0.451** 0.248** 0.495*** 0.168 0.018*** 0.038** 0.007* 0.064** 0.382** 0.048 

p-value  0.014 0.014 0.005 0.248 0.005 0.023 0.051 0.033 0.023 0.327 

RMSPE 0.028 0.032 0.038 0.054 0.001 0.003 0.002 0.005 0.038 0.047 
           

C. Start treatment in 2008, end in 

2010 
0.347** 0.188** 0.284** 0.183 0.015*** 0.034** -0.013* 0.023* 0.679*** -0.017 

p-value  0.019 0.037 0.014 0.229 0.005 0.019 0.07 0.065 0.009 0.902 

RMSPE 0.028 0.032 0.038 0.054 0.001 0.003 0.002 0.005 0.038 0.047 
 

          
D. End treatment in 2014  0.142** 0.011 0.422*** 0.076 0.008*** 0.014 0.022** 0.043** -0.155** 0.173** 

p-value  0.042 0.238 0.005 0.112 0.005 0.168 0.014 0.019 0.047 0.028 

RMSPE 0.024 0.023 0.028 0.035 0.001 0.004 0.002 0.003 0.045 0.032 
 

          
Effect size / year, 2011-2017  0.039 0.011 0.063 0.018 0.002 0.003 0.004 0.007 -0.006 0.020 

Effect size / year, 2008-10 0.116 0.063 0.095 0.061 0.005 0.011 -0.004 0.008 0.226 -0.006 

Effect size / year, 2011-2014 0.036 0.003 0.105 0.019 0.002 0.004 0.005 0.011 -0.039 0.043 

 
Notes as in Table 3.  
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Table 5. Churn in the cluster: tech plant entry, exit and movement.  

 

A. All tech plants  2009-2010 2013-2014 2016-2017  

  count %  count %  count %  

In the UK  460,926   498,082  595,583   

In Tech City Zone 3,469   3,985  6,323   

Stayers 2,208 63.7 2,277 57.1 3,516 55.6 

Entrants 635 18.3 988 24.8 2,082 32.9 

Leavers 626 18.0 720 18.1 718 11.4 

Entrants             

Movers from rest of London 173 27.2 187 18.9 488 23.4 

Movers from rest of UK  37 5.8 67 6.8 130 6.2 

New plant 425 67 734 74.3 1,471 70.4 

Leavers             

Moved to rest of London 158 25.2 222 30.8 310 43.2 

Moved to rest of UK  45 7.2 35 4.9 79 11 

Died  423 67.6 463 64.3 329 45.8 

B. Foreign-owned tech plants  2009-2010 2013-2014 2016-2017  

  count % all   count % all   count % all   

In the UK 45,628 9.9 53,647 10.8 14,309 2.4 

In Tech City Zone 690 19.9 916 23 366 5.8 

Stayers 496 22.5 592 26.0 228 6.5 

Entrants 135 21.3 179 18.1 89 4.3 

Leavers 59 9.4 145 20.1 49 6.8 

Entrants            

Movers 35 39.6 60 45.5 27 5.9 

New plant  100 23.5 119 16.2 63 [4.3] 

Leavers             

Movers 33 28.8 57 40.1 25 11.9 

Died  26 6.2 88 19 24 7.3 

 
Source: BSD. 
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Figure 1. The Tech City area.  

 

Source: Google Maps. Red circles show approx. 250m rings around Old St roundabout. The cluster zone is 

defined as the 1km ring from the roundabout.  
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Figure 2. Tech City over time: firm counts vs. rents.  

 

A. Tech plant counts in the Tech City Zone, 1997-2017. 

 

 
 

B. Prime rents for Clerkenwell and Shoreditch submarket, 2008-2014.  

 

 
 

 
Source: BSD, Cushman & Wakefield. Plant counts are cumulative, so area total is given by 1km ring. Prime 

rents for four Inner London C&W ‘submarket geographies’, Clerkenwell and Shoreditch, Mayfair and St James, 

Midtown (Holborn and Temple), City Core (City of London).  

 

 

  



 

33 

 

Figure 3. Mean tech plant and job shares for Tech City LSOAs versus rest of Greater 

London LSOAs, 1997-2017. 

 

A. Digital content. L: plants / all plants. R: jobs / all jobs 

 

B. Digital technology. L: plants / all plants. R: jobs / all jobs 

 
 
Graphs show % tech plants (jobs) as a share of all plants (jobs) in all industries, for average Tech City LSOA vs 

average rest of London LSOA. Top row: digital content. Bottom row: digital technology. Digital content activity 

includes advertising, media, design and web services Digital tech activity includes ICT hardware, software and 

IT consulting. Source: BSD 1997-2017. 
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Figure 4. Policy effects on cluster size. Changes in Tech City tech plants vs. synthetic 

counterfactual.  

 

A. Log digital tech plants: treatment vs. control (L); weighted effect sizes (R) 

 

 
 

B. Log digital content plants: treatment vs. control (L); weighted effect sizes (R) 

 

  
 

   
The left column shows outcomes for Tech City LSOAs (blue) vs. synthetic Tech City (red), the no-policy 

counterfactual scenario. The right column shows precision-weighted effect sizes for Tech City (black) versus 

213 placebo units in the donor pool (grey). Effect sizes are weighted by pre-treatment RMSPE.   
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Figure 5. Policy effects on cluster density. Changes in Tech City tech plant shares vs. 

synthetic counterfactual.  

 

A. Digital tech plants/all plants: treatment vs. control (L); weighted effect sizes (R) 

 

  
 

B. Digital content plants/all plants: treatment vs. control (L); weighted effect sizes (R) 

 

   
    

The left column shows outcomes for Tech City LSOAs (blue) vs. synthetic Tech City (red), the no-policy 

counterfactual scenario. The right column shows precision-weighted effect sizes for Tech City (black) versus 

213 placebo units in the donor pool (grey). Effect sizes are weighted by pre-treatment RMSPE.   
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Figure 6. Policy effects on cluster 'performance'. Changes in Tech City tech firm 

productivity vs. synthetic counterfactual.  

 

A. Log digital tech mean revenue/worker: treatment vs. control (L); weighted effect sizes (R) 

 

  
 

B. Log digital content mean rev/worker: treatment vs. control (L); weighted effect sizes (R) 

 

 
   

The left column shows outcomes for Tech City LSOAs (blue) vs. synthetic Tech City (red), the no-policy 

counterfactual scenario. The right column shows precision-weighted effect sizes for Tech City (black) versus 

2013 placebo units in the donor pool (grey). Effect sizes are weighted by pre-treatment RMSPE.   
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Appendix A: Panel build  

 

A1 / BSD data 

 

To build the main panel for analysis I use plant-level microdata from the latest (9th) edition of 

the Business Structure Database (BSD). The BSD covers over 99% of all UK economic activity 

and provides high quality information for individual plants, coded to postcode level. Variables 

include plant location (to postcode level), industry, employment, turnover and entry/exit dates 

from multiple sources including company tax returns, VAT data (UK sales tax) and Companies 

House filings. I use the 2016 National Statistics Postcode Database (NSPD) to link plant 

postcodes to 2011 LSOAs. I then aggregate the data to LSOA level. The resulting panel runs 

from 1997 - 2017 and contains 101,502 area*year observations for 4,835 LSOAs in Greater 

London.   

