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Abstract 
 
We present a theory explaining the impact of ability tracking on academic performance based on 
grading policies. Our model distinguishes between initial ability, which is mainly determined by 
parental background, and eagerness to extend knowledge. We show that achievements of low 
ability students may be higher in a comprehensive school system, even if there are neither 
synergy effects nor interdependent preferences among classmates. This arises because the 
comprehensive school sets a compromise standard which exceeds the standard from the low 
ability track. Moreover, if students with lower initial ability have higher eagerness to learn, 
merging classes will increase average performance. 
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I Introduction

A major controversy in education policy concerns whether students should be taught
in comprehensive schools or whether classes should be tracked according to ability.
Proponents of comprehensive schooling argue that mixing good and mediocre students
improves the performance of mediocre students without harming the good students
too much. This reasoning is largely supported by empirical research, surveyed below,
which often finds that tracking, or the ability composition of classes, affect the perfor-
mance of individual students.

While such peer group effects seem to be well documented empirically, the mech-
anism driving them is rarely discussed and remains controversial. Explanations typi-
cally emphasize the interactions of students. For example, good students might help
mediocre colleagues to pass the exam and in addition learn by explaining the subject,
or students may follow norms set by other students when choosing their learning effort.
While we do not question the relevance of these explanations, in this paper we present
a complementary theory which is based on the schools’ grading policy. We show that
the incentives created by grading standards alone can explain many empirical results
on tracking without referring to any direct impact of classmates’ ability on individual
performance, and without assuming any interdependence of students’ preferences.

A large literature has emerged which empirically analyzes peer group effects and
the impact of tracking on educational outcomes. Surveys of this literature are provided
by Brunello and Checchi (2007) and Meier and Schütz (2008). While peer effects
have been shown to arise from various characteristics, including ethnicity (Friesen and
Krauth, 2010), gender (Jahanshahi, 2017), body weight (Asirvatham et al., 2018), and
age (Foureaux Koppensteiner, 2018), the main focus of research has been on ability.
In particular, the impact of tracking on average academic performance and on per-
formance of students with different abilities has attracted much attention. The latter
question is linked to equality of opportunity, in the sense that academic achievement
should not depend on the social background. This is especially relevant in the case of
early tracking, since family background is likely to strongly influence the ability in the
first years of schooling.

While some researchers find no evidence that low ability students are harmed in a
tracked environment (see Betts and Shkolnik, 2000; Figlio and Page, 2002; Kim et al.,
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2008), most studies agree that the impact of family background is reinforced by early
tracking, and that equality of opportunity is promoted by comprehensive schooling (see
Argys et al., 1996; Pekkarinen, 2008; Wößmann, 2010; Ruhose and Schwerdt, 2016).
In contrast, there does not seem to be clear evidence on whether average achievement
rises or falls when students are tracked (see Hanushek and Wößmann, 2006).

Theoretical models of peer effects usually assume a learning production function
where a student’s performance does not only depend on his or her ability and effort,
but is also positively affected by the average ability in the class the student attends. An
early formalization of this kind of externality is provided by Arnott and Rowse (1987).
The models by Epple, Newlon and Romano (2002), Duflo, Dupas and Kremer (2011),
and Hidalgo-Hidalgo (2014) apply this mechanism to tracking. A second approach to
model peer effects is based upon interdependent preferences, where a student’s utility
depends on characteristics or actions of other students. Such interdependence can arise
when students have a preference for ranking high in class (Damiano, Li and Suen,
2010), from network relationships among students (Liu, Patacchini and Zenou, 2014),
or from reference point dependent preferences where the reference point is given by
other students’ performance (Thiemann, 2017).

In this paper we provide a simple model which can account for some of the empiri-
cal facts summarized above. In contrast to the theoretical literature cited in the previous
paragraph, we do not rely on any externality in the education production function or on
any direct effect of other classmates on a student’s utility function. We also do not as-
sume that teachers’ effort or school resources change when the composition of classes
changes, as in Duflo, Dupas and Kremer (2011). Hence, we offer a complementary,
and remarkably simple, explanation for important empirical facts.

In our model there are two types of students distinguished by ability. These students
are taught either in tracked classes or in a comprehensive school. The instrument of the
school is the graduation standard, which is the level of performance required to pass the
exam. Like in the classical models of grading by Costrell (1994) and Betts (1998), the
school sets the standard by trading off wages of graduates, which rise in the standard,
against effort costs required to meet a more demanding standard.

As a major innovation, our model features two different dimensions of ability. The
first dimension represents the endowment a student starts with. This endowment is
the ability a student has when the tracking decision is taken. It results from previous
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learning, which is determined by family background and former schooling. The second
dimension of ability is the eagerness to learn or to improve personal achievement. This
is the student’s potential a teacher can work with. This dimension determines how hard
it is for students to raise performance beyond their initial ability. Importantly, we do
not exclude the case where students with low initial endowment have high eagerness to
learn or vice versa.

A further special characteristic of our model is that we distinguish between the
objective function of the student or teacher, and the objective parents or society may
have. We assume that the teacher, or the school authority which sets grading guidelines
for teachers, takes students’ effort costs into account when setting the standard. This
objective reflects the widespread concern about students feeling excessively pressured
by school (see World Health Organization, 2016, p. 59-62). In contrast, in line with
the emphasis which policy makers and researchers put on performance measuring tests
like PISA and TIMMS, the social objective consists of maximizing performance and
disregards effort costs.

