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1 Introduction

In both standard and behavioral theories of choice under risk and over time, the value of a risky or temporal

prospect is typically modeled as a weighted sum of the utilities of its constituent elements. Thus, in the

standard model of risk preference (von Neumann and Morgenstern, 1944), the expected utility of a lottery

is given by the probability-weighted sum of the utilities of its individual prizes, as evaluated by a Bernoulli

utility function. Under expected utility, concavity of the Bernoulli function captures classical risk aversion,

giving rise to a preference for more equally-distributed payoffs over states of nature. Analogously, in the

standard model of time preference (Samuelson, 1937), the discounted utility of a stream of payoffs is given

by the (exponentially-) discounted sum of the utilities of its individual payoffs, as evaluated by an instan-

taneous utility function. Under discounted utility, concavity of instantaneous utility captures resistance to

intertemporal substitution, giving rise to a preference to smooth payoffs over time. Leading behavioral al-

ternatives, such as rank-dependent utility and cumulative prospect theory for risk (Quiggin, 1982; Tversky

and Kahneman, 1992), and (quasi-) hyperbolic discounting for time (Laibson, 1997; Loewenstein and Pr-

elec, 1992), retain this underlying additive structure while relaxing the assumptions of linear probability

weighting and exponential discounting, respectively.

In principle, risk aversion and intertemporal substitution describe conceptually distinct preferences. Nonethe-

less, in settings where both risk and time are present it is common – and perhaps even natural – to assume

that Bernoulli utility for risk is one and the same as instantaneous utility for time. In standard theory, this

gives rise to the model of discounted expected utility, which has been a workhorse model of economics

dating back at least to Phelps (1962). Alternatives to the standard model take divergent approaches to the

question of whether interchangeability of Bernoulli and instantaneous utilities is maintained. On one hand,

the class of recursive preference models developed by Kreps and Porteus (1978) and Epstein and Zin (1989)

set out precisely to break the nexus – described by Weil (1990, p. 29) as a “purely mechanical restriction

. . . devoid of any economic rationale” – between risk aversion and intertemporal substitution. On the other

hand, prospect-theoretic models of time-dependent probability weighting (Halevy, 2008; Epper et al., 2011;

Epper and Fehr-Duda, 2012) posit a relationship between probability weighting and hyperbolic discounting,

under the assumption that a single function characterizes utility for both risk and time.

The question of whether utility under risk is interchangeable with utility over time is also a core issue in the

design of experiments to elicit time preference, even though such experiments need not of necessity entail

any interaction between risk and time. The primary objective of such studies is usually to estimate the

parameters of a discount function. However, since choices are a product of both the utility and discount

functions, it is necessary to allow for the possibility of non-linear utility.

Unfortunately, until quite recently there were essentially no known methods to elicit the curvature of util-

ity outside the domain of risk. This resulted in the prevalence of two main approaches. First, Coller and

Williams (1999) estimate discount rates under the maintained assumption that utility is linear. These es-
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timates are potentially biased if utility is in fact concave (Frederick et al., 2002, pp. 381–382).1 Second,

Andersen et al. (2008) measure utility by eliciting subjects’ risk preferences, and combine risk and time

preference data to jointly estimate a discount function adjusted for the curvature of utility. This assumes

that utility under risk also represents utility over time; it is found that adjusting for this degree of curvature

results in substantially lower discount rates than when utility is assumed to be linear.

The objectives of this paper are twofold. First, I introduce a novel experiment design that allows a clean

comparison of the curvature of utility elicited under risk (in the absence of delay) and over time (in the

absence of risk). This design builds upon and extends the well-known Holt and Laury (2002, hereinafter HL)

procedure for risk preference, by transposing that design from state-payoff space into time-dated payoffs.

The HL task is popular in its own right as means of eliciting the curvature of utility under risk, and also

forms the basis for the curvature adjustment in the joint estimation approach. Second, I examine the effect

upon estimated discount rates of alternative measurements of utility – namely whether utility is assumed to

be linear, inferred from risk preferences, or revealed through choices over time.

Several related studies have likewise sought to measure the curvature of utility directly from choices over

time.2 In common with this paper, these studies share the key insight that to identify the curvature of

instantaneous utility it is necessary to construct choices involving bundles of time-dated payoffs, as opposed

to boundary choices between all-sooner versus all-later payoffs.3 These studies find, again in common with

this paper, that instantaneous utility is significantly concave yet close to linear. In the following paragraphs,

I discuss these studies, and explain how this paper differs from each of them.

Abdellaoui et al. (2013) compare the curvature of utilities elicited under risk and over time, however they

are not concerned with implications for the estimation of discount rates. For risk, they elicit the certainty

equivalent (CE) of a risky prospect that pays x with probability p or otherwise y. For time, they elicit the

present equivalent (PE) of a temporal prospect that pays x at time k and y today. Thus notice that these

two procedures are not exactly comparable. For risk, the CE is an amount paid in both states. This implies,

firstly, that the impact of diminishing marginal utility upon the marginal rate of substitution vanishes at the

CE (see equation 2 in Section 2.1), and secondly that the CE lies between x and y. By contrast for time, the

PE is an amount paid solely on a single date. The impact of diminishing marginal utility is thus maximized

because the difference in payoffs between the two dates is also maximal (as the payoff on the second date, k,

is implicitly zero), and the PE may be larger than both x and y. Thus Abdellaoui et al. measure the curvature

of utility over different intervals of payoffs for risk and time, and in such a way that diminishing marginal
1Consider a subject who is presented with a binary choice between a smaller-sooner payoff or a larger-later one, and suppose the

former is chosen. There are two factors that combine to lead this subject to reject the larger-later alternative, namely time discounting
and diminishing marginal utility. Therefore if the latter is assumed away, then the effect of the former will be overstated.

2For an expanded discussion of related literature, see Cheung (2016). Other relevant approaches, discussed in detail there,
include those of Takeuchi (2011), Laury et al. (2012), and Attema et al. (2016).

3A distinct but complementary literature studies the preference for improving sequences. In a hypothetical survey framed as
choice over wage profiles, Loewenstein and Sicherman (1991) document a preference for increasing over decreasing sequences.
However, this was not replicated by Gigliotti and Sopher (1997) and Manzini et al. (2010) in incentivized experiments using money.
Note that in this line of research, the undiscounted sum of payoffs is held constant, whereas experiments focused on discounting
incorporate positive and varying interest rates. The literature on sequence preference also motivates psychological models, well
outside the framework of discounted utility, such as those of Loewenstein and Prelec (1993) and Scholten et al. (2016).
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utility has differing effects upon the trade-offs faced in the two domains. The design of the experiment in

this paper seeks to avoid these confounds.

Andreoni and Sprenger (2012a) and Andreoni et al. (2015) compare estimates of utility curvature and dis-

counting elicited using the Convex Time Budget (CTB) procedure to measures derived using the binary

choice methodology of Andersen et al. (2008). The CTB design of Andreoni and Sprenger (2012a) iden-

tifies instantaneous utility by allowing subjects to choose any convex combination between an all-sooner

and an all-later extreme, while the modified CTB of Andreoni et al. (2015) simplifies this to a multinomial

choice. In that environment, the preference to smooth payoffs over time is expressed through the choice

of an interior allocation. In fact, when payments on both dates are sent with certainty, choices occur pre-

dominantly at the corners of the budget set, indicating that utility is close to linear.4 Andreoni and Sprenger

(2012a) and Andreoni et al. (2015) compare this finding to that of a binary choice risk task of the type used

by Andersen et al. (2008). They find that the latter indicates substantially greater utility curvature, and that

the two curvature measures are uncorrelated at an individual level. Andreoni et al. (2015) further show that

the risk-elicited curvature measure overstates the preference for interior allocations in the modified CTB.

Thus, Andreoni and Sprenger (2012a) and Andreoni et al. (2015) compare utilities for risk and time elicited

using different experimental designs (binary choice for risk and CTB for time), with different associated

estimation procedures. However, it is well-known that owing to violations of procedure invariance, risk

and time preferences may not be stable across elicitation procedures (e.g., Tversky et al., 1990; Loomes

and Pogrebna, 2014; Freeman et al., 2016). Moreover, the bulk of previous research on time preference

uses binary choices, and estimation techniques for such data are well established in both the risk and time

preference literatures. Estimation methodology for continuous and multinomial CTB data is less settled (see

discussions in Andreoni and Sprenger, 2012a; Harrison et al., 2013; Andreoni et al., 2015). Thus, inferences

from binary choice data for risk and CTB data for time may differ through any combination of: differences

in experimental design, differences in estimation procedures,5 or genuine differences in the curvatures of

Bernoulli and instantaneous utility.

I seek to avoid these confounds by comparing the curvatures of utility for risk and time within a unified

design and estimation framework, using binary choices for both. Moreover, my binary choice task for time

is derived from a transposition of the standard HL task for risk: rather than varying probabilities (holding

payoffs fixed), it is a payment date that varies instead. This ensures that when comparing these results to the

risk preference task (or a joint estimation procedure as in Andersen et al., 2008), the estimation apparatus

remains unchanged and it is only the source of information on the curvature of utility that differs.

The remainder of the paper proceeds as follows. Section 2 first interprets the HL design for risk in a

state-preference framework before showing how it can be translated into time-dated payoffs and extended to

4Andreoni and Sprenger (2012b) study the case where payments on both dates are subject to risk, finding that interior allocations
become more prevalent. One interpretation is that utility under risk may be more concave than under certainty. However, since this
design involves an interaction of risk and time, the interpretation of this result is open to debate (Harrison et al., 2013; Cheung,
2015; Epper and Fehr-Duda, 2015; Schmidt, 2014).

5To illustrate, Harrison et al. (2013) find convex utility in the data of Andreoni and Sprenger (2012a) using a different estimator.
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identify both utility and discounting. The full experiment design consists of a series of choice lists that differ

in whether the smaller-sooner option offers a more or less temporally-balanced combination of payoffs. If

instantaneous utility is linear, a subject will have the same switch point in all lists, identifying the discount

rate. However if utility is concave, this generates a preference for more temporally-balanced payoff bundles,

resulting in systematic shifts in switching behavior across lists. Section 3 presents the results. The pattern

implied by concave instantaneous utility is indeed observed, and is highly significant, but the magnitude is

not large. The curvature of utility estimated from these choices is significantly concave, but less so than

utility under risk, with the CRRA coefficient being an order of magnitude smaller. Adjusting for this degree

of curvature has only a modest effect upon estimated discount rates compared to assuming linear utility,

and a much smaller effect than when utility is inferred from risk preference using joint estimation. At an

individual level, the curvatures of Bernoulli and instantaneous utility are uncorrelated. Joint estimates that

constrain them to be the same predict time preference choices poorly because they overstate the preference

for temporally-balanced payoff bundles. Section 4 concludes.

2 Design

2.1 State-preference representation of the HL design for risk

The HL experiment consists of a set of choices between two alternatives, labeled Options A and B, and is

customarily presented as a choice list. Each alternative is a risky prospect that pays a low prize xb in the

“bad” state, with probability 1− pg, or a high prize xg > xb in the “good” state, with probability pg. Options

A and B represent two distinct payoff vectors, and in a given row of the choice list the probability pg is the

same for both alternatives. Moving down the rows of the list, the payoff vectors remain unchanged and it is

only the probability pg that varies.

Figure 1 illustrates using the payoffs used in this paper. Option A is a lottery that pays $17 in the bad state

(plotted on the horizontal axis), and $20 in the good state (on the vertical).6 Option B pays $1 in the bad

state, and $38 in the good state.7 Option A is safer in that the difference in payoffs xg− xb is relatively

small, whereas Option B is risky in comparison; in Figure 1, this is represented by the fact that Option A

lies closer to the diagonal, whereas Option B is close to the axis. In keeping with the original HL design,

the probability pg starts at 0.1 in the first row, and increases in increments of 0.1 up to a value of 1.0 in the

final row.8 The expected value of Option B thus increases more rapidly than that of Option A, and in the

final row Option A is a dominated choice.