 

In the raw BSD data, firms enter the database conditional on having at least one employee 

and/or making at least £75,000 annual revenue (thus paying VAT). Firms leaving the raw data 

may either fall below those thresholds, returning later, or actually exit the market. Using 

routines developed in CEP, my cleaned data keeps live plants in each year, including those 

temporarily exit the dataset, imputing values in the latter case.  

 

Because BSD cross-sections are taken in April of each year, rather than calendar years, the 

Tech City initiative takes place in BSD year 2011. In what follows, I will refer to BSD years 

2011 and after as the post-treatment period. 

 

A2 / Commercial rents data  

 

Commercial rents data comes from Cushman and Wakefield (C&W), a leading UK property 

analysis firm, and covers the period December 2008 to September 2014. Data is provided in 

quarters for four C&W ‘submarket geographies’, Clerkenwell and Shoreditch, Mayfair and St 

James, Midtown (Holborn and Temple), City Core (City of London). These are rather less 

precise than postcode level information, and as such are used to extend and help interpret the 

main results, rather in regression analysis. Clerkenwell and Shoreditch is an acceptable proxy 
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for the Tech City area; City Core covers the area immediately to the South, one of London’s 

financial centres; and Midtown covers the area immediately to the West, which has a mix of 

commercial, office, retail and leisure uses. Mayfair and St. James is an established super-prime 

location in central London. Rents data covers prime rents, which are defined as the average of 

the top 3-5% of all lettings in each submarket. They are thus a useful leading indicator for 

wider local property market change.  

 

A3/ Defining the technology sector  

 

I define 'tech' industries using the ONS typology of science and technology sectors (Harris, 

2015). The ONS typology is based on an extensive cross-national analysis and standardisation 

exercise and represents a robust baseline. Specifically, I use the set of ‘digital technology’ 

activities (mainly hardware and software industries) and the set of ‘publishing and 

broadcasting’ activities. In practice, the latter are highly overlapping with ‘digital content’ 

(such as advertising, design, media and the creative industries, where product/services are 

increasingly online). The ONS industries are specified using SIC07 codes. Because my data 

goes back to 1997, I convert these codes to SIC03, using an ONS-supplied crosswalk, to make 

them time-consistent. The full list of SIC03 codes is given in Table A2. SIC codes were 

originally designed for manufacturing and so provide much more detail for digital technology 

activities, where there are many small industry bins, than for digital content, where bins are 

fewer but larger.  
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Table A1. SIC03 codes and descriptors used to define technology industry space.  

 

A. Digital technology.  

 

SIC03 SIC03 descriptor 

2465 Manufacture of prepared unrecorded media 

2466 Manufacture of other chemical products not elsewhere classified (n.e.c.) 

2924 Manufacture of other general purpose machinery n.e.c. 

3002 Manufacture of computers and other information processing equipment 

3110 Manufacture of electric motors, generators and transformers 

3120 Manufacture of electricity distribution and control apparatus 

3130 Insulated wire and cable 

3162 Manufacture of other electrical equipment n.e.c. 

3210 Electronic valves and tubes and other electronic components 

3220 Manufacture of telegraph and telephone apparatus and equipment   

3230 Television/radio receivers, sound or video recording or producing apparatus 

3310 Manufacture of medical and surgical equipment and orthopaedic appliances 

3320 
Instruments and appliances for measuring, checking, testing, navigating, or other 

purposes 

3330 Manufacture of electronic industrial process control equipment 

3340 Manufacture of precision optical instruments, spectacles and unmounted lenses 

3350 Manufacture of watches and clocks 

3650 Manufacture of professional and arcade games and toys 

7210 Computer Hardware consultancy 

7221 Publishing of software 

7222 Other software consultancy and supply 

7230 Data processing 

7240 Database activities 

7250 Maintenance and repair of office, accounting and computing machinery 

7260 Other computer related activities 
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B. Digital content. 

  

SIC03 SIC03 descriptor 

2211 Publishing of books 

2212 Publishing of newspapers 

2213 Publishing of journals and periodicals 

2214 Publishing of sound recordings 

2215 Other publishing 

2222 Printing not elsewhere classified 

5274 Repair of communication equipment and equipment nec 

6420 Telecommunications 

7240 Database activities 

7413 Market research and public opinion polling 

7440 Advertising 

7481 Photographic activities 

7487 Speciality design activities  

9211 Motion picture and video production 

9213 Motion picture projection 

9220 Radio & TV 

9240 News agency activities 
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Appendix B. Additional results  

Figure B1. LSOA mean tech plant and job counts for Tech City neighbourhoods versus 

Rest of Greater London neighbourhoods, 1997-2017. 

 

A. Digital content. L: plants. R: jobs 

 

B. Digital technology. L: plants. R: jobs  
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Figure B2. LSOA mean tech plant revenue per worker for Tech City neighbourhoods 

versus Rest of Greater London neighbourhoods, 1997-2017. 

 

L: digital technology. R: digital content.  
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Figure B3. Google Trends analysis.  
 

A. Google Trends: searches for “Tech City” + London. As of 1 March 2018.  

 

 
 

 

 

B. Google Trends: searches for “Silicon Roundabout” + London. As of 1 March 2018.  
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Figure B4. Balancing regressions for Tech City zone vs. matched sample of control 

LSOAs, 1999-2017. 

 

 
 
Source: BSD, Census, ONS mid-year population estimates, TFL. 95% confidence intervals. 1998 is reference 

category, 1997 dropped via lags. All regressions fit LSOA and year dummies. Time-varying controls fitted are 

one-year lags of LSOA all-sector plant entry, LSOA all-sector revenue/worker, LSOA Herfindahl Index, a 

vector of amenities (LSOA counts of cafes and restaurants, bars/pubs/clubs, co-working spaces, galleries and 

museums, libraries, accommodation, arts and arts support, venues, universities), TFL station count, LA share of 

migrants, LA share of under-30s. Standard errors clustered on LSOA. 
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Figure B5. Policy effects on cluster size. Changes in Tech City tech jobs vs. synthetic 

counterfactual.  