In this framework we characterize the standards chosen by tracked schools and by a
comprehensive school, and compare the resulting academic achievements of both types
of students. We show that students with lower initial endowment gain from a compre-
hensive school when their eagerness to learn is not too different from the eagerness of
students with high initial endowment. This arises because in a comprehensive school
the teacher is forced to set the standard as a compromise, which pushes lower ability
students to higher achievement.

In a further result we show that the average performance in the comprehensive
system is higher if students with lower initial endowment have higher eagerness to
learn. In this case the tracked system does not make full use of the learning potential of
students with low initial endowment, on which tracking is based. In contrast, if students
with low initial endowment also have lower eagerness to learn, average performance
goes down when classes are merged.

It is worth noting that these results crucially depend on the two specific elements
of our model. First, when all students have the same eagerness to learn and hence dif-
fer only in one dimension of ability, then a compromise standard at the comprehensive
school necessarily leads to the same average performance as the separate standards
of tracked schools. Second, in our model non-tracking will always be dominated by
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tracking if teachers and society share the same objective function. In the comprehen-
sive school a unique standard must be chosen and one degree of freedom is given up.
Therefore maximization of either average performance or welfare is carried out under
an additional restriction in the comprehensive school, and a tracked school system is
always preferable.

Our paper contributes to the theory of grading, initiated by Costrell (1994) and Betts
(1998). This line of research is particularly concerned with the information content of
grades and the resulting incentives for schools to award better grades than students
deserve, a policy which is often termed ‘grade inflation’ (Chan, Li and Suen, 2007;
Ostrovsky and Schwarz, 2010; Popov and Bernhardt, 2013; Zubrickas, 2015).

Different from the focus of this literature, in this paper, we analyze the impact of
grading policies on the achievements of students in tracked and comprehensive classes.
This issue is similar to the comparison of a centralized or decentralized standards as
in Costrell (1997), since the former is uniform and the latter can be differentiated. In
addition Costrell’s model, similarly to ours, allows for differences in abilities among
schools. However, the focus of his analysis is different from ours. His main issue
is that individual schools can free-ride on the tough standards of other schools in the
case where employers can only observe the average achievement of graduates from all
schools. In contrast we focus on tracking according to ability. Moreover, as stressed
above, our model extends Costrell’s setup by assuming two dimensions of ability and
by replacing the ever positive marginal costs of learning by the idea that a certain per-
formance level can be reached without costs.

The remainder of the paper is organized as follows. In Section II, we present the
model and analyze the standards set by tracked schools. Section III contains the analy-
sis of the standard set by a comprehensive school, and in Section IV we compare per-
formance across both systems. The final Section V provides some concluding remarks.
Proofs and some formal derivations are relegated to the supplementary material.

II The model with ability tracking

There are two types of students i ∈ {l;h} which differ in ability. We consider two
dimensions of ability. The first dimension, which we label endowment or initial ability,
plays two roles in the model. First, it is the achievement level which is reached at
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the time of tracking, and hence serves as the basis of assigning students to schools if
tracking occurs. Second, the endowment represents the level of performance a student
can achieve without feeling stressed. This is motivated by the idea that students actually
like to think, solve problems, and participate in class, at least up to some point, and
that they feel bored if courses do not challenge them enough. Each individual of type
i∈ {l;h} has the same initial endowment γi. We assume γl < γh, so that students of type
l have lower endowment than students of type h.

The second dimension of ability, labeled ai for type i, expresses the ease of learn-
ing. This parameter measures how much stress a student feels if he or she pushes
performance beyond his or her initial ability γi. We can interpret ai as the individual
intellectual capacity and motivation of the student.

This modeling captures the fact that both innate ability and parental background are
relevant for academic achievement, but differently so at different age levels. We think of
early achievement, expressed by γi, as being largely determined by the upbringing and
the parental background of students, as mentioned in the introduction. This affects the
level of performance achievable without feeling stressed, since the latter most likely
depends on previous learning. In contrast, we maintain that the ease with which a
student moves beyond this level of achievement in later stages of education, expressed
by ai, depends relatively more on individual ability than on background.

Since a student with a low academic background can well be highly motivated or
intelligent, we allow for the case al > ah. This describes the situation where students of
type l have low initial endowment of ability but high eagerness and capacity to learn.
Thus, our two-dimensional model of learning captures in a simple way the idea that
students who might be assigned to a lower track may have a learning potential superior
to the observed performance at the time of tracking.

Depending on both dimensions of ability a student has costs ci to achieve a certain
level of education, denoted by ei:

ci(ei) =
1

2ai
(ei− γi)

2 . (1)

Here the inverse of ai enters the marginal cost of learning. There is a minimum at
ei = γi, where costs are zero. At this point the student’s academic performance is just
his or her initial ability. The cost function, shown in figure 1, represents the idea that
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demanding less effort leads to higher costs in terms of being bored.

ci

ei
0

beingbeing
bored stressed

γi

Figure 1: Cost as a function of effort for a student of type i. When effort equals initial
ability γi, marginal cost of effort is zero.

We now turn to the examination and the labor market. We start in this section
by analyzing the case where students are taught in classes tracked according to initial
endowment. The school or the teacher set a standard si which is measured in the same
units as the level of education ei. The level of personal education must be at least as
high as the standard of the school in order to pass the final exam and graduate. The
students decide to become graduates or not and, conditional on this, which academic
performance to achieve. This decision is based on the cost of effort and the wages for
non-graduates w0i and graduates w1i.

