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Abstract 
 
For any emission trading system (ETS) with quantity-based endogenous supply of allowances, 
there exists a negative demand shock, e.g. induced by abatement policy, that increases aggregate 
supply and thus cumulative emissions. We prove this green paradox for a general model and 
then apply it to the details of EU ETS. In 2018, new rules for a Market Stability Reserve (MSR) 
were agreed on and implemented. We show that abatement policies announced in early periods 
but realized in the future, are inverted by the new rules and increase cumulative emissions. We 
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1 Introduction

In order to reduce greenhouse gas (GHG) emissions, emissions pricing has long been

advocated by economists, either as a tax or via an emissions trading system (ETS)

(c.f. Aldy et al., 2010; Golosov et al., 2014) . Where a tax fixes the price of emissions,

a standard ETS fixes the overall emissions level while leaving the emissions price

endogenous. Policy makers around the world have mostly favored ETSs over emission

taxes, typically allowing for banking (and possibly borrowing) between periods. With

banking, short-run emission levels can flexibly adjust to changing market conditions

even if the short-run supply of emission allowances is fixed. Long-run emission levels

are still given, however, as long as the long-run supply of allowances is fixed.

Due to uncertainty, the ETS price may exceed, or fall short of, expected prices

(Weitzman, 1974). To avoid too high or too low emissions prices, supplementary

measures have been implemented or proposed, such as price collars and floors (Roberts

and Spence, 1976; Abrell and Rausch, 2017) or endogenous allocation of allowances to

individual firms (e.g., output-based allocation, cf. Fowlie et al. (2016); Böhringer et al.

(2017a)). In the EU ETS, the world’s largest operating carbon market, alternative

measures have recently been implemented, involving market-induced cancellation of

allowances. Hence, the long-run supply of allowances is no longer fixed — the emissions

cap is endogenous (Perino, 2018).

In this paper we show, first analytically in a general model and then numerically

in the context of EU ETS, that any emission trading system with a quantity-based

endogenous cap, as in the EU ETS, induces a green paradox. That is, for any such

ETS there exists an abatement policy that increases aggregate emissions. When

calibrating and simulating a model of EU ETS, we find that this green paradox may be

substantial, especially if demand for emission permits is reduced several years from now

but anticipated today. Our results unequivocally show that the announcement of future

abatement policies can invert the long-run effects from a reduction to an increase in

emissions.

The intuition behind our result can be understood by considering the history of

EU ETS. Due to the economic slowdown that started in 2008, demand for allowances

decreased, a large amount of banked allowances accumulated, which put a downward

pressure on the EUA price. The price of emission allowances (EUAs) dropped below

10 e/tCO2 from 2012 onwards. In response, the EU implemented a Market Stability

Reserve (MRS) in 2015, deciding that if aggregate banking in the market exceeds a
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certain threshold, part of next year’s allowances enter the MSR rather than the market

(Fell (2016); Kollenberg and Taschini (2019)), to be released back into the market at a

future stage. That is, the MSR reduced the short-run but not the cumulative supply of

allowances – the long-run cap on emissions remained untouched.

As the backloading of allowances did not succeed to push up prices, the EU further

adapted the workings of the MSR in 2018: when the size of the MSR is above the

annual auctioning, all allowances above this threshold are permanently canceled. The

new rules effectively reduce the long-run cap, supporting higher prices, but the amount

of cancelling has been made endogenous; it depends on the allowances banking that

determines the flow into the MSR. The intertemporal supply and demand has become

an intricate balance.

Whereas demand-reducing policies had no effect on cumulative emissions under the

old rules that supported a fixed cumulative cap, Perino (2018) finds that the new rules

give back some leverage to abatement policies. A one ton demand reduction in 2018

reduces cumulative emissions (i.e., the long-run emission cap) by 0.4-0.8 tons. The

reasoning is that reduced demand in 2018 increases banking and a bigger inflow into

the MSR, which eventually cancels more allowances. That is, the new MSR rules have

‘punctured the waterbed’. The magnitude of the effects depend on the timing of the

demand reduction, and the time window over which the MSR takes in allowances.

Gerlagh and Heijmans (2019) extend the analysis by Perino (2018) considering

changes in equilibrium prices and second-order effects on banking and allowance cancel-

lation. Here, we add one further element, and examine the effects of future demand

reduction measures that are anticipated today. If the market foresees a future demand

reduction, such depresses the banking of allowances. Fewer allowances then enter

the MSR, fewer allowances are canceled, and cumulative supply increases. Hence,

anticipating future abatement efforts may increase cumulative emissions!

The mechanism is reminiscent of the green paradox (Sinn, 2008; Bauer et al.,

2018): anticipated future climate policies incentivize fossil fuels producers to speed

up extraction and increasing current emissions. In our context, it is not current but

cumulative emissions that increase following well-intended climate policies. The green

paradox we consider is worse than the classic one.

The structure of the paper is as follows. We first present the general model in which

we prove our Theorem that any quantity-based ETS with endogenous cap suffers from

a Green Paradox. The next section illustrates the general model by adding some details
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of the EU ETS, and shows that the new rules for the MSR introduce multiplicity of

equilibria, and that the Green Paradox specifically arises for demand decreasing policies

that affect future demand. The third section adds a numerical calibration to the model

and calculates the size of the green paradox in the EU ETS.

2 General Model

Consider an emission cap system regulating emissions in a finite number of (temporal

or spatial) jurisdictions i, where demand for emission allowances is denoted d(p,λ) and

depends on one price (through Hotelling if temporal) p and demand shifting policies

λ normalized so that ∂d/∂λ = u, where u is the transposed all-ones-vector with

1 everywhere. We assume the law of demand holds, so demand decreases in prices

d′ ≡ ∂d/∂p < 0, and express aggregate demand as D = uTd.1 For convenience of

presentation, we will refer to jurisdictions i as ‘periods’, but all results in this section

carry over to spatially linked markets.

Our model considers emission cap systems where the aggregate supply of allowances

S depends on the demand vector for allowances, such as the one recently implemented

in the EU ETS, and we refer to this as quantity-based cap:

Definition 1 (Quantity-based cap). Aggregate supply S is dependent on the spread of

demand:

S = s(d). (1)

Note that an emission cap system with price collars, where aggregate supply depends

on the emission price, is not a quantity-based cap and hence not considered here.

Equilibrium in this market is defined in the usual fashion, when excess demand

equals zero:

Definition 2 (Equilibrium). In equilibrium, prices adjust so that aggregate demand

equals aggregate supply:

D = uTd(p,λ) = s(d(p,λ)) = S. (2)

1When vectors are over time, aggregate demand and supply equal cumulative demand and supply.
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When deemed convenient, we denote equilibria by a superscript asterisk. It is

natural to study the equilibrium through the response of the equilibrium condition with

respect to prices p∗, but it is useful to take one step back and consider the response of

the equilibrium condition with respect to the demand vector d. By construction, the

equilibrium in demand space d is characterized by uTd− s(d) = 0. The gradient of

the equilibrium demand space (in short: demand space gradient) is given by u − s′.
We label the cap system as exogenous or fixed if s′ = 0, or more generally, if supply is

proportional (but not equal) to the all-ones-vector, s′ ∝ u.2 A fixed cap means that

aggregate demand D is constant. We label a cap system ‘endogenous’ if the cap is not

fixed. By ∆d > 0 we mean a situation where no demand change is negative, and at

least one element is strictly positive. We consider non-trivial cap systems that do not

allow a ’free lunch’:

Assumption 1 (No free lunch). There does not exist a non-zero increase (or decrease)

in emissions ∆d > 0 that is feasible, that is, for which (u − s′)T∆d = 0 holds. We

write this as a gradient condition: u− s′ > 0.