 

A. Log digital tech jobs: treatment vs. control (L); weighted effect sizes (R) 

 

 
 

B. Log digital content jobs: treatment vs. control (L); weighted effect sizes (R) 

 

  
 

   
The left column shows outcomes for Tech City LSOAs (blue) vs. synthetic Tech City (red), the no-policy 

counterfactual scenario. The right column shows precision-weighted effect sizes for Tech City (black) versus 

213 placebo units in the donor pool (grey). Effect sizes are weighted by pre-treatment RMSPE.   
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Figure B6. Policy effects on cluster density. Changes in Tech City tech job shares vs. 

synthetic counterfactual.  

 

A. Digital tech jobs/all jobs: treatment vs. control (L); weighted effect sizes (R) 

 

 
 

B. Digital content jobs/all jobs: treatment vs. control (L); weighted effect sizes (R) 

 

  
   

The left column shows outcomes for Tech City LSOAs (blue) vs. synthetic Tech City (red), the no-policy 

counterfactual scenario. The right column shows precision-weighted effect sizes for Tech City (black) versus 

213 placebo units in the donor pool (grey). Effect sizes are weighted by pre-treatment RMSPE.   
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Figure B7. Scaling analysis: balancing regressions, 1999-2017.  

 

 
 
Source: BSD, Census, ONS mid-year population estimates, TFL. 95% confidence intervals. 1998 is reference 

category, 1997 dropped via lags. All regressions fit LSOA and year dummies. Time-varying controls fitted are 

1-year lags of LSOA all-sector plant entry, LSOA all-sector revenue/worker, LSOA Herfindahl Index, a vector 

of amenities (LSOA counts of cafes and restaurants, bars/pubs/clubs, co-working spaces, galleries and 

museums, libraries, accommodation, arts and arts support, venues, universities), TFL station count, LA share of 

migrants, LA share of under-30s. Standard errors clustered on LSOA. 
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Table B1. Mean LSOA characteristics for Tech City neighbourhoods versus Rest of 

Greater London neighbourhoods, 1997-2010: amenities and demographics.  

 

Variable  

Tech City 
Rest of Greater 

London 

Herfindahl Index 0.148 0.150 

LSOA total cafes and restaurants 7.734 2.511 

LSOA total bars pubs and clubs 3.340 0.989 

LSOA total coworking spaces 1.740 0.646 

LSOA total musuems and galleries 0.180 0.048 

LSOA total libraries 0.323 0.085 

LSOA total hotels 0.000 0.000 

LSOA total other accommodation 0.080 0.057 

LSOA total arts and arts support activities 11.349 2.573 

LSOA total supporting arts orgs 0.271 0.068 

LSOA total HEIs 0.557 0.143 

LSOA count of TFL stations 0.120 0.098 

LA share of non-UK born 0.310 0.256 

LA share of residents aged 18-29 0.231 0.197 

Observations 350 67144 
  

 
Source: BSD, Census, ONS, TfL. Table compares pre-2011 means for an LSOA in the Tech City zone (25 

LSOAs) for an LSOA in the rest of Greater London (c. 4800 LSOAs).  
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Table B2. Control units: results of propensity score matching on treatment status, 1997-2010.  

 
 Means, 1997-2010  T-test V_e(T)/ 

Variable Treated Control %bias t p>t V_e(C) 

# plant entry ONS digitech & content 1.669 0.571 35.7 10.26 0 4.26* 

Mean revenue ONS digitech & content 1441 1440 0 0 0.997 0.19* 

Mean revenue/worker ONS digitech & content 136 138 -0.7 -0.09 0.925 0.17* 

% plants ONS digital tech and content 0.302 0.264 33.5 6.98 0 0.84* 

% employment ONS digital tech and content 0.240 0.196 29.1 5.95 0 0.92 

Herfindahl Index 0.158 0.155 5.1 0.91 0.365 0.37* 

% cafes and restaurants 0.028 0.027 4.3 0.93 0.351 0.73* 

% bars cafes and clubs 0.015 0.015 -2.5 -0.46 0.645 0.58* 

% coworking and shared offices 0.008 0.008 -3.8 -0.87 0.384 0.88 

% galleries and museums 0.002 0.001 7.1 1.11 0.269 0.46* 

% libraries 0.001 0.001 -2.9 -0.49 0.621 0.17* 

% other accommodation 0.000 0.001 -3.7 -0.79 0.431 0.37* 

% artists and performers 0.040 0.045 -13.6 -2.47 0.014 0.33* 

% arts facilities and supp 0.001 0.001 5.7 1.45 0.146 1 

% universities and colleges 0.002 0.002 5.3 1.14 0.255 0.33* 

Count of TFL stations 0.120 0.103 5 1.02 0.306 0.76* 

LA share of non-UK born 0.332 0.348 -23.9 -4.32 0 0.33* 

LA share of residents aged 18-29 0.232 0.240 -25.5 -5.67 0 1.13 

Observations 350 2982 n/a n/a n/a n/a 

Summary stats  MeanBias MedBias B R   

 11.5 5.2 71.5* 1.26   

 
Source: BSD 1997-2010, 1991/2001/2011 Census, ONS mid-year population estimates, TFL. Probit regression using nearest neighbour matching (nn = 1) where dependent 

variable = LSOA is in the Tech City Zone. Results shown for 25 Tech City LSOAs and 213 matched control LSOAs with the 25% highest propensity scores of all controls. 

Variance ratio should equal 1 if matched group is perfectly balanced with treatment group. * = variance ratio is 'of concern', i.e. variance ratio in [0.84, 1.19).  B and R 

indicate Rubin's B and R ratios. For samples to be sufficiently balanced, B < 25 and 0.25 < R < 2. * = values outside these ranges.
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Table B3. Comparing mean characteristics of Tech City neighbourhoods vs. synthetic 

Tech City vs. matched control neighbourhoods, 1997-2010. Results for all other 

outcomes.  