The formulation of wages incorporates two assumptions on the information of em-
ployers. First, the individual performance ei is unknown to the employer and therefore
does not enter the wage. This assumption is common in theories of grading or exam-
ination standards as, for example, Costrell (1994) and Betts (1998). If, instead, the
individual performance was known, whether a student meets the standard or not would
not convey any additional information, and hence standards would be redundant. Sec-
ond, employers observe a student’s type i and whether he or she graduated or not. This
seems straightforward in the tracked schooling system, since employers can derive the
type of students from observing the school he or she graduated from. However, in our
view the type is not only linked to the school, but is a characteristic of the individual
person. This is likely to be observed on the basis of criteria such as address, name,
parental occupation, former schooling, behavior, attitude, and manner of speaking, es-
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pecially when type is linked to social origin. Therefore, it is plausible that a student’s
type is still observable when he or she attended a comprehensive school.

Conditional on the decision to pass the exam or not, the student chooses perfor-
mance to maximize utility. We denote the utility achieved in case of passing (not pass-
ing) by u1i (u0i):

u1i = max
ei
{w1i− ci(ei)|ei ≥ si} ⇒

{
ei = si if si ≥ γi

ei = γi if si < γi

u0i = max
ei
{w0i− ci(ei)} ⇒ ei = γi .

(2)

Using this choice, a student graduates if u1i ≥ u0i. We assume that students expect
w1i ≥ w0i. One can see from equation (4) below that this expectation is confirmed in
equilibrium. The utility resulting from the optimal graduation choice is then given by:

max{u0i;u1i}=


u1i if si < γi

u1i if w1i− ci(si)−w0i ≥ 0 and si ≥ γi

u0i if w1i− ci(si)−w0i < 0 and si ≥ γi .

(3)

In equilibrium, the wage after passing the exam w1i must be equal to the expected
productivity of graduates of class i. We normalize productivity to be measured in the
same units as academic performance. Therefore w1i equals the education level of grad-
uates of class i. In the same way the wage w0i is given by the academic performance of
non-graduates. From equation (2) we have:

w0i = γi ⇒ no exam
w1i = max{si;γi} ⇒ exam .

(4)

We now turn to the choice of standard si by the teacher. The teacher maximizes
utility of all students. Thus, we assume that the teacher cares about the disutility of
learning of his or her students. Inserting (4) and (1) into (3) shows that in the case
where si ≥ γi, the student chooses to graduate if si− γi ≤ 2ai. Using this, (2) and (4) in
(3) shows that utility of all students of type i is given by:

Vi(si) =

{
γi if si < γi or si− γi > 2ai

si− 1
2ai

(si− γi)
2 if si ≥ γi and si− γi ≤ 2ai .
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The optimal standard s∗i is determined by the first order condition:

∂Vi

∂si
= 1− 1

ai
(si− γi)

!
= 0 ⇒ s∗i = ai + γi . (5)

From strict concavity of the second line in Vi(si) and γi < s∗i < γi +2ai, this is a global
optimum. The chosen standard reflects both dimensions of ability. The indirect utilities
reached by both types are

Vi(s∗i ) = γi +
ai

2
for i = l,h . (6)

Comparing the two standards, the typical case is given by s∗h > s∗l , where h-students
enjoy an advantage compared to l-students in terms of total ability:

ah + γh > al + γl . (7)

The behavioral rule (2) and the ranking of standards according to (7) show the impli-
cations of having two dimensions of ability, linked by the effort cost function (1), in
the model. Students with high initial ability γh, procured by favorable background, will
perform at that level even if standards are low or if they decide not to pass the exam. As
is apparent from (2), for this outcome, the precise shape of the cost function for ei < γi

is irrelevant as long as costs are decreasing. By implication, these students can be held
to quite demanding standards even when they are not particularly able to, or interested
in, learning more.

In the case of inequality (7) one can clearly label both types of students as l-low
and h-high ability. However we do not rule out the opposite case, where

ah + γh ≤ al + γl . (8)

Thus, we allow the learning capacity of l-students to be so much higher than the one
of h-students that it overcompensates the disadvantage of initial endowment of the l-
students.
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III Merging classes

The previous analysis dealt with separated classes i ∈ {l;h}. In contrast in this section
we consider the case where both classes can be mixed together in one comprehensive
school. We denote the share of h-students in the comprehensive school by 0 < d < 1.
The teacher sets a common standard s applying to all students in the mixed class. The
teacher’s objective function is the aggregate utility of all students, denoted by V (s). We
continue to assume that employers are able to observe the standard of the school and
the type of an applicant i. Therefore, for any given standard s, individual choices of
students are still determined by (2) and (3) and wages are still given by (4), where si is
replaced by s.

Alternatively, one could assume that type i is not observable anymore when classes
are merged. In such a modelling, type would be linked to the school an individual at-
tends, rather than being a characteristic of the person. As explained above, we consider
this interpretation to be too narrow. Moreover, coupling type to school would intro-
duce an additional effect of a change in the schooling system. With a comprehensive
school, employers would then have less information than with tracked schools. Merg-
ing schools would force wages to be equal across types, which would feed back into
students’ incentives and the school’s standard setting policy. This effect would act on
top of the impact of the need to set a uniform standard in the comprehensive school,
rather than two standards tailored to tracked schools. Since we want to focus on the
latter effect, and since it is rather plausible that the type is linked to the person, we
assume that type i is observable in both schooling systems.