The rank-dependent utility of a risky prospect that pays xb with probability 1− pg and xg > xb otherwise is:

6All payments are in Australian dollars. At the time of the experiments, one AUD was worth roughly USD 0.93 or EUR 0.68.
7These payoffs are thus approximately ten times the nominal stakes in the original HL experiment, however they have been

modified slightly to generate more moderate interest rates when transposed into time-dated payoffs. The original HL payoffs were
A = ($1.60,$2.00) and B = ($0.10,$3.85).

8Full parameters of the risk preference experiment are enumerated in Appendix C.1.

5



Figure 1: State-preference representation of the HL design for risk

xb1 17

xg

20

38

A

B

u” = 0, choose A

u” = 0, choose B

u” < 0, choose A

↑pg

xg = xb

RDU (xb,1− pg;xg, pg) = [1−w(pg)] ·u(xb)+w(pg) ·u(xg) (1)

where w(p) is the probability weighting function, and u(x) is the Bernoulli utility function. The (absolute)

slope of an indifference curve is thus:

−
dxg

dxb

∣∣∣∣
RDU

=
1−w(pg)

w(pg)
· u
′ (xb)

u′ (xg)
(2)

This slope is a product of two terms: [1−w(pg)]/w(pg) is the probability-weighted odds of the bad state,

while the ratio of marginal utilities u′ (xb)/u′ (xg) captures the preference to smooth payoffs over the good

and bad states of nature.

For the benchmark case of expected utility with a linear utility function, w(p) = p and u(x) = x, the slope

reduces to the objective odds (1− pg)/pg and the indifference curves are linear. In the early rows of the

choice list pg is small and the indifference curves steeper than the chord AB, such that a risk-neutral subject

prefers Option A. Moving down the rows of the list, as pg increases the indifference curves become flatter,

and the subject eventually switches to Option B. In particular, a risk-neutral subject chooses Option A in the

first four rows, and Option B thereafter.9

Relative to this benchmark, a risk-averse subject continues to choose Option A at higher probabilities

of the good state pg. This may occur as the subject over-weights the odds of the bad state,10 such that

9This is true both for the original HL parameters in footnote 7, as well as the modified parameters used here.
10Under rank-dependent utility, the indifference curves will be kinked at the 45-degree diagonal where the rank-ordering of prizes

is reversed. Figure 1 thus depicts stylized indifference curves under expected utility.
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[1−w(pg)]/w(pg)> (1− pg)/pg and/or as Bernoulli utility is concave, such that u′ (xb)/u′ (xg)> 1. The

impact of diminishing marginal utility vanishes when xg = xb, while it increases as the difference in payoffs

grows. The indifference curves thus become steeper as they approach the vertical axis, such that the subject

chooses Option A at larger values of pg owing to a preference to avoid unequal payoffs across states.

2.2 Time-dated translation of the HL design for time

To translate the logic of the HL procedure into the domain of time preference, Options A and B are recast

as temporal prospects that pay an amount xt on a “sooner” date t, and an additional amount xt+k on a

“later” date t + k. Letting the date of the experiment be 0, t is the “front-end delay” to the sooner payment,

while k is the “back-end delay” between the sooner and later payments. Throughout this paper, t and k are

expressed in weeks, while interest and discount rates are expressed in annualized terms. Consistent with the

HL procedure for risk, each set of choices is presented as a choice list. Within a given list, Options A and B

represent two distinct payoff vectors, and in a given row the payment dates are the same for both alternatives.

Moving down the rows of the list, the payoff vectors remain unchanged and it is only the payment dates,

and specifically only the back-end delay k, that varies.

Figure 2 presents the format of the choice list for the pair of payoff vectors corresponding to the risk pref-

erence task described in Section 2.1. In the first row, Option A offers $17 in 1 week and $20 in 28 weeks,

while Option B offers $1 in 1 week and $38 in 28 weeks. Thus Option A is “smaller-sooner” in that it offers

a smaller total payment in undiscounted terms, but more on the sooner date, while Option B is “larger-later”.

The front-end delay t is constant and equal to 1 week for all choices. The back-end delay k starts at 27 weeks

in the first row and falls in decrements of 3 weeks down to 0 weeks in the final row. Thus in the final row all

payments accrue after 1 week, such that Option A is a dominated choice.

By choosing Option B in a given row, a subject forgoes $17− $1 = $16 from the sooner payment and in

exchange receives an additional $38−$20 = $18 in the later payment, a return of 12.5%. Since the subject

must wait k weeks to attain this return, the implied annual interest rate is r = 1.12552/k−1. As k falls, the

subject waits a shorter length of time to realize the same return, and so the annual interest rate increases.11

Relative to a more conventional time preference choice list, this design differs in two key respects. First,

all choices involve bundles of payments on two dates, as opposed to either the sooner or later date. Second,

variation in the interest rate is generated by varying payment dates while holding the payoffs constant, rather

than the other way around. As I explain next, this makes it possible to vary interest rates orthogonally to

implications for intertemporal substitution, i.e. whether it is the sooner, later, or neither option that offers a

more temporally-balanced bundle of payoffs.

11At ten times the original HL stakes for risk in footnote 7, we would have a return of 23.3% over k weeks, and the resulting
annual interest rates would thus be considerably higher.
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Figure 2: Sample choice list instrument for time preference elicitation

DECISION TABLE 1 

Make your choices by marking an “X” in the appropriate box in each row. 

Weeks 
from 
today 

 Su M Tu W Th F Sa  
Decision Option A Your Choice Option B  2014  

 May  
      1 2 3  

1 
$17 in 1 week 

and 
$20 in 28 weeks 

Option A □   Option B □ 
$1 in 1 week 

and 
$38 in 28 weeks 

0  4 5 6 7 8 9 10  
1  11 12 13 14 15 16 17  
2  18 19 20 21 22 23 24  

2 
$17 in 1 week 

and 
$20 in 25 weeks 

Option A □   Option B □ 
$1 in 1 week 

and 
$38 in 25 weeks 

3  25 26 27 28 29 30 31  
  June  

4  1 2 3 4 5 6 7  
3 

$17 in 1 week 
and 

$20 in 22 weeks 
Option A □   Option B □ 

$1 in 1 week 
and 

$38 in 22 weeks 
5  8 9 10 11 12 13 14  
6  15 16 17 18 19 20 21  
7  22 23 24 25 26 27 28  

4 
$17 in 1 week 

and 
$20 in 19 weeks 

Option A □   Option B □ 
$1 in 1 week 

and 
$38 in 19 weeks 

8  29 30       
  July  

8    1 2 3 4 5  
5 

$17 in 1 week 
and 

$20 in 16 weeks 
Option A □   Option B □ 

$1 in 1 week 
and 

$38 in 16 weeks 
9  6 7 8 9 10 11 12  

10  13 14 15 16 17 18 19  
11  20 21 22 23 24 25 26  

6 
$17 in 1 week 

and 
$20 in 13 weeks 

Option A □   Option B □ 
$1 in 1 week 

and 
$38 in 13 weeks 

12  27 28 29 30 31    
  August  

12  31     1 2  
7 

$17 in 1 week 
and 

$20 in 10 weeks 
Option A □   Option B □ 

$1 in 1 week 
and 

$38 in 10 weeks 
13  3 4 5 6 7 8 9  
14  10 11 12 13 14 15 16  
15  17 18 19 20 21 22 23  

8 
$17 in 1 week 

and 
$20 in 7 weeks 

Option A □   Option B □ 
$1 in 1 week 

and 
$38 in 7 weeks 

16  24 25 26 27 28 29 30  
  September  

17   1 2 3 4 5 6  
9 

$17 in 1 week 
and 

$20 in 4 weeks 
Option A □   Option B □ 

$1 in 1 week 
and 

$38 in 4 weeks 
18  7 8 9 10 11 12 13  
19  14 15 16 17 18 19 20  
20  21 22 23 24 25 26 27  

10 
$17 in 1 week 

and 
$20 in 1 week 

Option A □   Option B □ 
$1 in 1 week 

and 
$38 in 1 week 

21  28 29 30      
  October  

21     1 2 3 4      
22  5 6 7 8 9 10 11      
23  12 13 14 15 16 17 18      
24  19 20 21 22 23 24 25      
25  26 27 28 29 30 31       

  November      
25  30      1      
26  2 3 4 5 6 7 8      
27  9 10 11 12 13 14 15      
28  16 17 18 19 20 21 22      
29  23 24 25 26 27 28 29      

  Su M Tu W Th F Sa      
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2.3 Disentangling utility curvature and time discounting

The discounted utility of a temporal prospect that pays xt on date t and xt+k on date t + k is:

DU (xt , t;xt+k, t + k) = D(t) · v(xt)+D(t + k) · v(xt+k) (3)

where D(t) is the discount function, and v(x) is the instantaneous utility function.12 The (absolute) slope of

an indifference curve is thus:

− dxt+k

dxt

∣∣∣∣
DU

=
D(t)

D(t + k)
· v′ (xt)

v′ (xt+k)
(4)

This slope is again a product of two terms: D(t)/D(t + k) is the relative value of utility at date t compared

to t + k, while v′ (xt)/v′ (xt+k) captures the preference to smooth payoffs over time.

For the benchmark case of exponential discounting with linear instantaneous utility, D(t) = 1/(1+ρ)t/52

(where ρ is the annual discount rate) and v(x) = x, the slope reduces to (1+ρ)k/52 and the indifference

curves are linear. In early rows of the choice list, k is large and the indifference curves relatively steep, so a

subject for whom ρ is sufficiently large initially prefers Option A. Moving down the list, as k decreases the

indifference curves become flatter, and the subject eventually switches to Option B. In particular, the subject

chooses Option A as (1+ρ)k/52 > 1.125, i.e. as ρ > r, and Option B otherwise.

Thus in the benchmark case, this design functions exactly as a conventional time preference choice list, in

that the “switch point” from smaller-sooner to larger-later identifies bounds on the discount rate. Therefore,

in contrast to the benchmark case for risk, there is no point prediction for the number of sooner choices. This

simply reflects the fact that the discount rate ρ is an additional preference parameter that must be estimated,

whereas in the case of risk the odds are objectively determined by the experimenter.

For the more general case of non-linear instantaneous utility, it follows that it will not be possible to also

identify the curvature of utility from a single choice list. Figure 3 depicts indifference curves for two subjects

who both prefer Option A in a given row of the list. The first, represented by the linear indifference curve,

prefers Option A on account of impatience, i.e. ρ > r. The second, represented by the convex indifference

curve, is relatively patient, i.e. ρ < r,13 but has concave instantaneous utility (such that v′ (xt)/v′ (xt+k)> 1

for xt+k > xt) and prefers A because it offers a more temporally-balanced stream of payoffs. Clearly, it is

not possible to distinguish these cases simply by observing the switch point in a single choice list.

12The arguments in this section extend also to certain specifications in which intertemporal utility is not additively separable,
such as the one studied by Andersen et al. (2018) and Cheung (2015). This is because, in contrast to those studies, the design here
purposefully avoids interacting risk with time. See Appendix A.2 on this point.

13Where the indifference curve meets the diagonal xt+k = xt , the impact of diminishing marginal utility vanishes and the slope
in equation 4 reflects the pure effect of discounting. At this point, the tangent of the indifference curve is flatter than the chord AB.
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Figure 3: Time-dated payoff representation of the HL design for time
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Figure 3 also suggests two strategies by which it may be possible to distinguish between the cases. First,

suppose subjects also face choices between A and C, where C is the payoff vector ($33,$2). Relative

to A, where B represents a deferral of payment, C represents expediting of payment at the same interest

rate of 12.5% over k weeks. Then at the same row of an analogously-constructed CA choice list, the

impatient subject with linear utility prefers C. On the other hand, the patient subject with concave utility

continues to prefer A, both on account of the return for delay (discounting) and because A offers a more

temporally-balanced stream of payoffs (utility). Second, consider choices between A and the payoff vector

B’=($9,$29), which is the midpoint of AB. Relative to A, B’ again represents deferral of payment, however

the amount being deferred is smaller such that B’ is less unbalanced than B. At the same row of an AB’

choice list, the impatient subject with linear utility continues to prefer A. However the patient subject with

concave utility may choose B’, but not B, if willing to save a smaller, but not a larger, amount.