 

Variable Tech City Synthetic Tech City  Matched sample  

Log content plants (1997) 2.613 2.609 1.626 

Log content plants (1998) 2.722 2.721 1.645 

Log content plants (1999) 2.757 2.775 1.665 

Log content plants (2000) 2.781 2.758 1.698 

Log content plants (2001) 2.773 2.810 1.747 

Log content plants (2002) 2.805 2.778 1.754 

Log content plants (2003) 3.234 3.256 2.260 

Log content plants (2004) 3.311 3.334 2.335 

Log content plants (2005) 3.323 3.347 2.414 

Log content plants (2006) 3.356 3.344 2.485 

Log content plants (2007) 3.431 3.417 2.563 

Log content plants (2008) 3.495 3.448 2.448 

Log content plants (2009) 3.500 3.488 2.454 

Log content plants (2010) 3.468 3.457 2.413 

Plant entry, all sectors 3.260 3.182 1.793 

Revenue / worker, sectors 258.774 255.350 134.660 

Herfindahl Index 0.136 0.136 0.146 

LSOA plants, all sectors 238.760 228.364 127.748 

LSOA jobs, all sectors 3836.394 3789.643 1467.235 

LSOA total cafes and restaurants 7.074 7.135 4.045 

LSOA total bars pubs and clubs 3.074 2.965 1.545 

LSOA total coworking spaces 1.523 1.958 1.658 

LSOA total musuems and galleries 0.169 0.165 0.156 

LSOA total libraries 0.311 0.303 0.084 

LSOA total other accommodation 0.063 0.062 0.065 

LSOA total arts and arts support 

activities 
10.669 10.900 5.596 

LSOA total supporting arts orgs 0.249 0.314 0.153 

LSOA total HEIs 0.506 0.507 0.255 

LSOA count of TFL stations 0.111 0.126 0.098 

LA population  187283.078 188577.406 2.36e+05 

LA share of non-UK born 0.309 0.311 0.348 

LA share of residents aged 18-29 0.229 0.230 0.241 

Observations 350 2982 2982 

 
Source: BSD 1997-2010, 1991/2001/2011 Census, ONS mid-year population estimates, TFL. 
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Table B3 continued.  

 

Variable Tech City Synthetic Tech City  Matched sample  

Log digitech jobs (1997) . 2.400 1.420 

Log digitech jobs (1998) . 2.475 1.673 

Log digitech jobs (1999) . 2.859 1.891 

Log digitech jobs (2000) . 2.923 1.886 

Log digitech jobs (2001) 3.097 3.042 1.900 

Log digitech jobs (2002) 3.193 3.196 1.776 

Log digitech jobs (2003) 3.694 3.708 2.337 

Log digitech jobs (2004) 3.466 3.463 2.302 

Log digitech jobs (2005) 3.469 3.503 2.301 

Log digitech jobs (2006) 3.608 3.551 2.250 

Log digitech jobs (2007) 3.607 3.614 2.288 

Log digitech jobs (2008) 3.689 3.643 2.373 

Log digitech jobs (2009) 3.634 3.654 2.432 

Log digitech jobs (2010) 3.579 3.577 2.383 

Plant entry, all sectors 3.260 3.148 1.793 

Revenue / worker, sectors 258.774 256.765 134.660 

Herfindahl Index 0.136 0.136 0.146 

LSOA plants, all sectors 238.760 221.991 127.748 

LSOA jobs, all sectors 3836.394 3748.257 1467.235 

LSOA total cafes and restaurants 7.074 7.155 4.045 

LSOA total bars pubs and clubs 3.074 3.025 1.545 

LSOA total coworking spaces 1.523 1.911 1.658 

LSOA total musuems and galleries 0.169 0.160 0.156 

LSOA total libraries 0.311 0.308 0.084 

LSOA total other accommodation 0.063 0.063 0.065 

LSOA total arts and arts support 

activities 
10.669 10.596 5.596 

LSOA total supporting arts orgs 0.249 0.297 0.153 

LSOA total HEIs 0.506 0.512 0.255 

LSOA count of TFL stations 0.111 0.119 0.098 

LA population  187283.078 187981.172 2.36e+05 

LA share of non-UK born 0.309 0.308 0.348 

LA share of residents aged 18-29 0.229 0.229 0.241 

Observations 350 2982 2982 

 
Source: BSD 1997-2010, 1991/2001/2011 Census, ONS mid-year population estimates, TFL. . Some 

observations suppressed to avoid disclosure.  
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Table B3 continued.  

 

Variable Tech City Synthetic Tech City  Matched sample  

Log content jobs (1997) 4.543 4.592 2.919 

Log content jobs (1998) 4.719 4.660 2.864 

Log content jobs (1999) 4.721 4.685 2.936 

Log content jobs (2000) 4.448 4.464 2.910 

Log content jobs (2001) 4.540 4.585 2.990 

Log content jobs (2002) 4.751 4.737 3.028 

Log content jobs (2003) 4.825 4.835 3.512 

Log content jobs (2004) 5.144 5.111 3.613 

Log content jobs (2005) 5.221 5.231 3.653 

Log content jobs (2006) 5.193 5.233 3.718 

Log content jobs (2007) 5.249 5.208 3.770 

Log content jobs (2008) 5.322 5.297 3.687 

Log content jobs (2009) 5.315 5.346 3.597 

Log content jobs (2010) 5.270 5.231 3.582 

Plant entry, all sectors 3.260 3.024 1.793 

Revenue / worker, sectors 258.774 257.506 134.660 

Herfindahl Index 0.136 0.136 0.146 

LSOA plants, all sectors 238.760 222.702 127.748 

LSOA jobs, all sectors 3836.394 3823.425 1467.235 

LSOA total cafes and restaurants 7.074 7.297 4.045 

LSOA total bars pubs and clubs 3.074 2.974 1.545 

LSOA total coworking spaces 1.523 2.074 1.658 

LSOA total musuems and galleries 0.169 0.156 0.156 

LSOA total libraries 0.311 0.310 0.084 

LSOA total other accommodation 0.063 0.062 0.065 

LSOA total arts and arts support 

activities 
10.669 10.667 5.596 

LSOA total supporting arts orgs 0.249 0.285 0.153 

LSOA total HEIs 0.506 0.496 0.255 

LSOA count of TFL stations 0.111 0.117 0.098 

LA population  187283.078 188216.391 2.36e+05 

LA share of non-UK born 0.309 0.310 0.348 

LA share of residents aged 18-29 0.229 0.230 0.241 

Observations 350 2982 2982 

 
Source: BSD 1997-2010, 1991/2001/2011 Census, ONS mid-year population estimates, TFL. 
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Table B3 continued.  

 