Definition 3 (Policy-induced price and demand change). We define changes in the

equilibrium price due to demand-rudction in period i, dλi:

αi = dp∗/dλi. (3)

Similarly, we define the policy-induced demand change

γi = dd∗/dλi, (4)

with γij denoting the demand change in period j from a policy-induced demand change

in period i.

As to our notation, we let xi, subscript, denote the ith element of vector x, so a scalar;

xi, so superscript, denotes a vector. Hence, xij denotes element j of vector i.

Furthermore, we refer to the matrix of all policy-induced changes as Γ so that with

a slight abuse of notation we can write Γei ≡ γi, where ei is the unit vector with zeros

everywhere but 1 at the ith place. Basic algebra gives the important feature that any

2To see this, consider the case S = S0 +βuTd, so that s′ = βu. This is equivalent to fixed aggregate
supply D = S0/(1− β).
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policy induced demand change is orthogonal to the demand space gradient for all i:

(u− s′)Tγi = 0. (5)

An immediate implication is that any linear combination of the set {γi}i, that is,

any combination of demand policies, will also satisfy the orthogonality property, or

(u− s′)TΓ = 0.

The equilibrium satisfies intuitive conditions on price and demand responses to

policy shifts:

Lemma 1. Prices increase with demand-increasing policies,

α = − (u− s′)T

(u− s′)Td′
> 0 (6)

and own-period demand increases, while other-period demand decreases:

γii > 0 (7)

γij < 0 for j 6= i. (8)

The proof of this and further results, if not mentioned in the main text, are stated

in Appendix A.

The aim of this study is to establish that for any system with quantity-based

endogenous cap, there exists a policy that induces a green paradox. Loosely speaking, a

green paradox occurs when a policy-induced reduction of demand in some jurisdiction

i, dλi < 0, leads to an increase in aggregate emissions, dD > 0.

Definition 4 (Green Paradox). There is a Green Paradox if a demand-decreasing

policy, dλ < 0, leads to increasing aggregate emissions, dD = d(uTd∗) > 0.

We can then state our main result:

Theorem 1. For every quantity-based endogenuous cap system without a free lunch,

there exists a policy dλ < 0 that induces a green paradox, d(uTd∗) > 0.

Though the proof is tedious and relegated to the appendix, the mathematical

intuition is not too hard. Half of the equilibrium hyperplane in demand space has

increasing aggregate emissions, while the other half has decreasing aggregate emissions.
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One only needs to establish that policy induced changes Γ are not restricted to one half

of the hyperplane.

With this formal result in mind, we can now move on to the analysis of a specific

application of our model: EU ETS. There, we will see the compelling economic intuition

behind the mechanics governing Theorem 1.

3 EU ETS analytical model

In this section, we apply the techniques developed for the previous, general model to the

specificities of a real-world cap-and-trade system with endogenous cap, the European

Union’s Emissions Trading System (EU ETS). We first briefly revisit EU ETS.

EU ETS is the largest market for carbon to date and as one of the first such

instruments, it has experienced many difficulties since its conception. Firms under

EU ETS at risk of relocating have led the EU to adopt (too) generous compensation

mechanisms (Martin et al., 2014). The price of allowances has been consistently low

and highly volatile, carrying along some counter-intuitive implications for firms’ profit

(Bushnell et al., 2013). The low price of carbon in EU ETS can be traced back to

interactions with substite climate policies as well as the general economic recession

during part of its existence. The cap on emissions has been considered set too loosely,

as evidenced by a strong accumulating ‘bank’ of unused allowances, privately stored by

firms for future use, despite the low prices. In response, the EU introduced a Market

Stability Reserve (MSR) and set the new rules in 2018. From 2019 the MSR takes in

allowances that are otherwised autioned, the amount of which equals 24% (12% as of

2024) of banked allowances, every year the (cumulative) bank exceeds 833 MtCO2.
3

These allowances, taken from the volumes otherwise auctioned, will return to the market

later: in years when the bank has shrunk to below 400MtCO2, an additional 100MtCO2

is auctioned from the MSR. However, if too many allowances end up in the MSR (i.e.

when the bank remains too large for too long), all MSR-held allowances in excess of the

volume auctioned in the previous year are canceled permanently. In this sense, the MSR

with canceling effectively makes the cap on emissions in EU ETS endogenous. The

workings of post-reform EU ETS have been chronicled in Perino (2018) and Gerlagh

and Heijmans (2019).

3The EU has introduced the term ”Total number of allowances in circulation (TNAC)” (EU (2019)),
which for our purpose is equivalent with private banking of allowances.
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For our analytical model of EU ETS, we consider time periods t ∈ {1, ..., T} and

refer to the entire time window if not stated otherwise. We use capitals for stocks at the

end of a period (so that a stock at the start of the first period has index 0), and lower

case variables for flows. The MSR is defined through the following mechanical rule:

Mt = min(βst−1,Mt−1) +mt − nt, (9)

where

(mt, nt) =


(0,min(Mt−1,Γ)) if Bt−1 < B

(0, 0) if B ≤ Bt−1 < B

(αBt−1, 0) if B ≤ Bt−1

, (10)

with st the maximum (exogenous) number of allowances issued in period t, Bt banking

from period t to t + 1, and mt and nt flows into and out of the MSR, respectively.

The model can be parametrized to EU ETS by setting β = 0.57, Γ = 100, B = 400,

B = 833, α = 0.24 (0.12 from 2024). If Mt exceeds βst, the difference is shaved off, and

these allowances are canceled permanently.

Equilibrium is characterized through demand dt, supply st, and flows into and out

of the MSR. Excess supply is added to the bank of allowances available for future use

Bt.

Bt −Bt−1 = st − dt(pt;λt)−mt + nt (11)

As before, the one-dimensional parameter λt is a demand shifter, through which we

study comparative dynamics. It captures the structure of the economy, also describing

changes brought about by climate-oriented or other policies. We slightly abuse notation

in our model and normalize the parameter λt such that ∂dt/∂λt = 1.4 By means of

notation, we will abbreviate ∂dt/∂pt as d′t, so d′t < 0. We define cumulative emissions

as E =
∑

t dt.

As allowances are complementary mostly to fossil fuel use, demand is bound from

above and well-defined for zero prices. We also assume a finite choke price, where

no emissions are profitable anymore (e.g., fossil fuels are replaced by renewables)5.

4We could, for example, specify D(.) + λt as residual demand, but we like to think of policies in a
more generic framework.

5The prices at which emissions become unprofitable may not be as excessively high as previously
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Furthermore, we assume scarcity of allowances in each period.

Assumption 2.

1. ∀t : st < dt(0) ≡ dt <∞ (12)

2. ∃p <∞ : ∀t : dt(p) = 0. (13)

Definition 5. An Emissions Trading System (ETS) is defined by its duration T , first-

period state variables for banking B0 and the MSR M0, entry threshold B and entry

share α, exit threshold B and flow Γ, shave parameter β, the supply sequence s = (st)t,

and demand functions dt(.).

Private borrowing is not allowed in EU ETS, so we impose the constraint that

Bt ≥ 0; however, we assume that sufficient allowances are allocated to early periods, i.e.

that the constraint is never binding.6 Furthermore, we assume that equilibrium moves

from a first stage t ∈ 1, ..., t1 during which allowances enter the MSR, to a second stage

t ∈ t1 + 1, ..., t2 during which no emissions enter or leave the MSR, to a third stage

t ∈ t2 + 1, ...t3 in which emissions flow from the MSR back into the market. There

possibly is a final stage in which the MSR is not active either. Finally, there is some

last period t∗ for which the size constraint on the MSR is binding.