2.4 Full design

The full design involves the five payoff vectors depicted in Figure 3: C = ($33,$2), C’ = ($25,$11), A =

($17,$20), B’ = ($9,$29), and B = ($1,$38). Of these, C is “smallest-soonest”, while B is “largest-latest”.

By construction, for any two vectors, the return for choosing the larger-later one is 12.5% over k weeks.

Each subject completed six time preference choice lists, each in the format shown in Figure 2, using the

following pairs of payoff vectors: CA, C’A, AB’, AB, CB, and C’B’.14 In each list, the smaller-sooner

14Thus note that, had a subject faced a choice from the full menu of five bundles, this would amount to an instance of the modified
CTB of Andreoni et al. (2015). Naturally, binary choices contain more information at the cost of requiring more responses. Suppose,
for example, that B is chosen from the choice set {C,A,B} in Figure 3. Then it can be inferred that B would also be chosen from
{A,B}, but the choice from {C,A} cannot be determined. The experiment in this paper tests the prediction that a subject with
concave utility switches from C to A before (at a lower interest rate than) switching from A to B.
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option was shown on the left as Option A, while the larger-later one was shown on the right as Option B –

thus the alternatives were not identified as C, B’, etc. in materials presented to subjects. The front-end delay

t was always one week, and the back-end delay k declined from 27 down to 0 weeks in each choice list,

generating annual interest rates that increase from 25.46% up to infinity (in the final dominated choice).15

Because this design varies interest rates orthogonally to how near or far the payoff vectors are from the

diagonal in Figure 3, it is possible to identify both the discount rate and curvature of instantaneous utility

directly from choices over time – without relying on a separate risk preference task or assuming that utility

is the same for both risk and time.

Since by design the interest rate is the same at the corresponding row of each choice list, a subject with

linear utility will have the same switch point in each. This is the analog to the point prediction that a risk-

neutral subject makes four safe lottery choices in the risk task. On the other hand, a subject with concave

instantaneous utility prefers to smooth payoffs over time. This subject will have a later switch point in the

AB and AB’ choice lists, in which the smaller-sooner option is more temporally-balanced, than in the CA

and C’A lists, in which it is the larger-later option that is more balanced. Details of this prediction are set out

in Appendix A.1. It should be emphasized that this prediction holds regardless of the shape of the discount

function, and does not rely upon exponential discounting.

In addition to the six time preference choice lists, each subject also completed a single risk preference

choice list, using the classic AB parameter set described in Section 2.1. This makes it possible to compare

the curvature of utility elicited under risk and over time, in a within-subjects design.

Two limitations of the design may be acknowledged. First, the annual interest rates offered in the experiment

are rather high,16 as it was not possible to extend k beyond six months since the last payment date fell shortly

before the start of summer vacation.17 Second, as all choice lists have the same front-end delay of one week,

it is not possible to identify parameters of a non-exponential discount function. Rather, it is only possible

to estimate an exponential discount rate (which may also be interpreted as the exponential component of

a quasi-hyperbolic model). This design choice was made because the focus of this paper is to examine

implications of concave instantaneous utility that do not depend on the shape of the discount function.

2.5 Procedures

A total of 122 student subjects participated in the experiment at the research laboratory of the School of

Economics at The University of Sydney between 6 and 13 May 2014. The mean age of subjects was 20.4

15The annual rates are: 25.46% at k = 27 weeks; 29.07% at k = 24; 33.86% at k = 21; 40.53% at k = 18; 50.43% at k = 15;
66.59% at k = 12; 97.49% at k = 9; 177.54% at k = 6; 670.27% at k = 3; and infinity at k = 0. Full parameters of all time preference
choice lists are enumerated in Appendix C.2.

16The interest rates are comparable to those offered by Andreoni and Sprenger (2012a) (which vary from 20.5% to 1,300.9%),
but higher than those offered by Andersen et al. (2014) (which vary from 5% to 50%).

17Alternatively, it would be possible to generate lower interest rates by making the payoff vectors closer in undiscounted terms.
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years, and 55.7% were males. Subjects were recruited using ORSEE (Greiner, 2015). To ensure that subjects

would still be at university when payments were sent, students already in their final semester of study were

not eligible to participate. Each session ran for approximately 75 minutes including instruction and payment,

and the average payment was $45.2 (approximately USD 42.0 or EUR 28.5), inclusive of a $10 show-up

fee. A total of 12 sessions were conducted, and the order of presentation of time preference choice lists was

varied between sessions.18 Each choice list consisted of ten decisions, so each subject made 70 choices in

total. The experiment was conducted by pen-and-paper.

At the end of the session, one decision was drawn randomly and independently for each subject, and they

were paid according to the choice made in that decision. Following the procedure of Andreoni and Sprenger

(2012a), the $10 show-up fee was split into two equal installments of $5 paid by check on the sooner and

later payment dates of the decision selected to count for payment. The payments chosen by the subject were

added to these checks. Since the subject would in any case have to bank two checks, this ensured that there

was no convenience benefit from choosing a more unbalanced payoff vector in order to amass payment on

a single date. If one of the ten risk preference decisions was selected to count for payment, the realization

of the chosen lottery was paid in cash at the end of the session, however the show-up fee was still paid in

two checks of $5, sent one and sixteen weeks after the experiment. This ensured that any wealth effect

attributable to the show-up fee would be the same for both risk and time preference decisions.19

The procedures also incorporated several measures introduced by Andreoni and Sprenger (2012a), as adapted

by Cheung (2015), to enhance the credibility of payment and minimize the background risk of receiving pay-

ment in the future. First, all checks were drawn on the campus branch of the National Australia Bank and

mailed by Australia Post guaranteed Express Post. Australia Post guarantees next-day delivery for articles

mailed by Express Post, at a cost of $6 per envelope. Since every subject addressed their own envelopes

prior to making their choices, they could observe that the experimenter was willing to pay $6 to mail a check

to the value of as little as $5 by Express Post. This imparted a high level of credibility to the payments.20

At the end of the session, each subject wrote their own payment amounts and dates on the inside of each

envelope, and was given a copy of the receipt form showing these amounts and dates, as well as the business

card of the experimenter to contact in the event of a payment not arriving as expected.

3 Results

Section 3.1 describes aggregate behavior in the risk and time preference tasks, before Sections 3.2 and 3.3

report structural estimates of utility and discount functions for a representative agent. The key findings

are that instantaneous utility is significantly concave, but less so than Bernoulli utility for risk, and the

18Instructions for one of the orders are in Appendix D. There were four orders in total, enumerated in Appendix C.3. Within
each, the first four choice lists were a different permutation of CA, C’A, AB’ and AB, and the risk preference task was always last.

19Sixteen weeks represents the median of the (non-degenerate) later payment dates used in the time preference tasks.
20In the post-experiment questionnaire, all but two subjects reported trusting that they would be paid as stated in the instructions.
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effect of correcting for the curvature of instantaneous utility upon the discount rate is modest. Section 3.4

considers joint estimation, which has a more pronounced effect, while Section 3.5 introduces an alternative

to discounted utility that is compatible with more substantial utility curvature. Section 3.6 reports a number

of robustness checks to the representative agent estimates. Section 3.7 turns to estimation and prediction at

an individual level. It shows that the curvatures of Bernoulli and instantaneous utility are not significantly

correlated, and individual estimates that infer the curvature of utility from choices over time predict subjects’

time preference choices better than linear utility, while joint estimates do not.

3.1 Descriptive analysis

Figure 4 summarizes aggregate choice behavior in the experiment. The upper left panel reports the percent-

age of subjects who choose the safer Option A for each row of the risk preference task. The dashed line

depicts the benchmark prediction under risk neutrality, the solid line depicts observed choices, and error

bars represent ± one standard error of the mean for a binomial proportion. The lower left panel reports a

histogram of the number of safe choices made by each subject. The median subject makes six such choices,

and the number of safe choices differs significantly from the risk-neutral benchmark of four, with p< 0.0001

in both a sign test and a Wilcoxon signed-ranks test (all tests reported throughout the paper are two-sided).21

Turning to behavior in time preference tasks, the upper right panel reports the percentage of smaller-sooner

choices as a function of the back-end delay, separately for the pooled AB/AB’ and CA/C’A choice lists.

Appendix B.1 reports separate figures for each list. The proportion of sooner choices declines smoothly as

the back-end delay falls and the interest rate increases, suggesting that subjects understood the underlying

trade-off entailed in waiting a longer or shorter time for a given-sized increase in undiscounted payoffs.

Under linear utility subjects are predicted to make the same choices in all lists, while departures from lin-

earity are expressed as differences across lists. In particular, a subject with concave utility prefers to smooth

payoffs over time, and thus makes more sooner choices in AB/AB’ choice lists (in which the smaller-sooner

option is more temporally balanced) than in CA/C’A lists (in which the larger-later option is more balanced).

The upper right panel of Figure 4 confirms a small, but clearly discernible shift in the direction predicted by

concave utility. At every back-end delay except zero (where the sooner option is dominated), subjects make

more sooner choices in AB/AB’ than in CA/C’A. To illustrate the magnitude of these differences, the error

bars represent ± one standard error of the mean for a binomial proportion.

The lower right panel of Figure 4 reports a histogram of the difference in the number of sooner choices

made by each subject between the AB/AB’ and CA/C’A choice lists. The mode of this distribution is at

zero, corresponding to linear utility, but there is greater mass to the right indicating a tendency toward

concavity. The median subject makes a total of 13 sooner choices in the combined AB/AB’ choice lists,

21The difference remains highly significant when four subjects who reswitch by choosing Option A after previously choosing
Option B are excluded from the analysis. All four subjects reswitch exactly once, and one also makes a dominated choice by
choosing Option A in the final row.
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Figure 4: Choice behavior in risk and time preference tasks
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compared to 11.5 in the CA/C’A lists. This difference is highly significant, with p = 0.0013 in a sign test,

or p = 0.0006 in a Wilcoxon signed-ranks test.22 This evidence of a systematic tendency to prefer the more

balanced payoff vector A, consistent with a preference to smooth payoffs over time, does not rely on any

assumptions on the functional form of utility.23

Figure 4 establishes that, in both risk and time preference, there is clear evidence of the choice patterns

implied by concave utility. The finding for risk replicates other studies that use the HL design, while the

finding for time is a novel result of transposing that design into the domain of time preference. Moreover,

while both effects are highly significant, it is clear that the magnitude is smaller in choice over time. This

suggests that while instantaneous utility for time is indeed concave, it may be less concave than Bernoulli

utility for risk. To formalize this observation, I next estimate structural preference models for a representa-

tive agent, building upon well-established procedures documented by Harrison and Rutström (2008) for risk

and Andersen et al. (2008, 2014) for time.

3.2 Utility curvature under risk

For risk preference, I assume a constant relative risk aversion (CRRA) functional form for Bernoulli utility:

u(x) =
x1−α

1−α
(5)

such that α = 0 corresponds to linear utility, while α > 0 implies concave utility. I begin with expected

utility, but the exposition treats this as the special case of rank-dependent utility with w(p) = p. Given some

candidate value of α (and probability weighting parameters), the rank-dependent utility of each lottery is

evaluated. Then, adopting a “contextual” error specification (Wilcox, 2011), the probability that Option B

is chosen is modeled as:

Pr(B) = Λ(((RDUB−RDUA)/ν)/µ) (6)

where Λ(·) is the cumulative logistic distribution function, ν is the difference between the maximum and

minimum utilities over all prizes in the choice set,24 and µ is a structural “noise” parameter for the risk
22The difference remains highly significant when 30 subjects who make one or more non-monotonic choices are excluded from

the analysis. There are 26 subjects who reswitch by choosing smaller-sooner after previously choosing larger-later within a given
list: 13 reswitch once, seven twice, and six more than twice over six choice lists. There are 17 who make dominated choices by
choosing smaller-sooner in the final row of a list: six do so once, eight twice, and three more than twice. Note that dominated
choices are less costly in the time preference tasks: in the AB choice list the cost is $2, compared to $18 in the risk preference task.
The stochastic choice model in equation 9 allows that non-monotonic choices may occasionally occur.