Depending on the standard, the objective function V can be of one of four different
forms. First, all students choose a performance equal to their initial ability γi, either
because they meet the standard without cost or because they choose not to graduate.
We denote the value of the school’s objective function in this case by Ṽ0. Since in
this case every student of type i earns a wage equal to γi and has no cost, it follows
Ṽ0 = γl(1− d) + γhd. This case will not occur when the school chooses an optimal
standard.

Second, only for the l-students the standard is binding, while the h-students choose
performance γh. Using the wage (4) and the cost function (1), aggregate utility in this
case is Ṽl(s) =

[
s− 1

2al
(s− γl)

2
]
(1−d)+ γhd.
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Third, both types of students choose to graduate and have to incur effort costs to do
so. Then performance of students of both types just meets the standard s. Hence, the
school’s objective is Ṽ (s) =

[
s− 1

2al
(s− γl)

2
]
(1−d)+

[
s− 1

2ah
(s− γh)

2
]

d.
Fourth, l-students perform at their initial ability γl , while h-students meet the stan-

dard. This yields the objective function Ṽh(s) = γl(1−d)+
[
s− 1

2ah
(s− γh)

2
]

d.
Which one of these four cases applies depends on how large the standard s is com-

pared to initial abilities γi and the maximal standards γi + 2ai students of type i = l,h

will satisfy. In Appendix A.I in the supplementary material, we give these conditions
explicitly.

Notice that Ṽl(s),Ṽh(s), and Ṽ (s) are strictly concave in s. Moreover, observe that
Ṽl and Ṽh are affine transformations of the objective functions Vl and Vh of the sepa-
rated classes: Ṽl(s) = (1−d)Vl(s)+dγh and Ṽh(s) = dVh(s)+(1−d)γl . Consequently,
in any interval where V (s) = Ṽl(s) or V (s) = Ṽh(s), the optimal standard is s∗l or s∗h,
respectively. In an interval where V (s) = Ṽ (s), the optimal standard s∗ solves:

∂Ṽ
∂s

=

[
1− 1

al
(s− γl)

]
(1−d)+

[
1− 1

ah
(s− γh)

]
d !
= 0 .

From this first order condition, we obtain:

s∗ =
alah +dalγh +(1−d)ahγl

dal +(1−d)ah

=
dal

dal +(1−d)ah
s∗h +

(1−d)ah

dal +(1−d)ah
s∗l . (9)

In this case, the standard of a mixed class is a weighted average of the standards chosen
in separated classes. The weights combine the population shares d and (1−d) with the
ability parameters ah and al .

We will now analyze which of the three standards s∗l , s∗h, and s∗ is the global op-
timum, that is, which of these three standards gives the highest welfare. As Figure
2 illustrates, each case is possible. The sub-figures 2(a), 2(b) and 2(c) are based on
different parameter combinations, where the globally optimal standard is s∗l , s∗h, and s∗

respectively.
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ṼṼl
Ṽh

s
s∗l = 0.5

(a) Parameter: d = 0.5, γh = 0.7,
γl = 0.1, ah = 0.3, al = 0.4
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Figure 2: The objective function of the comprehensive school V (s). Ṽh (Ṽl) describes
the value of the school’s objective when h (l)-students exert effort to pass the exam and
l (h)-students choose the effort level γl (γh). Ṽ represents the school’s objective where
both types of students graduate with positive effort costs. V (s) is the upper envelope of
Ṽ , Ṽl and Ṽh. For formal definitions, see (A.1) in the supplementary material.

The difference in welfare between standards s∗ and s∗l can be decomposed as

Ṽ (s∗)−Ṽl(s∗l ) = Ṽ (s∗)− (1−d)Vl(s∗l )−dVh(s∗h)+d
[
Vh(s∗h)− γh

]
= dah

2 −∆ .

Here, we define ∆ = (1− d)Vl(s∗l )+ dVh(s∗h)− Ṽ (s∗) > 0 and use (6). The quantity
∆ is the welfare loss caused by supplanting the common standard s∗ for individually
tailored standards for both types; we call it the compromise cost. The term dah/2 > 0
measures the welfare loss caused by pushing the performance of h-type students from
their optimal standard down to the initial endowment, as happens when the compre-
hensive school sets standard s∗l . This cost is called the incentive cost for the h-type
students. We obtain similarly

Ṽ (s∗)−Ṽh(s∗h) = (1−d)al
2 −∆ ,

Ṽh(s∗h)−Ṽl(a∗l ) = dah
2 −

(1−d)al
2 ,

where (1−d)al/2 is the incentive cost for l-type students.
The compromise cost can be expressed as (see Appendix A.II in the supplementary

material)

∆ =
[
(ah + γh)− (al + γl)

]2 · d(1−d)
2[dal +(1−d)ah]

. (10)

11



One notices that this cost is the larger, the more total abilities ai + γi, or equivalently
type-specific optimal standards s∗i , differ from each other. Moreover, the cost vanishes
if one type represents the entire population (d = 0 or d = 1). Finally, the cost decreases
if both ai increase by the same amount. This reflects the fact that a high learning ability
mitigates the cost of having to satisfy a standard which is not tailored to one’s own
need.