Assumption 3 (Distinct Stages). For all equilibria considered, supported by a price

sequence pt, there are 0 < t1 < t2 < t3 ≤ T such that for t ≤ t1 there is an inflow in

the MSR mt > 0 and nt = 0, for t1 < t ≤ t2 and t3 < t we have no flows from and to

the MSR, mt = nt = 0, and for t2 < t ≤ t3 there is an outflow from the MSR into ETS,

mt = 0 and nt > 0. We also assume that the size contraint for the MSR is binding,

∃t : βst < Mt, with a last period at which it is binding t1 < t∗ = max{t|βst < Mt} < T ;

there is no cancellation of allowances for t > t∗ + 1.

Figure 1 presents the time line for the MSR.7

Equilibrium is then defined by the model dynamic equations, with no left-over

unused allowances, BT+1 = 0. We assume allowances have constant assets return δ

believed, see e.g. Wilson and Staffell (2018) and Gillingham and Tsvetanov (2019).
6Which has been the case for EU ETS; the assumption is innocent.
7Note that t∗ in principle could come before or after t2. However, since the annual cap in the EU

ETS is reduced over time, the cancellation threshold βst−1 is declining over time. Hence, we must
have t∗ ≥ t2, and most likely t∗ = t2 (cf. the numerical results below).
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0 t0 t1 t2 t∗ t3 T

inflow

cancelling

outflow

Figure 1: Time line for MSR

leading to the Hotelling rule for prices:

pt+1 = δpt. (14)

If the MSR is emptied before the end of the ETS, MT = 0, cumulative emissions are

given by cumulative supply minus cancelled allowances. Given the stages of equilibrium

(assuming that t1, t2, t3, t
∗ does not change), all additions to the MSR before t1 are

cancelled one-to-one at t∗. In other words, if some economic changes (e.g. innovations,

or policies) as captured by λt move demand from early periods before t1 to late periods

after t1, so that banking in early periods increases, without changing the stage periods,

such a change in the demand path reduces cumulative emissions:

Observation 1. Conditional on MT = 0, and the stages as denoted by t1, t2, t
∗, t3

remaining unaffected, the change in cumulative emissions equals the change in banking

in the early periods, before t1, multiplied by the shaving parameter:

dE = −α
∑
t≤t1

dBt (15)

The condition of constant stages mentioned in the statement of the result points

at an important property of the equilibrium. When prices go up, demand goes down.

Lower demand means banking goes up and so the MSR increases. However, though

demand is a continuous function of prices, both the flow into and the flow out of the

MSR are discontinuous functions of banking, and thus demand. When banking decreases

below B, the flow into the MSR is suddenly and discretely reduced by an amount αB,

and fewer allowances are canceled due to the mechanics of canceling, equation (10).

That is, the number of allowances available cumulatively jumps up while demand goes
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down.8 In other words, EU ETS introduces a, presumably unintended, side-effect: the

MSR generates multiplicity of equilibria and thus ambiguity in equilibrium selection.

Proposition 1 (Multiplicity). For any ETS characterized by (α, β,B0,M0, T, B,B,Γ, s),

there exists a (vector) demand function dt(.) such that at least two distinct equilibria,

by prices p∗1 < p∗2, exist supported with cumulative emissions E∗1 < E∗2 − αB.

For the calibrated model, we will show that, indeed, multiplicity is an issue of

concern. We say an equilibrium is (strictly) interior if the bank levels Bt are strictly

separated from the thresholds B,B. For (sufficiently) small changes in demand λt,

continuity is then preserved and we can state sharp conditions for a green paradox:

Proposition 2 (Carbon Leakage). Consider an interior equilibrium. A (small) shock

in demand is dampened by the MSR if the shock is ‘early’:

0 <
dE

dλ1
< 1. (16)

A (small) shock in demand is reversed (Green Paradox) if it occurs in a ‘late’ period:

dE

dλt
< 0 if t ≥ t1. (17)

The proposition makes explicit that the timing of demand shocks is important for

the final effect on emissions. Early demand reductions, while not 100% effective, still

lead to a strictly positive fall in emissions in the aggregate; this is what Perino (2018)

calls the puncturing of the waterbed, since with a classic waterbed effect, one would

observe dE/dλt = 0. Late shocks, on the other hand, when anticipated today, lead to

an increase in emissions. The logic is as follows. When firms today foresee a decline in

demand (or value) of emissions allowances in the future (e.g. due to the implementation

of some pre-announced policies), the price of allowances in the future will be lower and

the incentive for banking reduced. However, in equilibrium, prices follow the Hotelling

rule, and so allowance prices in fact decrease in every period. Lower prices today, in

turn, lead to higher demand today. Hence, the demand (and use) of allowances will

be higher in all periods leading up to the anticipated fallout of demand. Since this

higher use means less allowances will be banked, the bank will shrink, and so will the

MSR. However, since the MSR was assumed at some point to be so large that part of it

8Although the flow out of the MSR is also discontinous, as can be seen in the same equation, this
does not affect cumulative supply as long as t∗ ≤ t2, as is the case in our calibrated model.
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will be shaved off, the increase in demand in early periods is effectively taken from the

allowances otherwise canceled from the MSR. Thus, net emissions increase relative to

the case where no future reduction in emissions demand had occured. A Green Paradox

arises. We will come back to the importance of anticipation in the next section (see

Figure 4).

If the shock in demand takes place after period 1 but before period t1, the effect on

aggregate emissions is in general ambiguous. As we will see in the simulations, if t is

sufficiently early, aggregate emissions intuitively decline. However, if t is sufficiently

close to t1 (but still t < t1), aggregate emissions increase.

4 Quantitative assessment

In the previous section, we showed analytically that under certain conditions, a demand-

reducing policy in early periods (t << t1) reduces cumulative emissions, while it

increases cumulative emissions if it takes place later on (t > t1). That is, as long as

there exists a policy that reduces cumulative emissions, there exists a similar policy

(but at a different point in time) that increases cumulative emissions.

One important condition for the latter result is that the demand-reducing policy is

anticipated early on (t < t1), so that forward-looking agents take this into consideration

when they make decisions about banking. If the policy comes as a surprise, the result

no longer holds. This illustrates the importance of policy announcement, that is, when

the policy is announced. It is not only the timing of the policy that matters, but also

the timing of announcement.

In this section, we first calibrate a stylized model for the EU ETS, and then use

this model to quantify the effects discussed above. In the last subsection, we return to

Proposition 1 and investigate whether there indeed are multiple equilibria in EU ETS.

4.1 Model calibration

The model is given by the equations in the previous section. We further specify the

demand function as follows:

dt(pt;λt) = Ωt(pt)
σ + λt, (18)
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where σ is the price elasticity and Ωt is a time variant constant. We further assume

that the demand function shifts by a constant linear factor ω = (Ωt −Ωt−1)/Ω2018. The

parameter specifications are shown in Table 1 in the appendix. Here we give a brief

explanation of how the model is parameterized. For more details and discussion of the

calibration and corresponding assumptions, see the Appendix.

For the demand function, the parameters σ and ω are disciplined using historic

evidence. That is, we require that the following three features are fulfilled: i) The level

of demand should be consistent with the observed price and demand combination in

2018; ii) the simulated Base Case scenario, which includes the MSR rules, should have

an initial price in 2019 at 21.0 e/tCO2; and iii) a simulated scenario that does not

include the MSR rules, should have an initial price in 2019 at 7.5 e/tCO2. That is, the

model should be able to reproduce both the current ETS prices and those before the

MSR was introduced.

The calibration leads to a price elasticity of -0.14 and a linear annual shift factor in

the demand function of -1.7 percent. Further, for the (real) interest rate, 5 percent is

chosen. Last but not least, the EU ETS is assumed to continue until 2050, requiring

that banking in the last period is zero.

4.2 Quantitative results: Baseline scenario

The model described above can easily be simulated to derive the EU ETS market

equilibrium for the period 2019-2050.9 The outcome is shown in Figures 2-3, where

we also display the time stages introduced in Figure 1.10 Note that this should not be

taken as a forecast of the EU ETS market. The purpose of this analysis is to examine

the effects of demand-reducing policies at different points of time, given a possible but

fairly realistic scenario for the future EU ETS market.