23As discussed in Section 2.3, concave utility may also motivate differences in behavior between AB’ and AB, or between CA
and C’A, however no significant differences were found.

24Division by ν ensures that the normalized utility difference lies in the unit interval. Since subjects only face a single choice set
for risk, this amounts to re-scaling the “noise” parameter with no effect on estimates of the core preference parameters. However,
this contextual error specification will be generalized to choices over time, where different decisions involve different payoff sets.
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preference choices. As µ goes to zero, the lottery with the larger RDU is chosen deterministically, while as

µ goes to infinity, the choice probability goes to one-half such that choices are essentially random. The data

consists of 1220 observations, being ten binary choices in the risk preference task for each of 122 subjects.

The parameters are estimated to maximize the likelihood of the observed choices using Stata 16, with robust

standard errors clustered at the level of individual subjects.

Model (1) in Table 1 reports estimates under expected utility. The point estimate of α is 0.547, with a

standard error of 0.036. This implies substantial concavity of Bernoulli utility, and sits comfortably within

the range of previously-reported estimates using similar experimental designs and estimation procedures.25

As discussed in Section 2.1, risk aversion in HL-style tasks may be driven by curvature of the utility function,

and/or by non-linear probability weighting. Therefore, just as assuming linear utility may cause estimates of

the discount rate to be biased in choice over time, assuming linear probability weighting may cause estimates

of the utility function to be biased in choice under risk. Indeed, Drichoutis and Lusk (2016) claim that risk

aversion in HL tasks may be solely a product of probability weighting as opposed to utility curvature: in

their estimates of a rank-dependent model they find significant non-linear probability weighting, while the

CRRA coefficient does not differ significantly from zero. While this finding is arguably at odds with other

existing literature,26 it highlights the importance of allowing for probability weighting when comparing the

curvature of utility elicited under risk and over time.

To examine the robustness of concave Bernoulli utility to the possibility of non-linear probability weighting,

I estimate rank-dependent models for each parametric form of the probability weighting function in Section

3.6 of the survey by Fehr-Duda and Epper (2012). The Bayesian information criterion (BIC) in fact selects

the expected utility specification of model (1) in Table 1. The Akaike information criterion (AIC), which

penalizes model complexity less severely than the BIC, selects a model with a single-parameter weighting

function from the theory of disappointment aversion of Gul (1991): w(p) = p/ [1+(1− p)η ]. The resulting

estimates are set out as model (2) in Table 1. This weighting function simplifies to linearity at η = 0, a

restriction that is clearly rejected with p = 0.005. The implied weighting function is convex, and is depicted

by the dashed line in Figure 5. For the purpose of this paper, the effect on the estimate of utility curvature

is of greatest interest. This estimate is now smaller (and less precisely estimated) than under expected

utility. However, it will transpire that it is still considerably greater than the curvature of instantaneous

utility estimated from choices over time.

25For example, Harrison and Rutström (2008, Table 8) report CRRA estimates under expected utility for three data sets, using
similar estimation techniques to those adopted here. For the data of Hey and Orme (1994), the CRRA estimate is 0.61 (standard
error 0.03), while in their replication of that design it is 0.53 (standard error 0.05). For the data of Holt and Laury (2005), the
estimate is 0.76 (standard error 0.04). More recently in a field setting, Andersen et al. (2014) report an estimate of 0.65 (standard
error 0.04) in a model that employs the Wilcox (2011) contextual error specification.

26For example, in their re-analysis of the data of Holt and Laury (2005), Harrison and Rutström (2008, Table 8) estimate the
same rank-dependent specification – with CRRA utility and a Tversky and Kahneman (1992) weighting function – as Drichoutis
and Lusk (2016). In this specification, Harrison and Rutström do not find significant non-linear probability weighting, while their
point estimate of the CRRA coefficient is actually (insignificantly) larger than in the corresponding expected utility specification.
In a representative sample of adult Danes, Andersen et al. (2014) find evidence of non-linear probability weighting but conclude
that the bulk of aversion to risk derives from concavity of the utility function.
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Figure 5: Estimated probability weighting functions
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3.3 Utility curvature and discounting over time

I next set out how the data from the six time preference choice lists can be used to estimate both the curvature

of instantaneous utility and the discount rate, adopting similar procedures to Section 3.2 and Andersen et al.

(2008, 2014). I assume a CRRA form for the instantaneous utility function:

v(x) =
x1−θ

1−θ
(7)

and an exponential form for the discount function:

D(t) =
1

(1+ρ)
t

52
(8)

where θ captures the curvature of instantaneous utility and ρ is the annual discount rate. Given candi-

date values of θ and ρ , the discounted utility of each alternative is evaluated and the probability that the

alternative presented as Option B is chosen is modeled as:

Pr(B) = Λ(((DUB−DUA)/λ )/σ) (9)
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where λ is a contextual normalization term,27 and σ is a noise parameter for the time preference choices.

It is worth emphasizing that this framework is essentially the same as that of Andersen et al. (2008, 2014),

except that information on utility curvature is obtained directly from choices over time instead of a separate

risk preference task, so it is not necessary to equate Bernoulli utility for risk with instantaneous utility for

time. The data consists of 7320 observations, being ten binary choices in each of six time preference choice

lists for each of 122 subjects. The parameters θ , ρ , and σ are estimated by maximum likelihood in Stata 16,

with robust standard errors clustered at the level of individual subjects.

Before turning to the full results, model (3) in Table 1 reports a linear utility specification, with θ constrained

to zero, giving an estimated annual discount rate of 63.9%. While this is higher than prevailing market inter-

est rates, it is not extreme by the standards of the literature.28 Model (4) reports a linear utility specification

using only the data of the CB choice list in which the smaller-sooner option pays ($33,$2) while larger-later

pays ($1,$38). This is included for comparability with more conventional designs that offer all-sooner or

all-later payments, as well as the subsequent replication of joint estimation invoking utility from the risk

preference task in Section 3.4. The resulting estimate of the discount rate is very close to that of model (3).

Model (5) reports the main discounted utility estimates, allowing non-linear instantaneous utility revealed

through data on choices over time. In this model, the point estimate of θ is 0.018 with a standard error

of 0.006, indicating significantly concave utility. This is consistent with the model-free analysis in Section

3.1. However, the estimate of θ is an order of magnitude smaller than estimates of α from risk preference

data in models (1) and (2). Because the estimated curvature of instantaneous utility is modest, the effect of

correcting for this concavity upon the discount rate is mild: the estimate of ρ falls from 63.9% in model (3)

to 62.6% in model (5). Both the AIC and BIC select the non-linear utility specification of model (5) over

the more parsimonious linear utility specification in model (3).

3.4 Joint estimation

The modest effect of correcting for the curvature of instantaneous utility may be contrasted with that of a

joint estimation procedure that combines risk and time preference data and imposes a single utility function

upon both. To illustrate, I pool the data of the risk task with that of the CB choice list, which is comparable

to conventional time preference data in that the payoffs are essentially at the all-sooner or all-later corners.

27In equation 6 for risk, ν represented the difference between the best and worst lotteries in the choice context, being the utilities
of the best or worst prizes implicitly received in both states of nature. In equation 9 for time, λ now represents the difference
between the best and worst payoff streams, being the discounted utilities of the best or worst payoffs received on both dates. That
is, λ = (D(t)+D(t + k)) · (v(xmax)− v(xmin)) , where xmax and xmin are the best and worst payoffs in a given choice context. See
Andersen et al. (2018, equation 12) for a related extension of contextual utility to choice over time.

28Among recent studies, Takeuchi (2011) imputes an annual discount rate of 726% in a design that theoretically controls for
non-linear utility, while Benhabib et al. (2010) report annual discount rates on the order of 472%. However, neither of these studies
employ a front-end delay. Laury et al. (2012) is an example of a modern study using student subjects and a front-end delay design.
Their dollar discount rate task (Task D) is a standard time preference choice list in the manner of Coller and Williams (1999). From
this task, they estimate an annual discount rate of 55.5% assuming linear utility, which is comparable to the estimate reported here.
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The probability of making a risky lottery choice is modeled by equation 6 while that of making a larger-

later choice is modeled by equation 9. The noise terms µ and σ are allowed to differ across risk and time

preference tasks, but the utility function is constrained to be the same for both, such that α = θ . The data

consists of 2440 observations, being ten risk and ten time preference choices for each of 122 subjects, and

the parameters are estimated to maximize the joint likelihood of both sets of choices.

Model (6) in Table 1 reports joint estimates assuming expected utility for risk. The estimate of utility

curvature is 0.456 with a standard error of 0.012, reflecting the influence of risk aversion in the lottery

choices, while the estimated annual discount rate falls to 6.5%. This compares to an estimate of 62.2% in

model (4), which uses the same CB time preference data but assumes linear utility.

To allow for non-linear probability weighting in the risk preference data, I again re-estimate the joint model

assuming rank-dependent utility for each parametric weighting function in Fehr-Duda and Epper (2012).

The effect upon utility and discounting is very similar across all specifications: the estimate of utility curva-

ture falls to between 0.419 and 0.427 while the estimated discount rate increases slightly to between 10.0%

and 10.9%. Both the AIC and BIC select a specification with a single-parameter weighting function from

Prelec (1998): w(p) = exp
(
−(− ln(p))γ

)
, and the resulting estimates are reported as model (7) in Table

1. This weighting function simplifies to linearity at γ = 1, a restriction that is rejected with p < 0.0001 in a

Wald test. The implied weighting function is inverse-S shaped, and is depicted by the solid line in Figure 5.

For the purpose of this paper, the key conclusions are twofold. First, even allowing for probability weighting,

joint estimates of utility curvature which impose the restriction that α = θ are considerably larger than the

discounted utility estimate in model (5) which imposes no such restriction. Second, relative to the linear

utility benchmark of model (4), the effect upon the discount rate of correcting for this amount of curvature

is dramatic. The discount rates in models (6) and (7) are substantially smaller than the lowest interest rate

offered in the experiment, suggesting that joint estimation may have yielded an over-correction.

3.5 Discounted incremental utility

In Sections 3.3 and 3.4, and models (3) through (7) in Table 1, I explored the effect of alternative assumptions

about the nature of instantaneous utility – whether it is taken to be linear as in models (3) and (4), revealed

through responses to varying opportunities for intertemporal substitution as in model (5), or equated with

Bernoulli utility for risk as in models (6) and (7). It was assumed throughout that the underlying framework

to evaluate streams of payoffs over time is given by the discounted utility model in equation 3.

Blavatskyy (2016) has argued that discounted utility may give rise to violations of intertemporal monotonic-

ity when utility is not linear. In particular, it is possible for discounted utility to increase when a payoff is

split into two parts, one of which is slightly delayed. That is, if v(x) is sufficiently concave while D(t + k)

is close to D(t) it is possible to have:
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D(t) · v(x)< D(t) · v(x/2)+D(t + k) · v(x/2)

This implies that there may be a benefit to delay without any compensating increase in the magnitude of

the payoff. The issue occurs when the impact of diminishing marginal utility as a payoff is divided in two

outweighs the impact of discounting as a portion of it is delayed. This may occur in any model that has the

discounted utility structure of equation 3, and is not specific to any functional form of the discount function

D(t) such as exponential discounting. Assuming discounted utility, it can be avoided only if utility is linear.

It thus represents a theoretical argument for why discounted utility may be incompatible with substantial

non-linearity of instantaneous utility, as found empirically in model (5) of Table 1.