Variable Tech City Synthetic Tech City  Matched sample  

share digitech plants (1997) . 0.024 0.038 

share digitech plants (1998) . 0.036 0.056 

share digitech plants (1999) . 0.055 0.072 

share digitech plants (2000) . 0.057 0.068 

share digitech plants (2001) 0.056 0.054 0.066 

share digitech plants (2002) 0.051 0.052 0.063 

share digitech plants (2003) 0.078 0.079 0.100 

share digitech plants (2004) 0.069 0.069 0.093 

share digitech plants (2005) 0.066 0.066 0.090 

share digitech plants (2006) 0.067 0.067 0.086 

share digitech plants (2007) 0.069 0.070 0.086 

share digitech plants (2008) 0.086 0.085 0.099 

share digitech plants (2009) 0.082 0.082 0.096 

share digitech plants (2010) 0.082 0.080 0.095 

Plant entry, all sectors 3.260 3.109 1.793 

Revenue / worker, sectors 258.774 257.416 134.660 

Herfindahl Index 0.136 0.136 0.146 

LSOA plants, all sectors 238.760 223.520 127.748 

LSOA jobs, all sectors 3836.394 3727.677 1467.235 

LSOA total cafes and restaurants 7.074 7.047 4.045 

LSOA total bars pubs and clubs 3.074 3.046 1.545 

LSOA total coworking spaces 1.523 2.096 1.658 

LSOA total musuems and galleries 0.169 0.164 0.156 

LSOA total libraries 0.311 0.307 0.084 

LSOA total other accommodation 0.063 0.062 0.065 

LSOA total arts and arts support 

activities 
10.669 10.615 5.596 

LSOA total supporting arts orgs 0.249 0.294 0.153 

LSOA total HEIs 0.506 0.513 0.255 

LSOA count of TFL stations 0.111 0.119 0.098 

LA population  187283.078 188211.563 2.36e+05 

LA share of non-UK born 0.309 0.309 0.348 

LA share of residents aged 18-29 0.229 0.229 0.241 

Observations 350 2982 2982 

 
Source: BSD 1997-2010, 1991/2001/2011 Census, ONS mid-year population estimates, TFL. Some 

observations suppressed to avoid disclosure.  
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Table B3 continued.  

 

Variable Tech City Synthetic Tech City  Matched sample  

share content plants (1997) 0.137 0.134 0.104 

share content plants (1998) 0.139 0.146 0.101 

share content plants (1999) 0.147 0.144 0.103 

share content plants (2000) 0.155 0.147 0.108 

share content plants (2001) 0.145 0.146 0.111 

share content plants (2002) 0.144 0.152 0.114 

share content plants (2003) 0.215 0.215 0.184 

share content plants (2004) 0.234 0.237 0.197 

share content plants (2005) 0.245 0.246 0.209 

share content plants (2006) 0.254 0.248 0.218 

share content plants (2007) 0.253 0.256 0.226 

share content plants (2008) 0.266 0.264 0.200 

share content plants (2009) 0.265 0.262 0.201 

share content plants (2010) 0.261 0.257 0.196 

Plant entry, all sectors 3.260 3.153 1.793 

Revenue / worker, sectors 258.774 247.131 134.660 

Herfindahl Index 0.136 0.136 0.146 

LSOA plants, all sectors 238.760 223.317 127.748 

LSOA jobs, all sectors 3836.394 3559.234 1467.235 

LSOA total cafes and restaurants 7.074 6.483 4.045 

LSOA total bars pubs and clubs 3.074 3.004 1.545 

LSOA total coworking spaces 1.523 2.264 1.658 

LSOA total musuems and galleries 0.169 0.152 0.156 

LSOA total libraries 0.311 0.296 0.084 

LSOA total other accommodation 0.063 0.062 0.065 

LSOA total arts and arts support 

activities 
10.669 10.827 5.596 

LSOA total supporting arts orgs 0.249 0.333 0.153 

LSOA total HEIs 0.506 0.508 0.255 

LSOA count of TFL stations 0.111 0.137 0.098 

LA population  187283.078 189422.828 2.36e+05 

LA share of non-UK born 0.309 0.314 0.348 

LA share of residents aged 18-29 0.229 0.230 0.241 

Observations 350 2982 2982 

 
Source: BSD 1997-2010, 1991/2001/2011 Census, ONS mid-year population estimates, TFL. 
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Table B3 continued.  

 

Variable Tech City Synthetic Tech City  Matched sample  

share digitech jobs (1997) . 0.021 0.029 

share digitech jobs (1998) . 0.017 0.032 

share digitech jobs (1999) . 0.024 0.040 

share digitech jobs (2000) . 0.029 0.043 

share digitech jobs (2001) 0.032 0.029 0.041 

share digitech jobs (2002) 0.034 0.034 0.038 

share digitech jobs (2003) 0.059 0.058 0.066 

share digitech jobs (2004) 0.043 0.044 0.062 

share digitech jobs (2005) 0.046 0.048 0.059 

share digitech jobs (2006) 0.043 0.041 0.051 

share digitech jobs (2007) 0.039 0.039 0.055 

share digitech jobs (2008) 0.042 0.040 0.060 

share digitech jobs (2009) 0.039 0.042 0.061 

share digitech jobs (2010) 0.039 0.040 0.057 

Plant entry, all sectors 3.260 3.147 1.793 

Revenue / worker, sectors 258.774 257.978 134.660 

Herfindahl Index 0.136 0.136 0.146 

LSOA plants, all sectors 238.760 228.132 127.748 

LSOA jobs, all sectors 3836.394 3689.284 1467.235 

LSOA total cafes and restaurants 7.074 6.831 4.045 

LSOA total bars pubs and clubs 3.074 3.080 1.545 

LSOA total coworking spaces 1.523 2.177 1.658 

LSOA total musuems and galleries 0.169 0.165 0.156 

LSOA total libraries 0.311 0.308 0.084 

LSOA total other accommodation 0.063 0.060 0.065 

LSOA total arts and arts support 

activities 
10.669 10.472 5.596 

LSOA total supporting arts orgs 0.249 0.288 0.153 

LSOA total HEIs 0.506 0.510 0.255 

LSOA count of TFL stations 0.111 0.121 0.098 

LA population  187283.078 189001.563 2.36e+05 

LA share of non-UK born 0.309 0.309 0.348 

LA share of residents aged 18-29 0.229 0.230 0.241 

Observations 350 2982 2982 

 
Source: BSD 1997-2010, 1991/2001/2011 Census, ONS mid-year population estimates, TFL. Some 

observations suppressed to avoid disclosure.  
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Table B3 continued.  

 