Figure 2 shows that supply exceeds demand until 2040 – which then reverses. Annual

demand is equivalent with annual emissions, while supply refers to gross supply (st), i.e.,

before taking into account interaction with the MSR. Initially, net supply is significantly

below gross supply (see Figure 2), and also well below demand, due to a large inflow

into the MSR.

Figure 3 shows the stocks of allowance reserves, both privately held (“banking”)

9The model is simulated using the MCP solver in GAMS (Brooks et al., 1996). The GAMS program
is provided in Appendix C.

10By assumption, the ETS price starts at 21 Euro per ton in 2019, and reaches 95 Euro in 2050 (due
to equation 15).
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Figure 2: Market balance in Baseline scenario. Annual figures for the period 2019-2050.

and in the MSR. It also displays how allowances enter into, or are taken out of, the

MSR, as well as the canceled allowances. There is a notable change in 2024, due to two

important factors that year: Cancellation of allowances begins (t0), and the withdrawal

rate drops from 24 to 12 percent. The latter explains the increased net supply in 2024

(Figure 2), as well as the decline in mt (labeled ”MSR-in”) (Figure 3). In this scenario,

the MSR stops taking in allowances after 2039 (t1), increasing net supply the next year

(Figure 2). Cancellation of allowances is clearly biggest in 2024, but continues for two

decades in this scenario. In total, 5.5 Gt of allowances are canceled until cancellation

ends in 2046 (t∗ = t2), of which 3.7 Gt are canceled by 2030.11

4.3 Quantitative results: Effects of demand-reducing policy

We now turn to the main purpose of the numerical analysis, which is to examine the

effects on cumulative emissions of a demand-reducing policy. We consider policies that

reduce demand in a given year t (”reduction year”) by one million EUAs (corresponding

to 1 Mt of CO2). Moreover, the announcement of the policy can take place in any

year s (”announcement year”) up to the year when the demand reduction takes place

11As a comparison, Refinitiv Carbon (2018) expects 3.3 Gt to be canceled by 2030, and a total
surplus of allowances of 1.6 Gt in 2030 (banking in the market plus MSR) implying further cancellation
post-2030, especially since that study predicts a rising surplus in the market between 2025 and 2030.
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figures for the period 2019-2050 in Baseline scenario.

(s ≤ t).

Figure 4 shows the effect on cumulative emissions of such a demand-reducing policy.

On the horizontal axis, we have the reduction year t. The curve “Announcement 2020”

shows the effects on cumulative emissions of announcing the policy in 2020 (s = 2020),

and we have similar curves for s = 2025 and s = 2030. The fourth curve shows the

effects of announcing the policy the same year (s = t).

We first notice that a demand-reducing policy announced and realized in 2020 will

reduce cumulative emissions quite substantially (relatively speaking). A decrease in

emissions in 2020 by 1 Mt CO2 will reduce cumulative emissions by 0.9 Mt. The

intuition is, as explained by Perino (2018), that less emissions in 2020 lead to more

banking, which further increases the inflow into the MSR, and subsequently more

cancellation of allowances.

Next, we see from the fourth curve that we get a similar but less pronounced effect

as long as the demand-reducing policy is announced the same year, that is, until 2039

(t1). Afterwards, the MSR does not take in more allowances (in our scenario, cf. Figure

3), which means that from 2039 onwards the supply of allowances is fixed. The reason
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Figure 4: Effects on cumulative emissions of a demand-reducing policy that reduces
demand by one million EUAs (1 Mt CO2) in the ”reduction year” t, with the policy
announced in year s ≤ t.

why the effect on cumulative emissions is biggest in the early years is that there are

more years with additional inflow into the MSR when banking is increased early on.

If the demand-reducing policy is announced years before it is realized, the effects

are quite different though. For instance, if the policy is announced in 2020, but realized

in 2039 or later (t ≥ t1), the net effect of the policy is to increase cumulative emissions

by around 1.0 Mt (according to our simulations). That is, the policy has quite the

opposite effect of what is intended as it increases rather than decreases total emissions.

Hence, a green paradox. The intuition is that when agents in the ETS market foresee a

less tight market in the future, it becomes less profitable than before to bank allowances

from the preceding periods. With less banking, fewer allowances enter the MSR, and

thus fewer allowances become canceled. Moreover, when fewer allowances are taken out

of the market, this further reduces the market tightness – hence there is a multiplier

effect which is bigger the longer the MSR is taking in allowances.

If the announcement is made in 2025 (or 2030), the effects on cumulative emissions

are still perverse, but to a lesser degree as banking before 2025 (or 2030) is not affected.

This illustrates the importance of policy announcement. It is not only the timing of the
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policy that matters, but also the timing of announcement.

We also see from the figure that if the demand-reducing policy takes place in year

t̂, where t̂ is only a few years before the MSR stops taking in allowances (t1), it can

still have a perverse effect on cumulative emissions (if it is announced several years in

advance). In this case, there will be less banking before, and more banking after, year t̂.

Hence, fewer allowances enter the MSR before year t̂, whereas more allowances enter

after year t̂. If year t̂ is quite close to t1, the first effect dominates, and hence the net

effect on cumulative emissions is positive.

We notice from the figure that all the three first curves have both negative and

positive values. This illustrates the main theorem of this paper: If there exists a policy

that reduces cumulative emissions, there exists a similar policy (announced at the same

time, but realized at a different point in time) that increases cumulative emissions.

4.4 Quantitative results: Multiple equilibria

In proposition 1 we concluded that there exists a demand function such that there exist

at least two distinct equilibria given the characteristics of the EU ETS. Here we want

to investigate this issue in the context of the numerical model of the EU ETS. As we

will see, with the calibrated demand function, there are indeed two distinct equilibria.

One equilibrium is the one described in subsection 4.2, the other has a slightly higher

price path.

When looking into this, it is useful to consider the level of banking at the end of

the last period. In the model we require this to be zero, and we search for a price path

that is consistent with this condition. Assume now that we instead consider different

exogenous price paths (satisfying the Hotelling rule), and examine the net banking at

the end of the last period for the different price paths. This is shown in Figure 5 for

the first period price interval 20-25 Euro per tCO2.

At first thought, we would expect net banking to be a monotonically increasing

function of the price, as a higher price increases abatement and hence reduces demand

for allowances. However, we see from the figure that the net banking is only piecemeal

increasing in the price, and then drops down at certain price levels. Moreover, we notice

that there are two distinct first period prices where net banking at the end of the last

period is zero, one at 21 and one just below 22 Euro per tCO2. In other words, both

these prices (price paths) are feasible equilibria given the calibrated demand function.

What is the intuition here? It is useful to first consider the drop in net banking
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at the price around 21.5. When the initial price is 21.5, the level of banking falls

marginally below the threshold of 833 Mt in 2039. Hence, no more allowances enter

into the MSR. On the other hand, if the initial price is just above 21.5, banking in 2039

is marginally above 833 Mt. Hence, 100 Mt (0.12 ∗ 833) more allowances enter into

the MSR (instead of being auctioned) compared to the previous case, and thus fewer

allowances are available in the market. Net banking at the end of the last period is

therefore lower even though the price is (marginally) higher.

As the size of the MSR increases by 100 Mt in 2040 when the initial price is just

above 21.5, but not if it is exactly 21.5, it follows that 100 Mt more allowances are (not)

shaved off if the initial price is just above (equal to) 21.5. In Figure 6, we see indeed

that cumulative cancellation jumps considerably around the initial price of 21.5, but

not as much as 100 Mt. The reason is that the other MSR threshold also plays a role

here, i.e., when allowances should return to the market (400 Mt). If the initial price is

equal to 21.5, banking in 2046 is above the threshold, while if the price is marginally

above 21.5, banking is below the threshold. Only in the latter case are allowances (100

Mt) released from the MSR, in which case there is no more cancellation. In the former

case, the size of the MSR is somewhat above the cancellation threshold, and 28 Mt

more allowances are canceled. This mitigates to some degree what happens in 2039,

and so the net difference in cancellation is 72 Mt (100− 28).