Pairwise comparison of the local maxima obtained by the three standards shows
that Ṽ (s∗), Ṽl(s∗l ), or Ṽh(s∗h) is largest if ∆, dah/2, or (1− d)al/2 is the smallest of
the three cost. Since the cost terms are functions of the parameters of the model, this
fully characterizes the global optimum provided that the optimal standard in each case
indeed induces the student behavior which underlies the definitions of Ṽ (s∗),Ṽl(s∗l ),
and Ṽh(s∗h). This is the case, as the following proposition shows.

Proposition 1 In the comprehensive school the chosen standard is:

s∗ = dal
dal+(1−d)ah

s∗h +
(1−d)ah

dal+(1−d)ah
s∗l if ∆ < min

{
dah
2 ; (1−d)al

2

}
s∗l = al + γl if dah

2 < min
{

∆; (1−d)al
2

}
s∗h = ah + γh if (1−d)al

2 < min
{

∆; dah
2

}
.

(11)

Proof. See Appendix A.III in the supplementary material. �

From this proposition we can directly read the globally optimal standard. This is
s∗ if the parameters are such that the compromise cost is smaller than both incentive
costs. If the incentive cost of one type of student is the smallest of the three cost, the
comprehensive school chooses the standard which is optimal for the other type.

Figure 3 illustrates in which region of the parameter space each of the three local
maxima is the global maximum. This figure is drawn in ah−al-space, since the influ-
ence of these parameters on the optimal standard is most interesting to study. In this
example the other parameters are fixed at d = 0.5, γl = 0.3 and γh = 0.7. In the graph
we have inserted a dotted straight line, starting at ah = 0;al = 0.4. Above this line
inequality (8) holds. Below this line we have (7), such that labeling the l-type as low
ability students is appropriate.

In the lower right region of the figure, labeled with s∗h, the optimal standard in the
comprehensive school is s∗h, as in the tracked h-school. In this region the ability of
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Figure 3: Parameter regions in ah− al-space with different optimal standards s∗, s∗l ,
and s∗h in the comprehensive school, with d = 0.5, γl = 0.3 and γh = 0.7. Below (on,
above) the dotted line starting at (ah = 0;al = 0.4) one has al + γl < (=,>)ah + γh.

h-students is relatively high in both dimensions compared to the l-students. Therefore
the teacher sets a standard tailored exactly to h-students, accepting that l-students will
drop out since their incentive cost is low. In the central and upper right region, labeled
s∗, the abilities of both types do not differ much such that the compromise cost is small,
and hence the teacher sets the compromise standard s∗. Finally in the upper left and
lower left regions, labeled with s∗l , the school chooses the standard s∗l for the l-students,
whereas the h-students perform at γh. They do so for two different reasons. In the upper
region with al > 0.4, where (8) holds, the standard is too high for the h-students and
they drop out. In the lower part (al < 0.4, and (7) holds), the standard is so low that the
h-students can meet it without effort cost. In both cases the incentive cost of h-students
is low.

The next proposition provides comparative statics for the case where the optimal
standard is s∗.

Proposition 2 If the optimal standard in a comprehensive school is s∗, it increases in
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al , ah, γl and γh. It increases (decreases) in d if ah + γh > (<)al + γl .

Proof. See Appendix A.III in the supplementary material. �

As expected, the standard increases in both dimensions of ability of each type.
Moreover, the standard increases in the share of the type of students i whose total
ability, measured by ai + γi, is larger.

IV Comparison of student performance

We now turn to the question whether two separated classes are preferable to the mixed
class. It is important to distinguish between a comparison of utilities and a compari-
son of academic performances. Regarding utilities, no case is possible where students
are better off in the mixed class than in separated classes, because in that case, s∗l and
s∗h can be optimized separately. Hence, comparison of utilities is a straightforward
application of the decentralization theorem by Oates (1972). Notice that the same ob-
servation would hold if we assumed that schools maximize academic performance or
wages instead of students’ utility. In such a model it would be immediate that in the
comprehensive school performance of each type can only be worse than in tracked
schools.

In contrast, as we will now show, in our model academic performance can also
increase by mixing the classes. First, we consider for each type of students separately
how their performance changes if classes are merged. For this comparison, observe
that in the case where the optimal standard of the comprehensive school is s∗l (s∗h), the
performance of the h (l)-students is γh (γl), and that the standard s∗ is a weighted average
of the standards chosen in the tracked schools. With this, Proposition 1 immediately
leads to:

Proposition 3 The performance of l (h)-students in the comprehensive school is

(i) higher than in the tracked school if the comprehensive school chooses s∗ and

al + γl < (>)ah + γh,

(ii) lower than in the tracked school if the comprehensive school chooses s∗ and

al + γl > (<)ah + γh, or if the comprehensive school chooses s∗h (s∗l ),
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(iii) equal to the performance in the tracked school if the comprehensive school chooses

s∗ and al + γl = ah + γh, or if the comprehensive school chooses s∗l (s∗h).