The argument of Blavatskyy (2016) is analogous to how simple probability weighting may violate first-

order stochastic dominance in the original prospect theory of Kahneman and Tversky (1979). In that setting,

the solution proposed by Quiggin (1982) is to construct decision weights from a transformation of the

cumulative probabilities instead of directly transforming the probabilities themselves. In the context of

time, the solution proposed by Blavatskyy (2016) is to apply a utility transformation to the cumulative

payoffs instead of directly to the payoffs themselves. This gives rise to the model of discounted incremental

utility (Blavatskyy, 2016, equation 3) which replaces discounted utility by:

DIU (xt , t;xt+k, t + k) = D(t) ·V (xt)+D(t + k) · [V (xt + xt+k)−V (xt)] (10)

This states that future payoffs are evaluated by the discounted value of their incremental contribution to the

utility of the cumulated payoffs, V (·).

Estimation of the discounted incremental model requires data on choices over non-degenerate streams, such

as that reported in this paper,29 as opposed to conventional choices over all-sooner versus all-later payoffs

which never cumulate. If the cumulative utility function is linear then equation 10, like equation 3, simplifies

to discounted linear utility, in which case a subject is again predicted to have the same switch point in all six

choice lists. However if the cumulative utility function is concave, I show in Appendix A.3 that discounted

incremental utility again predicts a later switch point in AB/AB’ than in CA/C’A choice lists.

To estimate the model I again assume a CRRA form, this time for the utility of cumulated payoffs, X :

V (X) =
X1−Θ

1−Θ
(11)

and the exponential discount function of equation 8, and define choice probabilities analogously to equation

9 except replacing DU by DIU . The model is estimated using the same set of 7320 observations from six

time preference choice lists as used in models (3) and (5) of Table 1.

29See also Blavatskyy and Maafi (2018) who estimate points on the utility function non-parametrically, and are concerned with
issues of model fit as opposed to the curvature of utility.
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Estimates of the discounted incremental specification are reported as model (8) in Table 1. The curvature

of cumulative utility is significantly concave, with a CRRA coefficient of 0.226 and standard error of 0.060.

This is substantially larger than the estimated curvature of instantaneous utility in the discounted utility spec-

ification of model (5). Allowing for this amount of curvature reduces the estimate of the annual discount

rate from 63.9% under linear utility in model (3) to 50.4% in model (8). The discounted incremental spec-

ification has the same number of parameters as the discounted utility model, and a superior log-likelihood.

As a result, both the AIC and BIC select this model over both the discounted utility and linear models.

3.6 Robustness checks

In this section, I report several robustness checks of the key representative agent estimates to alternative

structural assumptions. Table 2 reports expected utility, discounted utility, joint, and discounted incremental

estimates assuming a constant absolute risk aversion form for utility: u(x) = (1− exp(−ax))/a. Table 3

reports corresponding estimates assuming expo-power utility (Saha, 1993; Holt and Laury, 2002): u(x) =(
1− exp

(
−ax1−r

))
/a. These analyses replicate all key implications of Table 1: instantaneous utility in

model (5) is significantly concave30 though substantially less so than Bernoulli utility in model (1); the

discount rate in model (5) is only marginally smaller than that assuming linear utility (c.f. Table 1, model

(3)), whereas the one obtained from joint estimation in model (6) is substantially lower; and the effects of

discounted incremental utility in model (8) are similar to those in Table 1.

Table 4 reports linear, discounted utility, joint, and discounted incremental estimates for CRRA utility us-

ing an alternative contextual normalization that replaces the expression in footnote 27 with λ = v(xmax)−
v(xmin) (see Blavatskyy and Maafi 2018, p. 278). That is, instead of normalizing by the difference in dis-

counted utilities between the best and worst payoff streams, these estimates normalize by the difference

in instantaneous utilities between the best and worst payoffs, which does not depend upon the discount

function.31 Again, all key implications of Table 1 are maintained.

3.7 Individual estimation and prediction

In this section, I extend the analysis to estimation at an individual level, and examine the performance of

individual estimates in predicting subjects’ choices in the risk and time preference decisions respectively.

In the full sample of 122 subjects there are fifteen who choose larger-later in all 60 time preference deci-

sions, and four who choose smaller-sooner in all 54 decisions where it is not dominated. I thus focus on the

remaining 103 subjects in individual estimation. Since there is only a single risk preference choice list, it

is not possible to estimate probability weighting parameters at an individual level. I thus report individual

30For expo-power utility, the two utility parameters are jointly significant with p = 0.004 in model (5).
31There is no effect upon the expected utility estimates, as this is simply an alternative generalization of Wilcox (2011) contextual

utility to choices over time and moreover, as noted in footnote 24, there was in any case only a single choice context for risk.
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Table 2: Representative agent estimates under CARA utility

(1) (5) (6) (8)
EU DU Joint-EU DIU

CARA utility curvature 0.041 0.001 0.040 0.018
(0.003) (0.000) (0.002) (0.005)

Annual discount rate (ρ) 0.624 0.068 0.424
(0.073) (0.016) (0.065)

Decision “noise” for risk (µ) 0.081 0.081
(0.009) (0.009)

Decision “noise” for time (σ ) 0.028 0.006 0.027
(0.002) (0.001) (0.002)

AIC 689.875 8790.505 2063.699 8780.517
BIC 700.089 8811.200 2086.898 8801.212
LL –342.938 –4392.252 –1027.849 –4387.259
Risk preference data Yes Yes
Time preference data Yes CB only Yes
N 1220 7320 2440 7320

Note: Clustered standard errors in parentheses. Column numbers indicate corresponding models in Table 1.

Table 3: Representative agent estimates under expo-power utility

(1) (5) (6) (8)
EU DU Joint-EU DIU

Utility curvature (expo) 0.041 –0.001 0.039 0.017
(0.012) (0.005) (0.008) (0.004)

Utility curvature (power) 0.002 0.036 –0.015 –0.123
(0.185) (0.059) (0.132) (0.120)

Annual discount rate (ρ) 0.627 0.068 0.390
(0.074) (0.015) (0.066)

Decision “noise” for risk (µ) 0.081 0.081
(0.009) (0.009)

Decision “noise” for time (σ ) 0.028 0.006 0.027
(0.002) (0.001) (0.002)

H0: Linear utility (p-value) 0.000 0.004 0.000 0.000
AIC 691.875 8792.053 2065.676 8781.630
BIC 707.195 8819.646 2094.675 8809.223
LL –342.938 –4392.026 –1027.838 –4386.815
Risk preference data Yes Yes
Time preference data Yes CB only Yes
N 1220 7320 2440 7320

Note: Clustered standard errors in parentheses. Column numbers indicate corresponding models in Table 1.
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Table 4: Representative agent estimates under alternative contextual normalization

(3) (5) (6) (8)
Linear DU Joint-EU DIU

CRRA utility curvature 0.018 0.455 0.180
(0.006) (0.012) (0.066)

Annual discount rate (ρ) 0.662 0.648 0.066 0.543
(0.083) (0.080) (0.017) (0.076)

Decision “noise” for risk (µ) 0.083
(0.008)

Decision “noise” for time (σ ) 0.053 0.052 0.012 0.046
(0.004) (0.004) (0.003) (0.004)

AIC 8771.565 8754.908 2082.580 8759.751
BIC 8785.362 8775.603 2105.779 8780.446
LL –4383.783 –4374.454 –1037.290 –4376.875
Risk preference data Yes
Time preference data Yes Yes CB only Yes
N 7320 7320 2440 7320

Note: Clustered standard errors in parentheses. Column numbers indicate corresponding models in Table 1.

estimates for five models: the expected utility specification in model (1) of Table 1, the linear utility spec-

ification in model (3), the discounted utility specification in model (5), the joint estimation specification in

model (6), and the discounted incremental specification in model (8). Individual estimation was performed

in Matlab R2018b, after first replicating the corresponding representative agent estimates from Table 1.

Table 5 reports summary statistics for four individual measures of CRRA utility curvature (not estimated

under linear utility) and four individual estimates of the annual discount rate (not estimated under expected

utility). Histograms for each set of estimates are reported in Appendix B.2. For utility curvature, the mean

and median estimates under expected utility, discounted utility and joint estimation are very similar to the

corresponding representative agent estimates. However for discounted incremental utility, the mean and

median curvature are closer to linearity than the aggregate estimate, and the variance is considerable. For

discounting, the mean and median estimates are consistently larger than the corresponding estimates in Table

1, in part reflecting the fact that the individual estimation sample excludes the fifteen most patient subjects.32

Table 6 reports the Spearman rank correlation matrix for the four individual measures of utility curvature.

This strongly supports the conjecture that risk and time preferences reflect two distinct notions of utility.

On one hand, the expected utility and joint estimates, which infer curvature from choices under risk, are

highly significantly correlated. On the other hand, the discounted utility and discounted incremental esti-

mates, which infer curvature from choices over time, are also highly significantly correlated. However the

32When the representative agent model (5) for discounted utility is re-estimated using only the 103 subjects used in individual
estimation, the estimated annual discount rate increases to 80.6%, which is still less than the median individual estimate.
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Table 5: Summary statistics of individual utility curvature and discount rate estimates

Mean SD P10 P25 P50 P75 P90

Utility curvature

Expected utility 0.557 0.461 –0.064 0.336 0.504 0.789 1.127

Discounted utility 0.001 0.259 –0.049 –0.008 0.010 0.053 0.123

Joint estimation 0.418 0.320 –0.065 0.230 0.476 0.504 0.787

Discounted incremental 0.050 1.394 –1.394 –0.295 0.064 0.577 1.056

Annual discount rate

Linear utility 2.350 2.788 0.250 0.489 1.144 2.947 6.904

Discounted utility 2.219 2.699 0.240 0.464 1.035 2.535 6.707

Joint estimation 1.387 2.910 –0.105 0.000 0.101 1.297 6.417

Discounted incremental utility 2.058 2.936 0.101 0.306 0.783 2.616 6.703

remaining four coefficients, which compare one measure elicited under risk to another measure elicited over

time, are consistently small (Spearman rho less than 0.11) and far from statistically significant.

Figure 6 depicts a scatter plot of the individual estimates of α under expected utility and θ under discounted

utility, these being the standard normative benchmarks for risk and time preference respectively.33 Accord-

ing to the model of discounted expected utility, these measures are interchangeable and so all points should

lie on a 45-degree diagonal. Instead, not only do the two sets of estimates differ considerably in magnitude,

they are also essentially uncorrelated.34

To further examine the implications of alternative assumptions regarding the nature of utility, I use each set

of estimates to generate predicted choices for each subject in each of the ten risk and 60 time preference

decisions, and compare these predictions to their actual choices.35

For risk preference, simply assuming linear utility (i.e., that every subject switches from safe to risky after

four rows) suffices to correctly predict 76.7% of the data. Relative to this benchmark, individual curvature

estimates from the discounted utility model correctly predict 76.8% of risk preference choices, while those

of the discounted incremental model correctly predict 74.6%. Treating individual subjects as independent

observations, the proportion of their choices correctly predicted by either model does not differ significantly

from the proportion correctly predicted by linear utility, in either a sign test or a signed-ranks test. By

contrast, individual expected utility estimates correctly predict 98.5% of choices, and joint estimates 95.0%,

both improving significantly upon linear utility with p < 0.0001 in both a sign test and a signed-ranks test.

33For clarity, the scatter plot omits two subjects with large negative estimates of θ . However these subjects are included in the
calculation of the linear fit depicted by the dashed line.

34Scatter plots for individual estimates of the discounted incremental utility parameter Θ may be found in Appendix B.3.
35The expected utility model for risk does not estimate a discount rate, and so cannot be used to predict choices over time.
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Table 6: Spearman rank correlation matrix of individual utility curvature estimates

EU DU Joint DIU

EU 1.000

DU 0.101 1.000

(0.309)

Joint 0.931 0.106 1.000

(0.000) (0.286)

DIU 0.099 0.749 0.069 1.000

(0.320) (0.000) (0.489)

Note: p-values in parentheses.