Variable Tech City Synthetic Tech City  Matched sample  

share content jobs (1997) 0.155 0.154 0.103 

share content jobs (1998) 0.163 0.158 0.099 

share content jobs (1999) 0.168 0.169 0.107 

share content jobs (2000) 0.152 0.150 0.111 

share content jobs (2001) 0.132 0.136 0.118 

share content jobs (2002) 0.148 0.151 0.115 

share content jobs (2003) 0.144 0.148 0.160 

share content jobs (2004) 0.198 0.195 0.175 

share content jobs (2005) 0.210 0.211 0.177 

share content jobs (2006) 0.209 0.212 0.179 

share content jobs (2007) 0.212 0.208 0.185 

share content jobs (2008) 0.220 0.223 0.173 

share content jobs (2009) 0.219 0.220 0.161 

share content jobs (2010) 0.218 0.213 0.155 

Plant entry, all sectors 3.260 3.055 1.793 

Revenue / worker, sectors 258.774 255.744 134.660 

Herfindahl Index 0.136 0.136 0.146 

LSOA plants, all sectors 238.760 221.777 127.748 

LSOA jobs, all sectors 3836.394 3672.932 1467.235 

LSOA total cafes and restaurants 7.074 6.843 4.045 

LSOA total bars pubs and clubs 3.074 2.885 1.545 

LSOA total coworking spaces 1.523 2.115 1.658 

LSOA total musuems and galleries 0.169 0.174 0.156 

LSOA total libraries 0.311 0.303 0.084 

LSOA total other accommodation 0.063 0.061 0.065 

LSOA total arts and arts support 

activities 
10.669 11.046 5.596 

LSOA total supporting arts orgs 0.249 0.321 0.153 

LSOA total HEIs 0.506 0.500 0.255 

LSOA count of TFL stations 0.111 0.126 0.098 

LA population  187283.078 188844.750 2.36e+05 

LA share of non-UK born 0.309 0.308 0.348 

LA share of residents aged 18-29 0.229 0.230 0.241 

Observations 350 2982 2982 

 
Source: BSD 1997-2010, 1991/2001/2011 Census, ONS mid-year population estimates, TFL. 
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Table B3 continued.  

 

Variable Tech City Synthetic Tech City  Matched sample  

Log digitech revenue/worker (1997) . 3.292 3.130 

Log digitech revenue/worker (1998) . 3.430 3.530 

Log digitech revenue/worker (1999) . 3.959 3.678 

Log digitech revenue/worker (2000) . 4.052 3.692 

Log digitech revenue/worker (2001) 4.105 4.178 3.673 

Log digitech revenue/worker (2002) 4.220 4.142 3.663 

Log digitech revenue/worker (2003) 4.063 4.011 3.822 

Log digitech revenue/worker (2004) 3.985 3.991 3.887 

Log digitech revenue/worker (2005) 3.765 3.816 3.931 

Log digitech revenue/worker (2006) 3.859 3.853 3.936 

Log digitech revenue/worker (2007) 3.986 4.027 4.064 

Log digitech revenue/worker (2008) 4.329 4.382 4.278 

Log digitech revenue/worker (2009) 4.474 4.469 4.247 

Log digitech revenue/worker (2010) 4.472 4.446 4.279 

Plant entry, all sectors 3.260 3.047 1.793 

Revenue / worker, sectors 258.774 252.347 134.660 

Herfindahl Index 0.136 0.136 0.146 

LSOA plants, all sectors 238.760 225.949 127.748 

LSOA jobs, all sectors 3836.394 3746.423 1467.235 

LSOA total cafes and restaurants 7.074 7.043 4.045 

LSOA total bars pubs and clubs 3.074 2.865 1.545 

LSOA total coworking spaces 1.523 2.267 1.658 

LSOA total musuems and galleries 0.169 0.186 0.156 

LSOA total libraries 0.311 0.298 0.084 

LSOA total other accommodation 0.063 0.061 0.065 

LSOA total arts and arts support 

activities 
10.669 10.484 5.596 

LSOA total supporting arts orgs 0.249 0.345 0.153 

LSOA total HEIs 0.506 0.502 0.255 

LSOA count of TFL stations 0.111 0.123 0.098 

LA population  187283.078 191567.984 2.36e+05 

LA share of non-UK born 0.309 0.308 0.348 

LA share of residents aged 18-29 0.229 0.231 0.241 

Observations 350 2982 2982 

 
Source: BSD 1997-2010, 1991/2001/2011 Census, ONS mid-year population estimates, TFL. Some 

observations suppressed to avoid disclosure.  
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Table B3 continued.  

 

Variable Tech City Synthetic Tech City  Matched sample  

Log content revenue/worker (1997) 4.088 4.033 3.941 

Log content revenue/worker (1998) 4.018 4.039 3.914 

Log content revenue/worker (1999) 4.247 4.299 3.948 

Log content revenue/worker (2000) 4.423 4.381 4.090 

Log content revenue/worker (2001) 4.203 4.252 4.165 

Log content revenue/worker (2002) 4.459 4.416 4.153 

Log content revenue/worker (2003) 4.651 4.649 4.370 

Log content revenue/worker (2004) 4.736 4.697 4.491 

Log content revenue/worker (2005) 4.525 4.541 4.501 

Log content revenue/worker (2006) 4.619 4.620 4.509 

Log content revenue/worker (2007) 4.620 4.628 4.551 

Log content revenue/worker (2008) 4.722 4.718 4.533 

Log content revenue/worker (2009) 4.736 4.731 4.527 

Log content revenue/worker (2010) 4.742 4.747 4.571 

Plant entry, all sectors 3.260 3.192 1.793 

Revenue / worker, sectors 258.774 257.599 134.660 

Herfindahl Index 0.136 0.135 0.146 

LSOA plants, all sectors 238.760 220.470 127.748 

LSOA jobs, all sectors 3836.394 3669.025 1467.235 

LSOA total cafes and restaurants 7.074 7.146 4.045 

LSOA total bars pubs and clubs 3.074 2.990 1.545 

LSOA total coworking spaces 1.523 1.956 1.658 

LSOA total musuems and galleries 0.169 0.149 0.156 

LSOA total libraries 0.311 0.304 0.084 

LSOA total other accommodation 0.063 0.060 0.065 

LSOA total arts and arts support 

activities 
10.669 10.852 5.596 

LSOA total supporting arts orgs 0.249 0.306 0.153 

LSOA total HEIs 0.506 0.515 0.255 

LSOA count of TFL stations 0.111 0.122 0.098 

LA population  187283.078 188625.078 2.36e+05 

LA share of non-UK born 0.309 0.309 0.348 

LA share of residents aged 18-29 0.229 0.229 0.241 

Observations 350 2982 2982 

 
Source: BSD 1997-2010, 1991/2001/2011 Census, ONS mid-year population estimates, TFL. 
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Table B4. Synthetic control: LSOAs used and weights assigned, by outcome.   