The same story explains the drop in net banking when the initial price is slightly

above 23.5. We see that net banking also drops at initial prices around 20.1, 21.4, 22.6

and 24.0, but not as much. In these cases only the 400 Mt threshold plays a role.

5 Discussion and Conclusions

In this paper we have established that an emission trading system with endogenous

emission cap, where the supply of emission allowances is responsive to demand, suffers

from a green paradox. That is, there always exists an abatement policy that induces a

green paradox. We have proven this in a very general framework, and then illustrated it

both in an applied theoretical model and a quantitative analysis of the world’s largest

emission trading system: EU ETS.

Our analysis highlights the importance of anticipation: currently announced policies

aiming to reduce emissions in the future run a risk of being severely impaired if not

more than overturned. Cumulative emissions may increase rather than decrease as a

18



E6E5E4E3E2E1

-1
00

-5
0

0
50

10
0

15
0

B
an

ki
ng

 a
fte

r l
as

t p
er

io
d 

[M
tC

O
2]

 

20 21 22 23 24 25
Price in first period [EUR/tCO2]

Figure 5: This figure shows banking after the last period as a function of the initial
price, and illustrates the multiplicity of equilibria generated by the MSR. By definition,
an equilibrium is characterized by the intersection of the banking curves with the
horizontal line at 0. In this particular case, two equilibria exist: one at a first-period
price of 21, the other at a price of 22. The six dotted lines at discrete jumps in the
banking function indicate MSR-events. E1: banking rises above 400Mt in 2045. E2:
banking rises above 400Mt in 2046. E3: banking rises above 833Mt in 2039 and drops
below 400Mt in 2046. E4: banking rises above 400Mt in 2046. E5: banking rises above
833Mt in 2040 and drops below 400Mt in 2046. E6: banking rises above 400Mt in 2046.

consequence of abatement policies. This green paradox is even stronger than the one

previously pointed to in the economics literature (Sinn, 2008).

That pre-announced policies may be less effective than ‘surprise’ ones is not a new

insight, nor is it limited to the case of environmental policy. In fiscal policy, for instance,

pre-announcement of policies has been found to substantially decrease their net effect

(Auerbach and Gorodnichenko, 2012; Mertens and Ravn, 2012). Monetary policy is

another such example (Sheehan, 1985). Our finding of a strong green paradox only

underlines further the importance of very carefully considering new policies, including

how and when to communicate them, especially so if this communication takes place in

advance of actual implementation.

We have also shown, both analytically and numerically, that the new rules of the

EU ETS imply that multiple equilibria may exist, meaning that two (or more) distinct

price paths may both be consistent with the long-run requirement of no net banking
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Figure 6: This figure shows the cumulative cancellation of allowances as a function
of the initial price, and relates to Figure 5. Whenever one of the MSR thresholds is
passed, cumulative cancellation jumps. For explanation of the discrete jumps, see the
caption of Figure 5

after the last period of the ETS.

One crucial assumption behind our analysis is that the market has perfect foresight

about the future ETS market. This is a strong assumption, but we believe that the

mechanism underlying our result is highly relevant also with imperfect foresight. Still,

an important question is to what degree market participants let expectations about

the future affect their current decisions (Kollenberg and Taschini, 2019). Incorporating

different forms of expectations into our model framework would be one interesting

avenue for future research.
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A Proofs

A.1 Proofs for Section 2

PROOF OF LEMMA 1:

Proof. We write the full derivatives for the equilibrium equation (2):

−(u− s′)Td′dp = (u− s′)Tdλ (19)

We note that the term −(u− s′)Td′ on the LHS is a positive scalar (due to Assumption

1 and d′ < 0); hence (6) follows. The positive price effect implies a negative demand

response in all jurisdictions j 6= i, and because no free lunch is possible, there must be

a positive demand response in the own jurisdiction i. Q.E.D.

PROOF OF THEOREM 1:

Proof. Proof by contradiction. We assume there is no green paradox. We show that we

can then construct a demand-reducing policy dλ < 0 such that demand decreases in all

periods dd < 0, and then we show that such an outcome violates the ’no free lunch’

condition.

If there is no green paradox, then specifically all policies that reduce demand in

some jurisdiction i decrease aggregate demand; the matrix Γ is diagonally dominant

over columns: ∀i : uTγi ≥ 0.

Define normalized policies and responses. We write κi = dλi/γii < 0, and ηi = γi/γii,

for the policy in jurisdiction i and the vector demand response over all jurisdictions,

respectively, such that if κi = −ei, the policy reduces demand by one unit in jurisdiction

i. Let H be the matrix of normalized responses, (Hei)j = ηij. The matrix H is also

diagonally dominant over its columns (inherited property from Γ), with unity elements

on the diagonal and negative numbers everywhere else. In this notation, the effect of a

policy vector dλ < 0 on demand can be described through dd = Hκ. Let A be chosen

such that any policy directly reducing demand in jurisdiction i by one unit will reduce

aggregate demand by at least A units: A = mini{uTHei}. That is, A is the lower

bound for the cumulative effectiveness of a policy in any jurisdiction i. Absence of a

green paradox implies A > 0. We now have all notation in place.

We construct a series of vectors zk, with k = 1, ...,∞, recursively, so that the series

converges to zk → κ < 0, and Hκ < 0.
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We start for k = 1 with z1 = −e1. That is, the policy z1 decreases demand

in the first jurisdiction by one unit, (Hz1)1 = −1, increasing demand in all other

periods, ∀j 6= 1 : (Hz1)j > 0, but aggregate demand is decreased, uTHz1 < −A < 0.

This property also implies that the sum of all positive elements is bound from above:∑
i max{0, (Hz1)i} < (1− A).

We now describe the inductive step. We assume that in step k, we have (i) uTHzk <

0, and (ii) the sum of all positive elements is bound from above by
∑

i max{0, (Hzk)i} <
(1−A)k. We can then construct the next element in the sequence, making sure that the

properties (i) uTHzk+1 < 0, and (ii)
∑

i max{0, (Hzk+1)i} < (1−A)k+1 are transferred

to the next inductive step.

In the inductive step, consider all positive elements of uTHzk, that we want to

neutralize. Thus, let zk+1 be defined by (zk+1 − zk)i = −max{0, (Hzk)i} < 0. The

required properties follow immediately from this construction:

uTHzk+1 = uTHzk + uTH(zk+1 − zk) < 0 (20)∑
i

max{0, (Hzk+1)i} < (1− A)
∑
i

max{0, (Hzk)i} < (1− A)k+1 (21)

Finally, we show that zk → κ < 0 is well defined, because from the construction,

we see that we have a Cauchy sequence:

uT (zk+1 − zk) =
∑
i

max{0, (Hzk)i} < (1− A)k (22)

Any Cauchy sequence defined on a compact set converges to a point in the set. Thus,

we want to establish compactness. To this end, recall that in any step κ, the sum of

all positive demand-changes, i.e. the increase in aggregate in each step κ, was bound

from above by (1− A)κ. The aggregate increase in demand is therefore never larger

than
∑∞

κ=1(1− A)κ = 1/A <∞, where the last inequality follows from the fact that

A > 0. But this means the series of vectors zk is defined on a closed and bounded set.

By Heine-Borel, a closed and bounded set is compact.

Thus, we have zk → κ < 0, and Hκ < 0. We can rewrite before normalization

that we have constructed a strict demand-reducing policy dλ < 0 and associated strict

negative emissions response in all jurisdictions, γ = Γdλ < 0. But combine this with

the ’no free lunch’ assumption, (u− s′)T > 0, and we conclude (u− s′)Tγ < 0, which

contradicts (5). Q.E.D.
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A.2 Proofs for Section 3

To prove Proposition 1, we will make use of the following lemma. We first recall that

there is an exogenous emission cap sequence s = (st)t � 0.