This proposition shows that our model can generate a positive peer group effect for
low ability students, by which we mean the l-students, where (7) holds. In a compre-
hensive school, teachers will need to find a compromise between the standards tailored
to individual student types. As long as low ability students are still willing to meet this
standard, they will put in more effort than in the separated class. As a consequence one
will observe higher test results on their part in the comprehensive school, even if there
are no synergy effects from teaching diverse students together or behavioral norms in-
ducing students to emulate classmates. Furthermore, the reduction of the standard for
the h-students might be quite small when d and/or al are relatively large. Then, as (9)
shows, the standard of the mixed class is close to the standard of the h-class. Given
confounding influences, an empirical study might fail to find statistical significance of
such a small impact.

The peer group effect obtains only for a subset of the parameter space. As is ap-
parent from figure 3, the learning capacities of both types must not be too different.
Otherwise, if one type finds it substantially easier to learn, the school will set optimal
incentives for this type and put up with the fact that the other type stops graduating.
Furthermore one can show that the ∆− (1−d)al

2 = 0 -curve shifts downwards if d de-
creases. Hence, a positive peer group effect for the low ability students is more likely
when these students are more numerous. In this case the teacher of the comprehensive
school puts more weight on their utility and therefore refrains from setting a standard
which overburdens them.

Finally it may also happen that the comprehensive school sets the standard s∗l tai-
lored to the low ability students. This corresponds to the lower left region of Figure
3. In this case mixing classes leaves the performance of l-students unchanged and re-
duces the performance of h-students. However, this decline in performance might be
very small, since learning capacity of h-students is in this case not very large anyway
and since they continue to perform at their initial endowment γh. Therefore, although
mixing classes obviously does not help in this case, the damage it inflicts is small.

We now turn to the effect of merging classes on aggregate performance. When
the comprehensive school chooses a standard s∗h or s∗l tailored to one of the two groups,
this group’s performance is unchanged while the other group falls back on initial ability.
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Hence, average performance will clearly decrease in this case. When the comprehen-
sive school chooses the standard s∗, the outcome is less obvious, as the next proposition
shows.

Proposition 4 The average performance of students in a comprehensive school which

chooses the standard s∗ exceeds the average performance of students in tracked schools

if and only if al + γl < ah + γh and al > ah. That is:

s∗ > ds∗h +(1−d)s∗l ⇔ al + γl < ah + γh and al > ah .

Proof. See Appendix A.III in the supplementary material. �

This proposition shows that merging classes with heterogeneous students may in-
crease overall academic performance, even when there are no spillover effects between
types of students in learning or in preferences. This occurs when students with low
initial ability have higher learning capacity than students with high initial ability. To
understand that, consider how the standard is set in the comprehensive school. The
teacher will trade off the net-loss incurred by l-students when the standard is increased
above their optimal standard s∗l against the net-loss incurred by h-students when the
standard is decreased below s∗h. Since the learning ability of l-students exceeds the
learning ability of h-students, the net-loss of the latter increases faster than the net-loss
of the former. Therefore the optimal standard, where marginal net-losses are equalized,
is closer to s∗h than to s∗l . Hence the optimal standard in the mixed class is higher than
the weighted average of the standards of the separated classes.

This kind of result is likely to be relevant in education systems where students are
tracked early. In that case, it is particularly likely that the allocation to different tracks
is mostly determined by the endowment of skills conferred by the family background.
At the same time it is well possible that students with low endowment have not yet fully
unfolded their potential and correspondingly find it easier to extend their knowledge.
In the terminology of our model these students have high learning capacity al , but low
endowment γl . If these students now attend a comprehensive school, average perfor-
mance of students will increase. Both types of students find a relatively high standard
acceptable, but they do so because of different reasons: One group starts with high
initial ability and the others are eager to advance.
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V Conclusion

In this paper we present a model comparing the choice of examination standards by
tracked and untracked schools. The model distinguishes between initial ability and
the capacity or willingness to extend ability. When setting the standard, the school or
teacher takes the student’s disutility of learning into account. Therefore, the resulting
choices differ from the standards which maximize academic performance, which is the
focus of PISA and similar studies.

Our findings show that in many cases a comprehensive school will enhance per-
formance of low ability students or even enhance average performance compared to
tracked schools with individual standards. In these cases performance of high ability
students decreases, but this effect may be so small that it is insignificant in an empir-
ical study. Our model therefore provides a foundation of peer group effects although
we abstract from any synergy effect from teaching different student types together and
from any kind of interdependent preferences.

Appendix

A.I The objective function of the comprehensive school

The four functional forms of the school’s objective function mentioned in the text apply
for different parameter constellations. This leads to the following definition of V (s)

with seven branches defined by parameter restrictions. Some of the restrictions are
redundant, but are left for better understanding:

V (s) =



Ṽ0 [1] if s≤ γl,h

Ṽ0 [2] if s≤ γh; s > γl; s− γl > 2al

Ṽl(s) [3] if s≤ γh; s > γl; s− γl ≤ 2al

Ṽ (s) [4] if s > γl,h; s− γl ≤ 2al; s− γh ≤ 2ah

Ṽh(s) [5] if s > γl,h; s− γl > 2al; s− γh ≤ 2ah

Ṽl(s) [6] if s > γl,h; s− γl ≤ 2al; s− γh > 2ah

Ṽ0 [7] if s > γl,h; s− γl > 2al; s− γh > 2ah

(A.1)
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In the first branch [1] the standard is too low to bind anybody, so all students just
perform at the initial endowment. In the next branch [2] outcome is the same, but
the standard is above the maximal standard the l-students are willing to satisfy and
u1l < u0l , whereas h-students still graduate without effort cost. Branch [3] represents
the situation where the l-students graduate by just meeting the standard whereas h-
students still graduate with level γh. On branch [4], the standard is high enough to be
binding also for h-students. Branches [5] and [6] differ depending on which group first
refuses to satisfy the high standard and falls back to initial ability. In branch [5] this is
true for the l-students and in branch [6] for the h-students. The last branch [7] shows a
standard higher than anybody will accept to meet.