 

digital tech plants content plants digital tech jobs content jobs 
digital tech 

revenue/worker 

LSOA weight LSOA weight LSOA weight LSOA weight LSOA weight 

15 0.007 15 0.008 3 0.037 3 0.012 3 0.001 

34 0.043 51 0.035 21 0.07 4 0.049 8 0.006 

65 0.009 65 0.008 52 0.015 15 0.002 21 0.115 

66 0.03 73 0.123 65 0.019 51 0.013 72 0.096 

70 0.004 76 0.009 71 0.003 53 0.024 86 0.011 

72 0.07 88 0.173 75 0.01 65 0.013 88 0.004 

73 0.027 96 0.11 76 0.008 66 0.025 103 0.058 

75 0.019 112 0.152 84 0.063 73 0.016 109 0.033 

85 0.04 114 0.024 85 0.006 78 0.026 112 0.028 

93 0.073 115 0.113 88 0.055 79 0.025 114 0.094 

96 0.096 116 0.037 90 0.01 82 0.138 116 0.019 

103 0.046 143 0.016 93 0.082 88 0.052 133 0.247 

106 0.008 209 0.027 96 0.047 96 0.009 164 0.023 

112 0.069 214 0.052 103 0.045 112 0.181 203 0.038 

114 0.103 218 0.035 112 0.097 114 0.044 205 0.003 

115 0.099 221 0.042 114 0.154 115 0.075 208 0.016 

116 0.011 223 0.002 115 0.018 116 0.039 209 0.045 

119 0.022 228 0.002 116 0.025 122 0.046 214 0.066 

132 0.013 234 0.033 208 0.008 170 0.001 218 0.056 

208 0.04     209 0.035 173 0.018 234 0.043 

209 0.031     214 0.064 208 0.006     

214 0.061     216 0.025 209 0.043     

218 0.037     218 0.03 214 0.052     

234 0.04     222 0.003 218 0.049     

       228 0.008 222 0.001     

       232 0.026 228 0.01     

        234 0.036 234 0.032     

 
Source: BSD / Census / ONS / TfL.  
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Table B4 continued.  

 

content 

revenue/worker 

% digital tech 

plants 
% content plants % digital tech jobs % content jobs 

LSOA weight LSOA weight LSOA weight LSOA weight LSOA weight 

4 0.023 3 0.023 3 0.001 3 0.014 3 0.001 

27 0.021 4 0.03 4 0.028 4 0.129 4 0.028 

34 0.016 49 0.037 50 0.004 26 0.012 50 0.004 

46 0.008 52 0.078 51 0.108 50 0.008 51 0.108 

65 0.007 65 0.008 64 0.067 65 0.006 64 0.067 

72 0.041 66 0.021 65 0.016 72 0.018 65 0.016 

78 0.001 72 0.036 73 0.037 78 0.071 73 0.037 

93 0.073 73 0.027 88 0.108 82 0.072 88 0.108 

95 0.025 76 0.033 91 0.01 84 0.102 91 0.01 

103 0.033 81 0.027 103 0.011 88 0.058 103 0.011 

112 0.134 84 0.075 108 0.031 96 0.036 108 0.031 

114 0.022 85 0.01 110 0.091 103 0.063 110 0.091 

115 0.223 88 0.078 112 0.194 112 0.161 112 0.194 

116 0.016 92 0.003 115 0.051 120 0.017 115 0.051 

117 0.005 93 0.01 116 0.018 170 0.022 116 0.018 

162 0.044 112 0.161 170 0.032 208 0.024 170 0.032 

170 0.017 114 0.024 209 0.034 209 0.053 209 0.034 

171 0.001 115 0.012 214 0.06 214 0.065 214 0.06 

179 0.033 116 0.022 215 0.013 217 0.005 215 0.013 

208 0.031 133 0.052 218 0.051 218 0.05 218 0.051 

209 0.038 140 0.001 233 0.005 222 0.001 233 0.005 

214 0.065 208 0.024 234 0.03 234 0.014 234 0.03 

216 0.052 209 0.047          

218 0.026 214 0.064          

234 0.044 218 0.063          

   228 0.005          

    234 0.029             

 
Source: BSD / Census / ONS / TfL.  
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Table B5. Tech City policy effects: robustness checks. 

 
 Plants Jobs  % plants % jobs Ave rev/worker 
 Digitech  Content Digitech  Content Digitech  Content Digitech  Content Digitech  Content 
 

          
Diff in diff ATT 0.28*** 0.06 0.42*** 0.13 0.01* 0.00 0.02** 0.02 -0.02 0.03 
 (0.104) (0.068) (0.131) (0.115) (0.007) (0.009) (0.008) (0.017) (0.062) (0.092) 
 

          
Synthetic control ATT 0.270*** 0.079** 0.440*** 0.123* 0.013*** 0.02* 0.031*** 0.049*** -0.043* 0.139** 

p-value  0.005 0.023 0.005 0.061 0.005 0.084 0.009 0.009 0.07 0.042 

RMSPE 0.024 0.023 0.028 0.035 0.001 0.004 0.002 0.003 0.045 0.032 
           

 
          

75% lag outcomes + covariates + ID V 0.577* 0.333 0.563** 0.107 0.017 0.036 0.012 0.052 0.357 -0.036 

p-value  0.098 0.121 0.037 0.556 0.154 0.299 0.257 0.117 0.257 0.514 

RMSPE 0.189 0.124 0.144 0.145 0.006 0.016 0.01 0.018 0.371 0.083 
           

50% lag outcomes + covariates + ID V 0.510** 0.514 0.746** 0.206 0.011*** 0.072 0.021 0.075* 0.187 -0.135 

p-value  0.019 0.136 0.07 0.407 0.009 0.126 0.201 0.098 0.379 0.299 

RMSPE 0.148 0.224 0.274 0.172 0.005 0.03 0.015 0.03 0.553 0.124 
           

Covariates + ID V 0.391** 0.476 0.151 0.258 0.011 0.058 -0.01 0.062 -0.204 -0.125 

p-value  0.019 0.107 0.607 0.379 0.248 0.112 0.78 0.173 0.196 0.785 

RMSPE 0.141 0.273 0.382 0.383 0.01 0.035 0.032 0.044 0.422 0.63 
           

All lagged outcomes, data-driven V  0.271*** 0.108*** 0.415** 0.319 0.001* 0.016* 0.024** 0.042* 0.086 0.143 

p-value  0.005 0.005 0.042 0.145 0.051 0.098 0.028 0.075 0.327 0.332 

RMSPE 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
           

 

 

Notes as in Table 3, main paper.  
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Table B5 continued.  
 

 Plants Jobs  % plants % jobs Ave rev/worker 
 Digitech  Content Digitech  Content Digitech  Content Digitech  Content Digitech  Content 
 

          
Diff in diff ATT 0.28*** 0.06 0.42*** 0.13 0.01* 0.00 0.02** 0.02 -0.02 0.03 
 (0.104) (0.068) (0.131) (0.115) (0.007) (0.009) (0.008) (0.017) (0.062) (0.092) 
 

          
Synthetic control ATT 0.270*** 0.079** 0.440*** 0.123* 0.013*** 0.02* 0.031*** 0.049*** -0.043* 0.139** 

p-value  0.005 0.023 0.005 0.061 0.005 0.084 0.009 0.009 0.07 0.042 

RMSPE 0.024 0.023 0.028 0.035 0.001 0.004 0.002 0.003 0.045 0.032 
 

          
           