Lemma 2. For each period t with 1 ≤ t ≤ T , and any chosen ψt ∈ [0, p], a supporting

price vector (ψτ )
t−1
τ=1 exists, such that the bank at period τ ∈ 1, ..., t− 1 cumulates excess

supply for these prices:

bτ = bτ−1 + sτ − dτ (ψτ ) ≥ 0 (23)

with b0 = 0, while the banking market arbitrage holds between all periods:

∀τ < t :

bτ = 0⇒ ψτ ≥ ψτ+1,

bτ > 0⇒ ψτ = ψτ+1.
(24)

We define

βt(ψt) = bt−1 + st − dt(ψt), (25)

which is increasing, with βt(0) < 0 < βt(p) =
∑t

τ=1 sτ , so that there exists a price ψ∗t

in period t for which the bank in period t becomes zero, βt(ψ
∗
t ) = 0 and 0 < ψ∗t < p.

Proof. Note that the ψτ in this lemma refers to the price sequence that leads to an

equilibrium in all markets τ = 1, ..., t− 1, given the condition that the price in period t

equals ψt. The proof uses induction for 1, .., t.

For t = 1, the lemma follows immediately from the assumptions for dt(.) applied to

t = 1 (Assumption 2).

The induction step. Assume the lemma holds for τ = 1, .., t− 1, implying that ψ∗τ

has been constructed for all τ = 1, .., t− 1. By backwards induction we construct the

price vector:

ψt−1 = max{ψ∗t−1, ψt}. (26)

If we have ψt < ψ∗t−1, then we generated ψt−1 = ψ∗t−1 and bt−1 = 0 and the banking

market arbitrage (24) holds for τ = t− 1. If ψt ≥ ψ∗t−1, then we generated ψt−1 ≥ ψ∗t−1

and since βt(.) increasing, we have bt−1 ≥ 0 and the arbitrage also holds. By invoking

the lemma for the previous period, we have that equations (23) and (24) are thus

satisfied for all previous periods as well.

We still need to prove that βt(.) is increasing and βt(0) < 0 < βt(p). We can

write the bank in period t as a function of prices βt(ψt) = st + βt−1(ψt−1) − dt(ψt).
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We see that βt−1(.) is increasing, dt−1(.) is decreasing, and we note that ψt−1 is a

continuous increasing function of ψt, directly from (26). It follows immediately that

βt(.) is increasing as well.

For ψt = 0 we have ψt−1 = ψ∗t−1 ⇒ bt−1 = 0⇒ βt(0) = st − dt(0) < 0.

For ψt = p we have ψτ = p for all τ ⇒ bt(p) = st − dt(p) + bt−1 =
∑t

τ=1 sτ . Q.E.D.

PROOF OF PROPOSITION 1

Proof. Note that we only need to construct an example. Construct an equilibrium

sequence (d∗t ,m
∗
t , n

∗
t , B

∗
t ,M

∗
t ) that satisfies the dynamic equations, and for which B∗t1+1 =

B − ε with ε small. Say that the corresponding equilibrium price is p∗1. We can

then easily construct a second equilibrium, denoted by hats, with d̂t1+1 = d∗t1+1 − 2ε,

d̂t1+2 = d∗t1+2 − α(B + ε) + 2ε, and d̂t = d∗t for all other t. That is, the demand

function is inelastic everywhere but at t ∈ t1 + 1, t1 + 2, when a price increase to

p∗2 > p∗1 exactly results in the alternative demand. To show that the second equilibrium

is indeed an equilibrium, first note that B̂t1+1 = B + ε, so that M̂t1+2 increases

by m̂t1+2 = α(B + ε) (m∗t1+2 = 0). Banking at the end of period t + 2 is now

B̂t1+2 = B∗t1+2 − (d̂t1+2 − d∗t1+2) − (m̂t1+2 −m∗t1+2) = B∗t1+2. Hence, B̂t = B∗t also for

t > t1 + 2, which shows that this is indeed an equilibrium. The additional inflow of

allowances into the MSR in period t+ 2 are canceled, which implies that cumulative

supply, and thus emissions, drop by m̂t1+2 = αB̂t1+1 > αB. We have thus proved

the proposition. Imposing a strictly decreasing demand function (ruling out entirely

inelastic demand) can be accommodated by small perturbations. Q.E.D.

Proposition 2 will be proven as if only three periods existed, coinciding with

the timing variables t1, t2, and t3. This is done for convenience of notation. It is

straightforward to extend the proof to more general, non-normalized periods t, but

would come at the cost of cumbersome notation.

PROOF OF PROPOSITION 2:

Proof. Note that in the first period, the equilibrium on the market (11) is given by:

B2 = s1 − d1(p1;λ1). (27)

The first part of the proof will establish the result for an early positive shock

(dλ1 > 0).
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Our proof will consist in proving each of the following (in)equalities:

dE = dd1 + dd2 + dd3 (28)

= −dB2 + (1− α)dB2 − dB3 + dB3 (29)

= −αdB2 (30)

= αdd1 > 0 (31)

Step 1. We are interested in dE, which was defined to be dd1 + dd2 + dd3. Recall

we normalized the demand shift parameter λt such that ∂dt/∂λt = 1, so we have

ddt = dλt + d′tdpt. In the following three steps, we will find expressions for each of the

three elements on the right-hand side of equation (28).

Step 2. We recall that st is exogenous, meaning dst = 0 ∀t. Equation (27) then

implies dd1 = −dB2, which is the first part on the right-hand side of (28).

Step 3. Note that B3 = B2 + s2 − d2 + n2 −m2, as given by equation (11). Writing

in differences, we have dB3 = dB2 − dd2 + dn2 − dm2. By assumption, we also have

B2 > B, and so as a result of the dynamic equation (10) we have (m2, n2) = (αB2, 0)

and thus (dm2, dn2) = (αdB2, 0), meaning dB3 = (1−α)dB2− dd2. Hence, the bank at

the start of period 3 is increasing in the bank at the start of period 2 (since by definition

what is in the bank is carried over to the future if it is not used), but decreasing

in demand in period 2. Because dB2 = dd1 and dd2 = d′2dp2 = d′2dp1/δ, we write:

dB3 = −(1 − α)dd1 − dd2 = −(1 − α)dd1 − d′2dp2 = −(1 − α)dd1 − d′2dp1/δ. We can

conveniently write this as dd2 = (1 − α)dB2 − dB3, which is the second part on the

right-hand side of (28).

Step 4. Note that we assume the Second Coming of our Lord and Savior Christ

in the fourth period, which the very devoutly religious agents acting in this model

know and anticipate, so that B4 = s4 = d4 = ... = 0. The implication, from (11), is:

dd3 = dB3+dn3−dm3. Now, dB3 has been derived in the previous step. By assumption

m3 = dm3 = 0 and n3 = S2, which it already was, so dn3 = 0 also (which, note, implies

(dM2 +m2 − s2)/dλ1 > 0). Combining we find dd3 = dB3, which is the third part on

the right-hand side of (28).