In Figure 2, Ṽh (Ṽl , Ṽ ) describes the value of the school’s objective according to
branch [5] ([3], [4]) of (A.1). Figure 3 illustrates in which branch of (A.1) the optimal
standard is located. In the lower right region, labeled with Ṽh, the relevant branch is [5].
In the central and upper right region, labeled Ṽ , branch [4] of V contains the optimum.
In the upper left region, with al > 0.4 and labeled with Ṽl , branch [6] of V is relevant.
Finally, in the lower left region with al < 0.4, also labeled with Ṽl , branch [3] applies.

A.II Derivation of (10)

Using the definitions of the functions Ṽ , Vl , and Vh, we find

∆ = (1−d)Vl(s∗l )+dVh(s∗h)−Ṽ (s∗)

= (1−d)
{

s∗l −
1

2al
(s∗l − γl)

2−
[

s∗− 1
2al

(s∗− γl)
2
]}

+d
{

s∗h−
1

2ah
(s∗h− γh)

2−
[

s∗− 1
2ah

(s∗− γh)
2
]}

= (1−d)
{

s∗l − s∗− 1
2al

[
(s∗l − γl)

2− (s∗− γl)
2
]}

+d
{

s∗h− s∗− 1
2ah

[
(s∗h− γh)

2− (s∗− γh)
2
]}

= (1−d)
{

s∗l − s∗− 1
2al

[
(s∗l − γl)− (s∗− γl)

][
(s∗l − γl)+(s∗− γl)

]}
+d
{

s∗h− s∗− 1
2ah

[
(s∗h− γh)− (s∗− γh)

][
(s∗h− γh)+(s∗− γh)

]}
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= (1−d)(s∗l − s∗)
[
2al− (s∗l + s∗−2γl)

] 1
2al

+ d(s∗h− s∗)
[
2ah− (s∗h + s∗−2γh)

] 1
2ah

.

Inserting the optimal standards from (5), we have furthermore

∆ = (1−d)(s∗− s∗l )
2 1

2al
+ d(s∗− s∗h)

2 1
2ah

. (A.2)

From (9), one has

s∗− s∗l =
dal

dal +(1−d)ah
(s∗h− s∗l ) ,

s∗− s∗h =
(1−d)ah

dal +(1−d)ah
(s∗l − s∗h) .

Inserting these equations in (A.2), it follows

∆ = (s∗h− s∗l )
2 ·
{

1−d
2al
·
[

dal

dal +(1−d)ah

]2

+
d

2ah
·
[

(1−d)ah

dal +(1−d)ah

]2
}

= (s∗h− s∗l )
2 · d(1−d)

2[dal +(1−d)ah]
.

Using the optimal standards from (5) once more, one arrives at (10).

A.III Proofs

Proof of Proposition 1

We need to consider all three possible optimalities and check if the needed constrains
from (A.1) are satisfied. At first we consider

(i) s∗ is optimal.
We need to show that if ∆ < dah/2 and ∆ < (1−d)al/2 hold, s∗ satisfies the conditions
given in branch [4] of (A.1).

a) s∗ > γl is equivalent to al [ah+d(γh−γl)]
dal+(1−d)ah

> 0, which is satisfied in any case.

b) s∗> γh is equivalent to ah[al−(1−d)(γh−γl)]
dal+(1−d)ah

> 0, which reduces to al > (γh−γl)(1−
d). Moreover, the inequality ∆ < dah/2 is equivalent to (1−d) [ah− (al− γh + γl)]

2 <

ah[dal+(1−d)ah], or to ah [al(2−d)−2(1−d)(γh− γl)]> (1−d)(al−γh+γl)
2. This
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implies al(2− d)− 2(1− d)(γh− γl) > 0, which can be transformed into al − (1−
d)(γh− γl)>

ald
2 . From this al > (1−d)(γh− γl) and hence s∗ > γh follows.

c) s∗− γl ≤ 2al is, for al 6= 0, equivalent to al ≥ d(γh−γl)+ah(2d−1)
2d ≡ Al(ah). The

inequality ∆ < (1−d)al/2 is equivalent to d[(ah+γh−γl)−al]
2 < al[dal +(1−d)ah],

or to al >
d(ah+γh−γl)

2

ah(1+d)+2d(γh−γl)
≡ Bl(ah). We show that Bl(ah)≥ Al(ah) so that al > Bl(ah)

implies al > Al(ah). To see this, observe that, with (1+d)ah+2d(γh−γl)> 0, we find
that Bl(ah) ≥ Al(ah) is equivalent to (1−d)[ah +d(γh− γl)] ≥ 0, which is true in any
case.

d) s∗− γh ≤ 2ah is, for ah 6= 0, equivalent to ah ≥ al(1−2d)−(1−d)(γh−γl)
2(1−d) ≡ Ah(al).