Figure 6: Scatter plot of individual estimates of α and θ
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For time preference, individual discount rates assuming linear utility correctly predict 86.6% of the data.

This increases to 89.4% allowing non-linear utility in a discounted utility model, or 87.3% in a discounted

incremental model. Again treating individual subjects as independent observations, both sets of estimates

improve significantly upon linear utility.36 By contrast, individual joint estimates correctly predict only

68.4% of the data. Recall that joint estimation uses only the CB choice list for time. Individual linear utility

estimates using only CB data (corresponding to model (4) in Table 1) correctly predict 84.1% of the data.

The individual joint estimates predict significantly worse than this linear-CB benchmark, with p < 0.0001

in both a sign test and a signed-ranks test.

Figure 7 examines prediction performance of individual estimates in greater detail. The top panel relates

to the risk preference task, while the lower two panels pool the AB/AB’ and CA/C’A choice lists for time,

respectively. In each panel, the solid line depicts observed safe or sooner choices at each row.37 The shorter-

dashed line depicts predictions of the joint estimation model (which infers utility curvature from choice

under risk), while the longer-dashed line depicts predictions of the discounted utility model (which infers

curvature from choice over time). The comparison between these predictions thus illustrates the effect of

assuming equivalence between Bernoulli and instantaneous utility versus allowing for them to be separated.

The figure illustrates how both sets of estimates make poor out-of-sample predictions, because they reflect

quantitatively different degrees of concavity. Since instantaneous utility for time is near-linear, it wrongly

predicts near risk-neutral behavior in choice under risk. But conversely, since Bernoulli utility for risk is

more concave, it greatly exaggerates the preference for the temporally-balanced payoff vector A, both when

it is smaller-sooner as in AB/AB’, and when it is larger-later as in CA/C’A.

4 Conclusion

In this paper, I introduce a novel method to elicit the curvature of instantaneous utility, together with the

discount rate, directly from binary choices over bundles of time-dated payoffs. Owing to a lack of suitable

measurement techniques, until recently little was known about the shape of utility outside the domain of

risk. This made it difficult to evaluate the assumption – frequently invoked in both theoretical and empirical

literatures – that a single utility function characterizes preferences both under risk and over time.

My approach builds upon design and estimation principles well-established in the literature. Abdellaoui

et al. (2013) and Andreoni and Sprenger (2012a) use outcome sequences to identify instantaneous utility,

although the former are not concerned with implications for discounting while the latter compare the re-

sults of different elicitation procedures for risk and time. The Holt and Laury (2002) design is a standard

instrument often used as the risk preference measure in studies which, following Andersen et al. (2008),

36For discounted utility, p < 0.0001 in both the sign test and signed-ranks test. For discounted incremental utility, p = 0.0031 in
a sign test and p = 0.0015 in a signed-ranks test. Moreover, the discounted utility model improves significantly upon discounted
incremental utility, with p = 0.0054 in a sign test and p = 0.0020 in a signed-ranks test.

37This differs from Figure 4 as it only includes the individual estimation sample of 103 subjects.
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Figure 7: Prediction performance of individual estimates
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assume equivalence of instantaneous and Bernoulli utility in jointly estimating risk and time preferences.

By translating the HL design from state payoffs into time-dated payoffs, I retain the estimation apparatus

developed by Andersen et al. (2008, 2014), with the important distinction that the curvature of utility is in-

ferred directly from choices over time. This makes it possible to compare the estimated curvature of utility

under risk and over time within a unified design and estimation framework. Thus, while many of my results

replicate findings in Andreoni and Sprenger (2012a) and Andreoni et al. (2015), I establish that these results

are not artefacts of differences between the elicitation procedures or estimation techniques they use for risk

and time. Stated differently, I show that – as regards the curvature of instantaneous utility – the results of a

binary choice methodology are in alignment with those of a continuous or multinomial choice paradigm.

The results demonstrate that instantaneous utility is significantly concave. This affirms the underlying theo-

retical concern of Frederick et al. (2002) over the confounding influence of utility curvature upon estimates

of the discount rate, which has motivated the development of the joint estimation approach as well as al-

ternative strategies such as those of Takeuchi (2011) and Laury et al. (2012). However, whereas each of

those approaches assume a single utility function for both risk and time, I find the curvature of instanta-

neous utility elicited from choices over time to be substantially less than that of Bernoulli utility elicited

from choices under risk, and moreover the two measures are uncorrelated at an individual level. It follows

that just as assuming linear utility may cause estimates of discount rates to be biased, so too may assuming

the equivalence of utility for risk and time. Indeed, I find the effect of correcting for time-elicited utility

curvature, relative to assuming linear utility, to be no more than a few percentage points.

The experiment in this paper involved choices over money, and in the structural estimation (though not the

model-free analysis of Section 3.1) it was assumed that payoffs are consumed upon receipt. This presumes,

generally, that subjects do not integrate experimental payments with money or consumption plans outside

the experiment and, specifically, that they do not engage in arbitrage. Indeed, the finding of near-linear utility

in the CTB experiment of Andreoni and Sprenger (2012a) has subsequently been interpreted by Andreoni

and Sprenger (2015) and Sprenger (2015) as evidence suggestive of arbitrage. When subjects engage in

arbitrage, their choices simply reveal their market interest rate as opposed to a true discount rate, yet the

estimates in excess of 60% in Table 1 are unreasonably high by that standard. Moreover, the interest rates

offered in the experiment were sufficiently high as to realistically permit only one direction of arbitrage,

namely to “borrow low” outside the experiment and “save high” within it (Meier and Sprenger, 2010).

In that case, arbitrage would predict highly patient choices in the experiment, again inconsistent with the

behavior of the majority of subjects. Andreoni et al. (2018) report a CTB experiment designed specifically

to test implications of arbitrage, but find little support for it.

The more general issue, that subjects may integrate experimental rewards with money or consumption out-

side the laboratory,38 has also been raised in the domain of risk. In that context, Rabin (2000) argues that

an expected utility maximizer who integrates small-stakes lotteries with background wealth must exhibit

38This concern is not specific to choices over money. In a time preference experiment involving real consumption or effort, sub-
jects may likewise adjust their outside consumption or leisure plans in response to choices made within the experiment, confounding
structural interpretation of the data.
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near-linear utility toward such lotteries. This prediction is robustly rejected by a large body of experimental

research, including results in this paper, strongly suggesting that – in choice under risk – the subjects in this

experiment framed the payoffs narrowly and in isolation from external wealth. That being the case, it is not

obvious why – in making choices over time – those same subjects would frame broadly and integrate.

If the results of this experiment reflect subjects’ genuine preferences, and not some artefact of monetary

payoffs, how are these preferences to be understood? A subtle but important distinction between the domains

of risk and time, perhaps obscured by the formal analogy between equations 1 and 3, concerns the realization

of payoffs. In choice under risk, while the payoffs in a lottery are evaluated as a bundle ex ante, only one is

ultimately realized ex post. By contrast in choice over time, all of the payoffs that make up a stream are to

be realized, and it is only a question of when. Viewed in this light, it seems natural that subjects’ choices

would reflect a stronger motive to smooth payoffs over states of nature than over dates in time.

It has been argued by Blavatskyy (2016) that the discounted utility model is incompatible with substantial

non-linearity of instantaneous utility as it results in violations of intertemporal monotonicity. In his alterna-

tive model of discounted incremental utility, I indeed find more substantial concavity when utility is defined

over cumulated payoffs, at least in representative agent estimates. This points to the exciting opportunities

for future empirical research to focus not only on the forms of the utility and discount functions, but also on

alternatives to the discounted utility model itself.

References

Abdellaoui, M., Bleichrodt, H., l’Haridon, O., Paraschiv, C., 2013. Is there one unifying concept of utility? An
experimental comparison of utility under risk and utility over time. Management Science 59, 2153–2169.

Andersen, S., Harrison, G.W., Lau, M.I., Rutström, E.E., 2008. Eliciting risk and time preferences. Econometrica 76,
583–618.

Andersen, S., Harrison, G.W., Lau, M.I., Rutström, E.E., 2014. Discounting behavior: A reconsideration. European
Economic Review 71, 15–33.

Andersen, S., Harrison, G.W., Lau, M.I., Rutström, E.E., 2018. Multiattribute utility theory, intertemporal utility, and
correlation aversion. International Economic Review 59, 537–555.

Andreoni, J., Gravert, C., Kuhn, M.A., Saccardo, S., Yang, Y., 2018. Arbitrage or narrow bracketing? On using money
to measure intertemporal preferences. Working Paper 25232, National Bureau of Economic Research.

Andreoni, J., Kuhn, M.A., Sprenger, C., 2015. Measuring time preferences: A comparison of experimental methods.
Journal of Economic Behavior and Organization 116, 451–464.

Andreoni, J., Sprenger, C., 2012a. Estimating time preferences from convex budgets. American Economic Review
102, 3333–3356.

Andreoni, J., Sprenger, C., 2012b. Risk preferences are not time preferences. American Economic Review 102,
3357–3376.

30



Andreoni, J., Sprenger, C., 2015. Risk preferences are not time preferences: Reply. American Economic Review 105,
2287–93.

Attema, A.E., Bleichrodt, H., Gao, Y., Huang, Z., Wakker, P.P., 2016. Measuring discounting without measuring
utility. American Economic Review 106, 1476–94.

Benhabib, J., Bisin, A., Schotter, A., 2010. Present-bias, quasi-hyperbolic discounting, and fixed costs. Games and
Economic Behavior 69, 205–223.

Blavatskyy, P.R., 2016. A monotone model of intertemporal choice. Economic Theory 62, 785–812.

Blavatskyy, P.R., Maafi, H., 2018. Estimating representations of time preferences and models of probabilistic intertem-
poral choice on experimental data. Journal of Risk and Uncertainty 56, 259–287.

Cheung, S.L., 2015. Comment on “Risk preferences are not time preferences”: On the elicitation of time preference
under conditions of risk. American Economic Review 105, 2242–2260.

Cheung, S.L., 2016. Recent developments in the experimental elicitation of time preference. Journal of Behavioral
and Experimental Finance 11, 1–8.

Coller, M., Williams, M.B., 1999. Eliciting individual discount rates. Experimental Economics 2, 107–127.

Drichoutis, A.C., Lusk, J.L., 2016. What can multiple price lists really tell us about risk preferences? Journal of Risk
and Uncertainty 53, 89–106.

Epper, T., Fehr-Duda, H., 2012. The missing link: Unifying risk taking and time discounting. Working paper 096,
Department of Economics, University of Zurich.

Epper, T., Fehr-Duda, H., 2015. Comment on “Risk preferences are not time preferences”: Balancing on a budget line.
American Economic Review 105, 2261–2271.

Epper, T., Fehr-Duda, H., Bruhin, A., 2011. Viewing the future through a warped lens: Why uncertainty generates
hyperbolic discounting. Journal of Risk and Uncertainty 43, 169–203.

Epstein, L.G., Zin, S.E., 1989. Substitution, risk aversion, and the temporal behavior of consumption and asset returns:
A theoretical framework. Econometrica 57, 937–969.

Fehr-Duda, H., Epper, T., 2012. Probability and risk: Foundations and economic implications of probability-dependent
risk preferences. Annual Review of Economics 4, 567–593.

Frederick, S., Loewenstein, G., O’Donoghue, T., 2002. Time discounting and time preference: A critical review.
Journal of Economic Literature 40, 351–401.

Freeman, D., Manzini, P., Mariotti, M., Mittone, L., 2016. Procedures for eliciting time preferences. Journal of
Economic Behavior and Organization 126, 235–242.

Gigliotti, G., Sopher, B., 1997. Violations of present-value maximization in income choice. Theory and Decision 43,
45–69.

Greiner, B., 2015. Subject pool recruitment procedures: Organizing experiments with ORSEE. Journal of the Eco-
nomic Science Association 1, 114–125.

31



Gul, F., 1991. A theory of disappointment aversion. Econometrica 59, 667–686.