Step 5. Having derived all three parts on the right-hand side of (28), we can

substitute these and rewrite to obtain (30). This can in turn be rewritten as (31), since

we know from Step 1 of this proof that dd1 = −dB2. Our final step will be to prove the

inequality in (31), i.e. to show that dd1/dλ1 > 0.
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Step 6. (By contradiction) We finally want to show that dd1/dλ1 > 0. Assume

not, so dd1/dλ1 = 1 + d′1dp1/dλ1, meaning dλ1 < −d′1dp1. For simplicity we consider

dλ1 > 0. Since dB2/dλ1 = −dd1/λ1 < 0 this would imply in response dB2 < 0. Since

dB3 + dd2 = (1 − α)dB2, it follows dB3 + dd2 < 0. Now, say dB3 > 0, so it must be

that dd2 < 0. As dB3 = dd3 this implies dp3 < 0, implying in turn (by Hotelling) that

dp2 < 0, which cannot be as dd2 < 0 implies dp2 > 0 (since dλ2 = 0). Consequently,

it must be that dB3 < 0. It is known that dd3 = dB3 and so dd3 < 0, which means

dp3 > 0, and by Hotelling we also have dp2 > 0 and dp1 > 0. However, for dp2 to be

positive, we would need dd2 < 0, and since by know dd2 = (1− α)dB2 − dB3 combined

with the fact that dB3 < 0 by hypothesis, it must be that dB2 < 0. Note then we

have previously derived dB2 = −dd1, so we obtain dd1 > 0. Hence it cannot be that

dd1/dλ1 < 0 and so we conclude dd1/dλ1 > 0.

Step 6. (Constructive) Hotelling implies dp1 = dp2/δ = dp3/δ
2, so we have dd1 =

dλ1 + d′1dp1, dd2 = d′2dp2 = d′2dp1/δ and dd3 = d′3dp3 = d′3dp1/δ
2 (as dλ2 = dλ3 = 0).

Note we have previously derived dB3 = dd3 so we have dB3 = d′3dp1/δ
2. We have also

seen that dB3 = (1− α)dB2 − dd2 = (1− α)dB2 − d′2dp1/δ and, since dB2 = −dd1, we

have dB3 = −(1 − α)dd1 − d′2dp1/δ = −(1 − α)dλ1 − (1 − α)d′1dp1 − d′2dp1/δ. Since

obviously dB3 = dB3 we have:

d′3
dp1
δ2

= −(1− α)dλ1 − (1− α)d′1dp1 − d′2dp1/δ (32)

=⇒ (33)

dp1
dλ1

= − 1− α
(1− α)d′1 +

d′2
δ

+
d′3
δ2

> 0. (34)

The implication is that dp2/dλ1 > 0 and dp3/dλ1 > 0 (by Hotelling). Since dE = αdd1,

which we derived earlier, and dd1 = dλ1 + d′1dp1, we can plug in equation (34) and

obtain:

dE

dλ1
= α

dd1
dλ1

= α

[
1− (1− α)δ2d′1

(1− α)δ2d′1 + δd′2 + d′3

]
= α

[
δd′2 + d′3

(1− α)δ2d′1 + δd′2 + d′3

]
> 0,

(35)

which completes the first part of the proof.

Next we consider an anticipated late shock (dλ3 > 0). Remember that by hypothesis

m1 = n1 = 0, m2 > 0, n2 = 0, m3 = 0, and n3 = s2. Hence, d3 = s3 + B3 + n3 and so

dd3 = dB3, but also dd3 = dλ3 + d′3dp3, hence dλ3 + d′3dp3 = dB3. Now from Hotelling
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we have dp1 = δ2dp3 and dp2 = δdp3. Remember also from equation (11), we know

dB3 = dB2 − dd2 − dm2, which gives dB3 = −dp3[(1− α)δ2d′1 − δd′2]. Having derived

dB3 in two different ways, we can set these equal to one another:

dλ3 + d′3dp3 = −(1− α)d′1δ
2dp3 − d′2δdp3 (36)

=⇒ (37)

dp3
dλ3

= − 1

(1− α)δ2d′1 + δd′2 + d′3
> 0. (38)

We have so far found that dd1 = d′1dp1 = d′1δ
2dp3 and dd3 = dλ3 + d′3dp3. Since we

are interested in dE/dλ3, and since dE = dd1 + dd2 + dd3, we must still find dd2. To

this end, recall that dd3 = dB3, so we know from (11) that dB3 = dB2 − dd2 − dm2 =

−dd1 − dd2 − dm2, and since dB2 = dd3 it implies: dd2 = −dd1 − dd2 − dm2. Hence,

dE = dd1 + dd2 + dd3 = −dm2. Since we assumed m1 = n1 = 0 and m2 > 0 it follows

from (10) that −dm2 = −αdB2, but this we derived previously is αdd1. Since we know

dd1 from (36), we may say:

dE

dλ3
= α

dd1
dλ3

(39)

= αδ2d′1
dp3
dλ3

(40)

= −α
[

δ2d′1
(1− α)δ2d′1 + δd′2 + d′3

]
< 0. (41)

This concludes the proof. Q.E.D.

B Model parametrization

Table 1 displays the specification of parameter values in the model. Several of the

parameters are either specified by the policy, or based on historic observations (i.e.,

emissions and banking). The last four parameters in Table 1 are uncertain but important.

The main text explains the calibration procedure. Here some more details are provided.

As mentioned in the main text, we require three features to be fulfilled when calibrating

the demand function. First, the level of demand (emissions) should be consistent with

the observed price and demand combination in 2018. The average EUA price in 2018
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Table 1: Specification of parameter values

was 16.0 Euro per ton. Emissions in 2018 were 1749 Mt.12

Second, the simulated Base Case scenario, which includes the MSR rules, should

have an initial price in 2019 at 21.0 Euro per ton. This is equal to the average price

in the last quarter of 2018 (when adjusting for the interest rate). The EUA price was

rising steadily in the three first quarters of 2018, whereas the price trend afterwards

has been quite flat (the price has been volatile though).

Third, a simulated scenario that does not include the MSR rules should have an

12https://ec.europa.eu/clima/news/emissions-trading-emissions-have-decreased-39-2018 en

30



initial price in 2019 at 7.5 Euro per ton. The average price from the start of phase 3 in

2013 to the first half of 2017, i.e., just before the price started to take off, was 5.8 Euro.

Adjusting for the (real) interest rate of 5 percent and inflation rate of 1.5 percent, this

corresponds to 7.5 Euro in 2019.

As mentioned in the main text, the calibration leads to a price elasticity of -0.14.

As a comparison, the results in Böhringer et al. (2017b) for the EU ETS (Figure 12.3)

can be used to estimate a corresponding demand elasticity. Focusing on the price

levels 10-50 USD per ton, we find a price elasticity of -0.13, i.e., almost identical to the

calibrated elasticity. On the other hand, the marginal abatement cost curve for the EU

ETS illustrated in RefinitivCarbon (2018) (Figure 1) indicates a somewhat lower price

elasticity. More generally, there is limited empirical evidence of to what extent the EU

ETS has led to emission reductions so far.

Note that a linear change in the demand function has been assumed, similar to

the linear reduction in supply of allowances. The reduction factor was calibrated to

1.73 percent per year, which is of the same size as the reduction factors applied on the

supply side. It is difficult to foresee how the demand function will change over time.

On the one hand, economic growth tends to push the demand upwards. On the other

hand, technological progress and supplementary policies related to renewables, energy

efficiency and coal phase-out, tend to push the demand downwards. The calibration

might suggest that market participants in aggregate believe the latter to be dominating

the former. Notice that the assumed constant elasticity of demand function implies

that demand for allowances goes towards infinity as the price goes towards zero. This

is of course totally unrealistic, but the functional form may still be useful for prices in

the range of observed (or higher) prices.

Regarding the real interest rate, there are arguments for both higher and lower rates

than the assumed 5 percent. Looking at futures prices of EUAs suggest a lower interest

rate, even in nominal terms.13 At the time of writing, the annual futures prices increase

by 3-4 percent in the period 2020-2025. On the other hand, the future of the EU ETS

is uncertain, and recurring regulatory changes enhance the future price uncertainty.