The inequality ∆ < dah/2 is equivalent to (1−d) [ah− (al− γh + γl)]
2 < ah[dal +(1−

d)ah], or to (1− d)(al − γh + γl)
2 < ah[(2− d)al − 2(1− d)(γh − γl)]. Since ∆ <

dah/2 implies (2− d)al − 2(1− d)(γh − γl) > 0 (see step b), ∆ < dah/2 is equiv-
alent to ah > (1−d)(al−γh+γl)

2

al(2−d)−2(1−d)(γh−γl)
≡ Bh(al). We show that Bh(al) ≥ Ah(al) so that

ah > Bh(al) implies ah > Ah(al). The inequality Bh(al) ≥ Ah(al) is equivalent to
dal [al−(1−d)(γh−γl)]

(1−d)[al(2−d)−2(1−d)(γh−γl)]
≥ 0. As shown in step b, we have al− (1−d)(γh− γl) > 0

and al(2−d)−2(1−d)(γh− γl)> 0. Hence Bh(al)≥ Ah(al) for all al > 0.

(ii) s∗l is optimal.
Now we need to show that if ∆ > dah/2 and dah/2 < (1−d)al/2 hold, s∗l satisfies the
conditions given in branch [3] or [6] of (A.1). We distinguish two cases, depending on
whether (7) or (8) holds.

a) In the first case, where ah+γh > al +γl , we show that branch [3] of (A.1) applies.
The conditions s∗l > γl and s∗l − γl ≤ 2al follow from s∗l = al + γl . To see that also the
condition s∗l ≤ γh is satisfied, assume the contrary, i.e., γh−al− γl < 0. Then, with (7),
ah > ah+γh−al−γl > 0, and hence a2

h > (ah+γh−al−γl)
2. Together with ∆ > dah/2

this implies a2
h ·

d(1−d)
2[dal+(1−d)ah]

> ∆ > dah
2 , hence dal < 0, a contradiction. Therefore, if

(7) holds, ∆ > dah/2 implies s∗l ≤ γh.
b) In the case ah + γh ≤ al + γl the branch [6] of (A.1) applies. The conditions

s∗l > γl and s∗l ≤ 2al + γl follow directly from s∗l = al + γl . The condition s∗l > γh is
implied by s∗l − γh > 2ah. We show that this latter condition follows from ∆ > dah/2.
Inserting s∗l = al +γl , we can rewrite s∗l −γh > 2ah as ah <

al+γl−γh
2 ≡Ch(al). Consider

the denominator of Bh(al) defined in step (i.d) above. From ah−al < γl− γh we have
al(2− d)− 2(1− d)(γh− γl) > al(2− d)+ 2(1− d)(ah− al) = ald + 2(1− d)ah > 0.
Therefore ∆ > ah/2 is equivalent to ah < Bh(al). We show that Bh(al) < Ch(al), so
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that ah < Bh(al) implies ah < Ch(al). The inequality Bh(al) < Ch(al) is equivalent to
[al(−2+d)+2(1−d)(γh− γl)] (al +γl−γh)< 0. Since here al +γl−γh > ah > 0, this
is equivalent to al(2−d)−2(1−d)(γh− γl)> 0, which we just have shown to be true.

(iii) s∗h is optimal.
∆ > (1−d)al/2 is equivalent to al < Bl(ah), where Bl(ah) is defined in step (i.c) above.
s∗h− γl > 2al is equivalent to al <

ah+γh−γl
2 ≡ Dl(ah). We show that Bl(ah) < Dl(ah).

Knowing ah +ahd +2d(γh− γl)> 0 and d < 1, this is true. Hence al < Bl(ah) implies
al < Dl(ah). The conditions s∗h > γh and s∗h− γh ≤ 2ah follow from s∗h = ah + γh. �

Proof of Proposition 2

Differentiating s∗ from (9) we obtain:

∂s∗

∂d
=

ahal(ah−al + γh− γl)

(ah(1−d)+ald)2 (A.3)

∂s∗

∂γl
=

ah(1−d)
ah(1−d)+ald

> 0

∂s∗

∂γh
=

ald
ah(1−d)+ald

> 0

∂s∗

∂al
=

ah(1−d) [ah +d(γh− γl)]

[ah(1−d)+ald]
2 > 0

∂s∗

∂ah
=

ald [al− (γh− γl)(1−d)]

[ah(1−d)+ald]
2 (A.4)

(A.3) is positive (negative) if ah+γh > (<)al +γl . (A.4) is positive if al > (γh−γl)(1−
d). As shown in the proof of Proposition 1, this is true if s∗ > γh, which must be the
case if s∗ is the optimal choice. �

Proof of Proposition 4

From equation (9), we find that s∗ R ds∗h +(1−d)s∗l is equivalent to:

(al−ah)(s∗h− s∗l )R 0 . (A.5)

(i) ‘if’. With al + γl < ah + γh we have s∗h > s∗l , and (A.5) is equivalent to al R ah.
Hence, al > ah implies s∗ > ds∗h +(1−d)s∗l .
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(ii) ‘only if’. From (A.5), with al +γl < ah+γh, al ≤ ah implies s∗≤ ds∗h+(1−d)s∗l .
In the case al + γl > ah + γh, we have s∗h < s∗l , and (A.5) is equivalent to al Q ah. Since
γh > γl , in this case al > ah must hold. Hence s∗< ds∗h+(1−d)s∗l . For al +γl = ah+γh,
we have s∗l = s∗h, and (A.5) implies s∗ = ds∗h +(1−d)s∗l . �
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