Halevy, Y., 2008. Strotz meets Allais: Diminishing impatience and the certainty effect. American Economic Review
98, 1145–62.

Harrison, G.W., Lau, M.I., Rutström, E.E., 2013. Identifying time preferences with experiments: Comment. Working
paper 2013-09, Center for the Economic Analysis of Risk, Georgia State University.

Harrison, G.W., Rutström, E.E., 2008. Risk aversion in the laboratory, in: Cox, J.C., Harrison, G.W. (Eds.), Risk
Aversion in Experiments. Emerald, Bingley, UK. volume 12 of Research in Experimental Economics, pp. 41–196.

Hey, J.D., Orme, C., 1994. Investigating generalizations of expected utility theory using experimental data. Econo-
metrica 62, 1291–1326.

Holt, C.A., Laury, S.K., 2002. Risk aversion and incentive effects. American Economic Review 92, 1644–1655.

Holt, C.A., Laury, S.K., 2005. Risk aversion and incentive effects: New data without order effects. American Eco-
nomic Review 95, 902–904.

Kahneman, D., Tversky, A., 1979. Prospect theory: An analysis of decision under risk. Econometrica 47, 263–291.

Kreps, D.M., Porteus, E.L., 1978. Temporal resolution of uncertainty and dynamic choice theory. Econometrica 46,
185–200.

Laibson, D., 1997. Golden eggs and hyperbolic discounting. Quarterly Journal of Economics 112, 443–478.

Laury, S.K., McInnes, M.M., Swarthout, J.T., 2012. Avoiding the curves: Direct elicitation of time preferences.
Journal of Risk and Uncertainty 44, 181–217.

Loewenstein, G., Prelec, D., 1992. Anomalies in intertemporal choice: Evidence and an interpretation. Quarterly
Journal of Economics 107, 573–597.

Loewenstein, G., Prelec, D., 1993. Preferences for sequences of outcomes. Psychological Review 100, 91–108.

Loewenstein, G., Sicherman, N., 1991. Do workers prefer increasing wage profiles? Journal of Labor Economics 9,
67–84.

Loomes, G., Pogrebna, G., 2014. Measuring individual risk attitudes when preferences are imprecise. Economic
Journal 124, 569–593.

Manzini, P., Mariotti, M., Mittone, L., 2010. Choosing monetary sequences: Theory and experimental evidence.
Theory and Decision 69, 327–354.

Meier, S., Sprenger, C., 2010. Present-biased preferences and credit card borrowing. American Economic Journal:
Applied Economics 2, 193–210.

Phelps, E.S., 1962. The accumulation of risky capital: A sequential utility analysis. Econometrica 30, 729–743.

Prelec, D., 1998. The probability weighting function. Econometrica 66, 497–527.

Quiggin, J., 1982. A theory of anticipated utility. Journal of Economic Behavior and Organization 3, 323–343.

Rabin, M., 2000. Risk aversion and expected-utility theory: A calibration theorem. Econometrica 68, 1281–1292.

32



Saha, A., 1993. Expo-power utility: A ‘flexible’ form for absolute and relative risk aversion. American Journal of
Agricultural Economics 75, 905–913.

Samuelson, P.A., 1937. A note on the measurement of utility. Review of Economic Studies 4, 155–161.

Schmidt, U., 2014. Risk preferences may be time preferences: A comment on Andreoni and Sprenger (2012). Working
paper 1942, Kiel Institute for the World Economy.

Scholten, M., Read, D., Sanborn, A., 2016. Cumulative weighing of time in intertemporal tradeoffs. Journal of
Experimental Psychology: General 145, 1177–1205.

Sprenger, C., 2015. Judging experimental evidence on dynamic inconsistency. American Economic Review: Papers
and Proceedings 105, 280–85.

Takeuchi, K., 2011. Non-parametric test of time consistency: Present bias and future bias. Games and Economic
Behavior 71, 456–478.

Tversky, A., Kahneman, D., 1992. Advances in prospect theory: Cumulative representation of uncertainty. Journal of
Risk and Uncertainty 5, 297–323.

Tversky, A., Slovic, P., Kahneman, D., 1990. The causes of preference reversal. American Economic Review 80,
204–217.

von Neumann, J., Morgenstern, O., 1944. Theory of Games and Economic Behavior. Princeton University Press,
Princeton.

Weil, P., 1990. Nonexpected utility in macroeconomics. Quarterly Journal of Economics 105, 29–42.

Wilcox, N.T., 2011. ‘Stochastically more risk averse:’ A contextual theory of stochastic discrete choice under risk.
Journal of Econometrics 162, 89–104.

33



Eliciting utility curvature in time preference

Stephen L. Cheung
The University of Sydney and IZA
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A Theoretical predictions

A.1 Discounted utility

Assume an additively-separable intertemporal utility function of the form of equation 3 in the text. Let(
xS

t ,x
S
t+k

)
denote the smaller-sooner payoff vector presented as Option A, and let

(
xL

t ,x
L
t+k

)
be the larger-

later one presented as Option B. In rows 1 to 9 of each choice list,‡ a subject chooses Option B as:
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)
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(
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t
) (12)

The quantity on the left of equation 12 represents the relative weight of utility on date t compared to t + k.

Moving down the rows of a choice list, as k falls toward 0 weeks, D(t + k) increases toward D(t) and so

D(t)/D(t + k) falls toward 1. The quantity on the right is the ratio of the utility gained at date t+k to utility

lost at date t should the subject choose Option B. Within a given choice list, the term on the right is constant

because all payoffs are fixed. A subject’s “switch point” from smaller-sooner to larger-later is thus defined

by the value of k at which D(t)/D(t + k) first falls below this fixed ratio of utility differences.

For the case of linear utility, the switch point is defined by:

D(t)
D(t + k)

<
xL

t+k− xS
t+k

xS
t − xL

t
(13)

where, by design of the experiment, the ratio of payoff differences is constant and equal to 1.125 in all

choice lists. Thus, a subject with linear instantaneous utility is predicted to switch from Option A to Option

B at the same row (and thus make the same number of sooner choices) in all choice lists.
‡In row 10, k = 0 and D(t)v

(
xS

t + xS
t+k

)
< D(t)v

(
xL

t + xL
t+k

)
such that the subject should always choose Option B.
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In the case of concave utility, for given-sized differences in the magnitudes of the payoffs, the utility differ-

ence in the numerator of equation 12 shrinks as the later payoffs are shifted further up the utility function,

while the utility difference in the denominator grows as the sooner payoffs are shifted further down. For

example, comparing switch points for the AB and CA choice lists, concave utility implies that:

v(38)− v(20)
v(17)− v(1)

<
v(20)− v(2)
v(33)− v(17)

since the numerator of the term on the left is smaller than that of the one on the right, while the denominator

is larger. It follows that a subject with concave instantaneous utility is predicted to make a later switch from

small-sooner to larger-later in the AB choice list compared to CA.

Note that these predictions hold regardless of the shape of the discount function D(t), provided it satisfies

the standard assumptions that D(t) > 0 and D′ (t) < 0. For example, they hold not only for exponential

discounting, but also any conventional model of hyperbolic discounting (see Andersen et al., 2014, for a

review), as well as the models of time-dependent probability weighting mentioned in the introduction.

A.2 Intertemporal risk aversion

For choice situations where subjects face risks at different points in time, Andersen et al. (2018) and Cheung

(2015) consider the possibility that the intertemporal utility function may not be additively separable, con-

trary to what is assumed in equation 3 in the text. The basic idea is that subjects may be averse not only to

the atemporal risk they face at a single point in time, but also the intertemporal risk inherent in their overall

payoff stream. A simple specification that captures this idea of intertemporal risk aversion (or “correlation

aversion”) is to replace equation 3 by:

IU (xt , t;xt+k, t + k) =U [D(t) · v(xt)+D(t + k) · v(xt+k)] (14)

where U (·) is an increasing concave function (cf. equation 4 in Andersen et al., 2018, and equation 2 in Che-

ung, 2015). However, in the experiment in this paper, subjects only face choices in which payments on both

dates are sent with certainty, so there is only a single possible realization of intertemporal utility and choices

cannot be affected by intertemporal risk aversion. That is, IU
(
xS

t , t;xS
t+k, t + k

)
< IU

(
xL

t , t;xL
t+k, t + k

)
as

DU
(
xS

t , t;xS
t+k, t + k

)
< DU

(
xL

t , t;xL
t+k, t + k

)
, and the switch point defined by equation 12 remains un-

changed. Similarly, by standard textbook arguments for increasing monotonic transformations, the slope

of an indifference curve for the specification in equation 14 is identical to that of the additive specification,

as given by equation 4 in the text, since terms involving U ′ (·) cancel out.

In short, intertemporal risk aversion loses its bite when risk and time are not interacted in the experiment

design. The same is true for recursive utility models: since risk is absent, the certainty equivalent function

is not invoked and only the time aggregator is involved in evaluating the alternatives.
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A.3 Discounted incremental utility

Assuming discounted incremental utility given by equation 10 in the text, a subject chooses Option B as:

D(t)
D(t + k)

<
V
(
xL

t + xL
t+k

)
−V

(
xS

t + xS
t+k

)
V
(
xS

t
)
−V

(
xL

t
) +1 (15)

Equation 12 for discounted utility described a trade-off between the utility of a larger payoff at t +k against

that of a smaller one at t. Equation 15 for discounted incremental utility simply describes an analogous

trade-off between the utility of a larger cumulative payoff at t + k against that of a smaller one at t. As

before, the right-hand side is constant within a given choice list because the payoffs are fixed. Moreover,

when V (·) is linear this simplifies to equation 13, which implies a fixed switch point in all lists.

For concave V (·), comparing AB to CA the later cumulative payoffs are increased, and thus shifted further

up the utility function, while the sooner ones are decreased, and thus shifted further down. It follows that:

V (1+38)−V (17+20)
V (17)−V (1)

<
V (17+20)−V (33+2)

V (33)−V (17)

which again results in in a later switch point in AB compared to CA.
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B Supplementary analyses

B.1 Choice behavior in the time preference tasks, by choice list
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B.2 Histograms of individual utility curvature and discount rate estimates
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B.3 Scatter plots of individual utility curvature estimates, discounted incremental utility
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C Details of experiment design

C.1 Parameters of the risk preference choice list

Row
Option A Option B

EVA EVB
CRRA at

xb 1− pg xg pg xb 1− pg xg pg indifference

1 17 0.9 20 0.1 1 0.9 38 0.1 17.3 4.7 –1.936

2 17 0.8 20 0.2 1 0.8 38 0.2 17.6 8.4 –1.095

3 17 0.7 20 0.3 1 0.7 38 0.3 17.9 12.1 –0.594

4 17 0.6 20 0.4 1 0.6 38 0.4 18.2 15.8 –0.222

5 17 0.5 20 0.5 1 0.5 38 0.5 18.5 19.5 0.087

6 17 0.4 20 0.6 1 0.4 38 0.6 18.8 23.2 0.367

7 17 0.3 20 0.7 1 0.3 38 0.7 19.1 26.9 0.643

8 17 0.2 20 0.8 1 0.2 38 0.8 19.4 30.6 0.948

9 17 0.1 20 0.9 1 0.1 38 0.9 19.7 34.3 1.354

10 17 0.0 20 1.0 1 0.0 38 1.0 20.0 38.0 n/a

Note: Values in the final column are the value of the CRRA coefficient α for risk at which a subject is

indifferent between Options A and B, assuming expected utility and zero background consumption.

Values in the final three columns were not presented to subjects.