75% lag outcomes + cov + cross-vali V 0.446* 0.356* 0.316 0.207 0.021 0.025 0.008 0.043** 0.28 -0.024 

p-value  0.093 0.089 0.192 0.598 0.136 0.724 0.607 0.033 0.271 0.827 

RMSPE 0.107 0.072 0.123 0.142 0.006 0.019 0.011 0.007 0.211 0.092 
           

50% lag outcomes + cov + cross-vali V 0.443** 0.453** 0.313** 0.291 0.024** 0.047 -0.011 0.05 -0.029 -0.104 

p-value  0.023 0.037 0.042 0.187 0.033 0.35 0.579 0.388 0.449 0.86 

RMSPE 0.101 0.12 0.1 0.142 0.006 0.026 0.018 0.033 0.308 0.292 
           

Long difference 1997-2010 + ID V  0.071 -0.096 0.272* -0.095 0.006* 0.008 0.018* 0.04 -0.306 -0.18 

p-value  0.383 0.71 0.093 0.925 0.065 0.379 0.051 0.36 0.276 0.715 

RMSPE 0.217 0.256 0.22 0.359 0.009 0.015 0.009 0.041 0.437 0.614 
           

First differences + ID V 0.104 -0.004 0.524*** 0.104 0.008 0.019 0.029*** 0.004* -0.14 -0.136 

p-value  0.654 0.117 0.005 0.486 0.313 0.173 0.005 0.075 0.224 0.822 

RMSPE 0.272 0.057 0.098 0.165 0.012 0.008 0.001 0.008 0.177 0.36 
 

          
 
Notes as in Table 3, main paper.  
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Table B6. Policy effects: within-cluster DID using treatment intensity estimator.  

 
 Plants Jobs  % plants % jobs Ave rev/worker 
 Digitech  Content Digitech  Content Digitech  Content Digitech  Content Digitech  Content 
           

Diff in diff ATT 0.28*** 0.06 0.42*** 0.13 0.01* 0.00 0.02** 0.02 -0.02 0.03 

 (0.104) (0.068) (0.131) (0.115) (0.007) (0.009) (0.008) (0.017) (0.062) (0.092) 

 
          

Roundabout + 250m 1.03*** 0.68*** 0.76*** 0.12 0.03*** -0.05*** 0.00 -0.04 -0.14 -0.46*** 
 (0.063) (0.119) (0.189) (0.188) (0.011) (0.013) (0.012) (0.026) (0.094) (0.096) 
           

Roundabout + 500m -0.06 -0.11 -0.06 0.03 0.01 0.01 -0.01 -0.06 -0.06 0.13 
 (0.258) (0.126) (0.316) (0.223) (0.017) (0.015) (0.021) (0.046) (0.116) (0.169) 
           

Roundabout + 750m 0.16 -0.10 0.01 -0.49** 0.01 -0.04** 0.02 0.02 0.04 -0.27 
 (0.286) (0.104) (0.304) (0.187) (0.016) (0.016) (0.019) (0.044) (0.116) (0.176) 
           

Roundabout + 1000m 0.18 0.12 0.40** 0.37** 0.00 0.02* 0.01 0.03 -0.02 0.15 
 (0.143) (0.094) (0.175) (0.147) (0.009) (0.013) (0.008) (0.021) (0.094) (0.111) 
           

Observations 4500 4646 4494 4639 4760 4760 4760 4760 4489 4637 

R2 0.80 0.91 0.80 0.87 0.58 0.70 0.47 0.60 0.35 0.48 

Area controls  Y Y Y Y Y Y Y Y Y Y 

Pre-treatment controls  Y Y Y Y Y Y Y Y Y Y 

 
Source: BSD / Census / ONS / TfL. Difference in difference analysis on matched sample. Distance ring coefficients give the relative effect of treatment on neighbourhoods in that 

distance ring, relative to control LSOAs outside the cluster. Controls are 1-year lags of LSOA all-sector plant entry, plant counts and job counts, LSOA all-sector revenue/worker, 

LSOA Herfindahl Index, LSOA counts of cafes and restaurants, bars/pubs/clubs, co-working spaces, galleries and museums, libraries, hotels and other accommodation, arts and arts 

support, venues, universities, count of tube and rail stations, LA population, LA share of migrants, LA share of under-30s, plus LSOA and year dummies. Standard errors clustered 

on LSOA. * significant at 10%, ** 5%, *** 1%.  
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Table B7. Scaling analysis: average high growth and gazelle plant instances, 2000-2010: 

Tech City LSOAs vs. matched sample LSOAs.  
 

  Tech City LSOAs 
Matched sample 

LSOAs 

High jobs growth, digital tech 0.354 0.057 

High jobs growth, digital content 1.006 0.187 

High jobs growth, gazelle digital tech 0.083 0.012 

High jobs growth, gazelle digital content 0.186 0.035 

High revenue/worker growth, digital tech 1.446 0.532 

High  revenue/worker growth, digital content 5.149 1.410 

High  revenue/worker growth, gazelle digital tech 0.551 0.207 

High  revenue/worker growth, gazelle digital content 1.911 0.475 

Observations  350 24,780 

 

Source: BSD. Note: Table shows average number of high-growth episodes / gazelle episodes in a Tech City 

LSOA versus a control LSOA between 2000 and 2010. High-growth episodes are plant-level jobs or 

revenue/worker growth of at least 20% per year for any 3 year period. Gazelle episodes are high-growth 

episodes for plants aged five years or less. The same plant can enter a high-growth phase more than once.  
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Table B8. Scaling analysis: synthetic control results.  

 

  
# High-growth episodes: 

revenue/worker 
# High-growth episodes: jobs 

  digitech content digitech content 

      

Synthetic control ATT 1.082 0.503 0.261 0.279 

      

p-value  0.103 0.178 0.276 0.150 

Number of placebos 213 213 213 213 

Pre-treatment RMSPE 0.184 0.700 0.072 0.123 

Average pre-treatment quality 0.793 0.502 0.183 0.437 

      

Pre-treatment mean  36.143 127.214 9.00 24.71 

      

 

Source: BSD / Census / ONS / TfL. Synthetic control panel shows p-values from permutation test, number of 

placebos used, pre-treatment error rate and proportion of placebos with pre-treatment error rate ≥ average of the 

treated unit. Regressions fit lagged outcome predictors 1997-2010 plus 1-year lags of LSOA all-sector plant 

entry, LSOA all-sector revenue/worker, LSOA Herfindahl Index, a vector of amenities (LSOA counts of cafes 

and restaurants, bars/pubs/clubs, co-working spaces, galleries and museums, libraries, other accommodation, 

arts and arts support, venues, universities), TFL station count, LA share of migrants, LA share of under-30s. 

Weights optimised defining V as an identity matrix. DID regressions fit LSOA and year dummies plus controls 

as above. Standard errors clustered on LSOA. * significant at 10%, ** 5%, *** 1%.  

 

 

 

 

 

 

 

 

 
 

 

 