C.2 Parameters of the time preference choice lists

CA

Row
Option A Option B Annual

xt t xt+k t + k xt t xt+k t + k Rate

1 33 1 2 28 17 1 20 28 25.46

2 33 1 2 25 17 1 20 25 29.07

3 33 1 2 22 17 1 20 22 33.86

4 33 1 2 19 17 1 20 19 40.53

5 33 1 2 16 17 1 20 16 50.43

6 33 1 2 13 17 1 20 13 66.59

7 33 1 2 10 17 1 20 10 97.49

8 33 1 2 7 17 1 20 7 177.54

9 33 1 2 4 17 1 20 4 670.27

10 33 1 2 1 17 1 20 1 ∞
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C’A

Row
Option A Option B Annual

xt t xt+k t + k xt t xt+k t + k Rate

1 25 1 11 28 17 1 20 28 25.46

2 25 1 11 25 17 1 20 25 29.07

3 25 1 11 22 17 1 20 22 33.86

4 25 1 11 19 17 1 20 19 40.53

5 25 1 11 16 17 1 20 16 50.43

6 25 1 11 13 17 1 20 13 66.59

7 25 1 11 10 17 1 20 10 97.49

8 25 1 11 7 17 1 20 7 177.54

9 25 1 11 4 17 1 20 4 670.27

10 25 1 11 1 17 1 20 1 ∞

AB’

Row
Option A Option B Annual

xt t xt+k t + k xt t xt+k t + k Rate

1 17 1 20 28 9 1 29 28 25.46

2 17 1 20 25 9 1 29 25 29.07

3 17 1 20 22 9 1 29 22 33.86

4 17 1 20 19 9 1 29 19 40.53

5 17 1 20 16 9 1 29 16 50.43

6 17 1 20 13 9 1 29 13 66.59

7 17 1 20 10 9 1 29 10 97.49

8 17 1 20 7 9 1 29 7 177.54

9 17 1 20 4 9 1 29 4 670.27

10 17 1 20 1 9 1 29 1 ∞

Note: Interest rates in final column of each table were not presented to subjects. Delay lengths are in weeks.
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AB

Row
Option A Option B Annual

xt t xt+k t + k xt t xt+k t + k Rate

1 17 1 20 28 1 1 38 28 25.46

2 17 1 20 25 1 1 38 25 29.07

3 17 1 20 22 1 1 38 22 33.86

4 17 1 20 19 1 1 38 19 40.53

5 17 1 20 16 1 1 38 16 50.43

6 17 1 20 13 1 1 38 13 66.59

7 17 1 20 10 1 1 38 10 97.49

8 17 1 20 7 1 1 38 7 177.54

9 17 1 20 4 1 1 38 4 670.27

10 17 1 20 1 1 1 38 1 ∞

CB

Row
Option A Option B Annual

xt t xt+k t + k xt t xt+k t + k Rate

1 33 1 2 28 1 1 38 28 25.46

2 33 1 2 25 1 1 38 25 29.07

3 33 1 2 22 1 1 38 22 33.86

4 33 1 2 19 1 1 38 19 40.53

5 33 1 2 16 1 1 38 16 50.43

6 33 1 2 13 1 1 38 13 66.59

7 33 1 2 10 1 1 38 10 97.49

8 33 1 2 7 1 1 38 7 177.54

9 33 1 2 4 1 1 38 4 670.27

10 33 1 2 1 1 1 38 1 ∞

Note: Interest rates in final column of each table were not presented to subjects. Delay lengths are in weeks.
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C’B’

Row
Option A Option B Annual

xt t xt+k t + k xt t xt+k t + k Rate

1 25 1 11 28 9 1 29 28 25.46

2 25 1 11 25 9 1 29 25 29.07

3 25 1 11 22 9 1 29 22 33.86

4 25 1 11 19 9 1 29 19 40.53

5 25 1 11 16 9 1 29 16 50.43

6 25 1 11 13 9 1 29 13 66.59

7 25 1 11 10 9 1 29 10 97.49

8 25 1 11 7 9 1 29 7 177.54

9 25 1 11 4 9 1 29 4 670.27

10 25 1 11 1 9 1 29 1 ∞

Note: Interest rates in final column of each table were not presented to subjects. Delay lengths are in weeks.

C.3 Order of presentation of choice lists

Decisions 1-10 11-20 21-30 31-40 41-50 51-60 61-70

Order 1A AB AB’ CA C’A CB C’B’ Risk

Order 1B AB’ AB C’A CA C’B’ CB Risk

Order 2A CA C’A AB AB’ CB C’B’ Risk

Order 2B C’A CA AB’ AB C’B’ CB Risk

Note: Choice lists were not described using these labels in the decision sheets presented to subjects.
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D Experiment instructions (Order 1A)

ELIGIBILITY TO PARTICIPATE

Welcome to today’s session, and thank you for coming here on time. Please do not talk to the other participants while
the session is in progress. Mobile phones must also be turned off. If you have a question at any time, please raise your
hand, and someone will come to assist you in private.

IN THIS STUDY, YOU WILL RECEIVE SOME OR ALL OF YOUR EARNINGS IN THE FUTURE.

Therefore, to be eligible to participate, you must be willing to receive payments by cheque, to be written to you by Dr
Stephen Cheung, a Lecturer in the School of Economics. These cheques will be drawn on the University of Sydney
branch of the National Australia Bank.

You will receive two cheques. The first cheque will arrive one week from today. The second cheque will arrive
between one and twenty-eight weeks from today. You will be fully informed of the amount of each cheque before you
leave the lab at the end of this session. There is also a chance that you may receive some payment in cash at the end
of the session.

Cheques will be delivered by Express Post, to your own nominated mailing address in Sydney. Australia Post guaran-
tees next business day delivery for mail sent by Express Post to addresses within the Sydney metropolitan region.

Therefore to take part in this study, you must be willing to provide your mailing address in Sydney. This will only be
seen by Dr Cheung and his assistants. After payment has been sent, your address will no longer be retained and your
identity will not be a part of the subsequent data analysis.

Finally, you must be willing to stay for the full duration of today’s session, and to comply with the instructions of the
experimenter; otherwise you will not receive any payment at all.

If you do not agree to all of these points, please raise your hand now.

IF YOU AGREE, PLEASE TURN OVER THIS PAGE TO SIGN THE CONSENT FORM,
AND HAND IT IN WHEN ASKED TO DO SO.
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GENERAL INFORMATION AND EARNINGS

In this study you will make a total of 70 decisions involving amounts of money that differ with respect to the dates on
which the money will be received, or the chances of receiving the money.

In each of these decisions you will be presented with two alternatives, labelled “Option A” and “Option B”, and you
will be asked to indicate which of the two options you would prefer to receive.

Afterwards, we will ask you to complete a brief questionnaire about yourself. Both your choices and your responses
to the questionnaire will be anonymous and not linked to your identity in any way.

At the end of the session, one of the 70 decisions will be randomly selected by drawing a numbered ball from the
bingo cage at the front of the lab. We will do this separately for each participant. Your earnings will be determined by
the choice that you made – Option A or Option B – for that decision.

You will also receive a participation fee of $10.00 in return for submitting valid responses for all 70 decisions,
as well as every item of the questionnaire.

Your participation fee will be paid by cheque, in two equal instalments of $5 each. The first cheque will arrive one
week from today. The second cheque will arrive between one and twenty-eight weeks from today. In particular:

• If the decision randomly selected as the one that counts is one of Decisions 1 through 60, then your earnings
from the choice that you made will be added to your two cheques of $5 each, and sent to you on the dates
indicated as part of that decision.

• If the decision randomly selected as the one that counts is one of Decisions 61 through 70, then your
earnings from the choice that you made will be paid to you in cash at the end of the session. In this case, you
would still receive two cheques of $5 each: the first would be sent one week from today, and the second would
be sent sixteen weeks from today.

The selection of the decision that counts is entirely random, and your choices have no influence over whether you
receive payment in the form of cash as well as cheque. What your choices do affect are the amounts of money you
receive, in the event that a decision is chosen to count for payment. You will always receive two cheques by mail, and
the value of each cheque will always be at least $5.

The decisions are not designed to test you – the only correct answers are the ones you really think are best for you.
Since every decision has an equal chance to be selected as the one that determines your earnings, you should consider
each one carefully, treating it as if it may be the one that counts.

One business day before each payment date, your cheque will dispatched for delivery by Express Post. Australia
Post guarantees next business day delivery for mail sent by Express Post to addresses within the Sydney metropolitan
region.

Attached to your Participation Information Statement is Dr Cheung’s business card. Please keep this in a safe place.
If you do not receive a cheque on the designated date, please contact Dr Cheung.

On your desk are two envelopes: one for each of your two cheques. Please take the time now to address these to
yourself at your own mailing address in Sydney.
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DECISION TABLES 1 TO 6 (Decisions 1 to 60)

Decision Tables 1 to 6 each show ten choices between two options labelled “A” and “B”. Each decision involves a
choice between receiving different amounts of money on two different dates, which will be clearly indicated for each
decision. You will make 60 of these choices in total.

For example: In Decision 1, Option A pays $17 in 1 week from today, and it also pays $20 in 28 weeks from today.
Option B pays $1 in 1 week from today, and it also pays $38 in 28 weeks from today.

The other decisions in Decision Table 1 are similar, except that as you move down the table, the date of the second
payment in each option becomes sooner. In fact, for Decision 10 in the bottom row, both payments will arrive on the
same date in one week from today. So in Decision 10, your choice is between $17 and $20 in Option A, or $1 and
$38 in Option B, all arriving one week from today.

Decision Tables 2 to 6 also have the same format. It is only the amounts of money in Option A and Option B that
change from one table to the next.

For each decision, you are asked to choose either Option A or Option B by marking an “X” in the appropriate box.

You may choose A for some decisions and B for others, and you may make your choices in any order.

Please note that the decision sheets will be double-sided, and that you should complete all decisions on both the front
and back of each page.

If one of these decisions is randomly selected as the one that counts for payment, then your earnings will be determined
by the choice that you made – either Option A or Option B – for that decision.

These earnings would be added to the two instalments of your participation fee, and mailed to you by cheque on the
two dates indicated as part of that decision.

For example: Suppose that one of the choices in Decision Table 1 is selected to count for payment.

• Then, if you chose Option A, $17 would be added to the first instalment of your participation fee and sent to
you on the first date. In addition, $20 would also be added to the second instalment of your participation fee
and sent to you on the second date.

• Otherwise, if you chose Option B, $1 would be added to the first instalment of your participation fee and sent
to you on the first date. In addition, $38 would also be added to the second instalment of your participation fee
and sent to you on the second date.

At the time you make each choice, you will not know if it will be selected for payment. Since each choice is equally
likely to be selected, you should treat each one as if it may be the one that counts.

PLEASE DO NOT BEGIN MAKING YOUR DECISIONS UNTIL YOU ARE INSTRUCTED TO DO SO.
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DECISION TABLE 7 (Decisions 61 to 70)

Decision Table 7 shows ten choices between two options labelled “A” and “B”. These choices involve different chances
to receive different amounts of money at the end of today’s session.

We will use a ten-sided die to determine these chances; the faces are numbered from 1 to 10 (the “0” face of the die
will serve as 10).

For example: In Decision 61, Option A pays $20 if the roll of the ten-sided die is 1, and it pays $17 if the roll is 2 to
10. Option B pays $38 if the roll of the die is 1, and it pays $1 if the roll is 2 to 10.

The other decisions are similar, except that as you move down the table, the chances of the higher payment in each
option increase. In fact, for Decision 70 in the bottom row, the die will not be needed since each option pays the higher
payoff for sure, so your choice here is between $20 or $38.

For each decision row, you are asked to choose either Option A or Option B by marking an “X” in the appropriate box.

You may choose A for some decisions and B for others, and you may make your choices in any order.

If one of these decisions is randomly selected as the one that counts for payment, then we will roll the ten-sided die to
determine your earnings according to the choice that you made – either Option A or Option B – for that decision.

This amount would be paid to you in cash at the end of today’s session. In this case, you would still receive your
participation fee by cheque in two instalments of $5 each: the first would be sent one week from today, and the second
would be sent sixteen weeks from today.

At the time you make each choice, you will not know if it will be selected for payment. Since each choice is equally
likely to be selected, you should treat each one as if it may be the one that counts.

PLEASE DO NOT BEGIN MAKING YOUR DECISIONS UNTIL YOU ARE INSTRUCTED TO DO SO.
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