This suggests a high market interest rate (or a gradually higher interest rate to reflect

that regulatory uncertainty increases over time, especially between phases).14

Finally, it is difficult to know when the EU ETS will end, and here it is assumed

that it continues until 2050. Then the annual supply of allowances is 20 percent of the

13https://www.barchart.com/futures/quotes/CK*0/all-futures
14An alternative approach could be to assume (partly) myopic behaviour by the market participants.
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current supply, given no change in the linear reduction rate after 2021. Of course, it is

difficult to know what will happen around 2050 (the supply of allowances will drop to

zero between 2055 and 2060, given no changes to the reduction rate.).

Regarding the initial size of banking and MSR, 1 654 million allowances were banked

in the market from 2018.15 900 million allowances were “back-loaded” in 2014-16,

which means that auctioning of these allowances was postponed (implicitly banked by

the regulator). Eventually, it has been decided that they should enter into the MSR,

together with expectedly 740 million allowances (RefinitivCarbon (2018)).

C GAMS Program

Sets

* EU ETS is simulated for the years 2019-2050. t=0 is 2018, so t=32 is 2050

t Time period /0*32/

t0(t) Period t=0 (before simulation starts)

ts(t) Simulation periods

ts2(t) Simulation periods except t=1

tn(t) Last period

;

alias(t,tt);

alias(t,ttt);

t0(t) = yes$(ord(t) eq 1) ;

ts(t) = yes$(ord(t) gt 1) ;

ts2(t) = yes$(ord(t) gt 1 and ord(t) lt card(t)) ;

tn(t) = yes$(ord(t) eq card(t)) ;

Scalars

r Discount rate

sigma Demand elasticity

g Linear annual reduction factor in demand function

beta Threshold for canceling allowances (as a share of s)

15https://ec.europa.eu/clima/sites/clima/files/ets/reform/docs/c 2019 3288 en.pdf
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p0 Average price in 2018 (t=0)

d0 Demand in 2018 (t=0)

;

r = 0.05 ;

sigma = -0.14 ;

g = 0.017339125 ;

* Assumed share of auctioning

beta = 0.57 ;

* Average price in 2018 used to calibrate demand function

p0 = 16 ;

* Demand (incl aviation) in 2018

* https://ec.europa.eu/clima/news/emissions-trading-emissions-have-decreased-39-

2018˙en

d0 = 1749 ;

Parameters

s(t) Fixed allocation of quotas

alpha(t) Withdrawal rate - share of annual auction volume entering into MSR

Omega(t) Time variant parameter in demand function

deltaD(t) Reduced demand for quotas in year t

;

* Supply (incl aviation) from 2019 based on https://ec.europa.eu/clima/policies/ets/cap˙en

s(t)$(ord(t) le 3) = 1931 - (ord(t)-1)*38.264;

s(t)$(ord(t) gt 3) = s(”2”) - (ord(t)-3)*49.216;

alpha(t)$(ord(t) le 6) = 0.24 ;

alpha(t)$(ord(t) gt 6) = 0.12 ;

Omega(t) = d0/(p0**sigma)*(1 - ord(t)*g) ;

deltaD(t) = 0 ;

Positive Variables

p(t) Price

d(t) Demand for quotas
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CumD Cumulative demand for quotas

m in(t) Number of quotas entering into MSR

m out(t) Number of quotas taken out of MSR and into the ETS market

M(t) Size of MSR

C(t) Cancellation of quotas

CumC Cumulative cancellation of quotas

;

Variables

B(t) Banking of quotas

;

Equations

EQ1(t) Quotas entering into MSR

EQ2(t) Quotas taken out of MSR

EQ3(t) Cancellation of quotas

EQ4(t) MSR stock change

EQ5(t) Market balance

EQ6(t) Price movement

EQ7(t) Demand for quotas

* The following equations sum up cumulative cancellation and demand:

EQ3SUM Cumulative cancellation of quotas

EQ7SUM Cumulative demand for quotas

* The following equation is used in the model without MSR:

EQ3NO(t) Without cancellation of quotas from MSR

;

* Due to the discontinuity of the m in function, the formulation is somewhat different

from the equation in the paper,

* and a marginal number is added to the denominator to avoid division by zero

EQ1(t)$(ts(t)).. m in(t) =E= MAX(0 , alpha(t)*B(t-1)*(B(t-1) - 833))*(B(t-1) -

833) / ( (B(t-1) - 833)*(B(t-1) - 833) + 0.01 ) ;
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* Due to the discontinuity of the m out function, the formulation is somewhat

different from eq.2 in the paper,

* and a marginal number is added to the denominator to avoid division by zero

EQ2(t)$(ts(t)).. m out(t) =E= MIN(M(t-1),(MAX(0 , 100*(400 - B(t-1)))*(400 -

B(t-1)) / ( (400 - B(t-1))*(400 - B(t-1)) + 0.01 ) ) ) ;

EQ3(t)$(ord(t) gt 6).. C(t) =E= MAX( 0 , M(t) - beta*s(t) ) ;

EQ4(t)$(ts(t)).. M(t) =E= M(t-1) + m in(t) - m out(t) - C(t-1);

EQ5(t)$(ts(t)).. s(t) - m in(t) + m out(t) =E= d(t) + B(t) - B(t-1) ;

EQ6(t)$(ts2(t)).. p(t+1) =E= p(t)*(1+r) ;

EQ7(t)$(ts(t)).. d(t) =E= Omega(t)*(p(t)**sigma) - deltaD(t) ;

EQ3NO(t).. C(t) =E= 0 ;

EQ3SUM.. CumC =E= sum(t,C(t)) ;

EQ7SUM.. CumD =E= sum(t,d(t)) ;

Model MSR YES /EQ1.m in, EQ2.m out, EQ3.C, EQ4.M, EQ5.p, EQ6.B, EQ7.d,

EQ3SUM.CumC, EQ7SUM.CumD /;

Model MSR NO /EQ1.m in, EQ2.m out, EQ3NO.C, EQ4.M, EQ5.p, EQ6.B, EQ7.d,

EQ3SUM.CumC, EQ7SUM.CumD /;

* The initial value of MSR:

M.fx(”0”) = 900 + 740 ;

M.fx(t)$tn(t) = 0 ;

* Fixing variables in period 0 (2018):
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m in.fx(”0”) = 0 ;

m out.fx(”0”) = 0 ;

d.fx(”0”) = 0 ;

B.fx(”0”) = 1654 ;

B.fx(t)$(ord(t) eq card(t)) = 0 ;

C.fx(t)$(ord(t) le 6) = 0 ;

* Ensure that prices must be strictly positive:

p.lo(t) = 0.1 ;

option iterlim=100000000;

option reslim=2000.0;

option limrow=10;

*Help GAMS find the wanted equilibrium (due to multiple equilibria)

p.up(”1”) = 21.013 ;

* Solve the model including MSR:

Solve MSR YES using mcp;

*******************************

* Without MSR (and backloading)

alpha(t) = 0 ;

B.fx(”0”) = B.l(”0”) + M.l(”0”);

M.fx(”0”) = 0 ;

* Solve the model excluding MSR:

Solve MSR NO using mcp;

*****************************

* Check the effects of reduced demand (temporary or permanent) in different periods

alpha(t)$(ord(t) le 6) = 0.24 ;

alpha(t)$(ord(t) gt 6) = 0.12 ;

M.fx(”0”) = 900 + 740 ;
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B.fx(”0”) = 1654 ;

Parameter

CumC˙REP(tt) Reporting CumC for deltaD in different periods

CumCC˙REP(ttt,tt) Reporting CumC for deltaD in different periods (tt) and

different announcements (ttt)

;

loop(ttt$(ord(ttt) gt 1 and ord(ttt) lt card(ts)),

deltaD(t) = 0 ;

Solve MSR˙YES using mcp ;

* Fixing historic levels (before time ttt)

B.fx(t)$(ord(t) lt ord(ttt))=B.l(t) ;

M.fx(t)$(ord(t) lt ord(ttt))=M.l(t) ;

d.fx(t)$(ord(t) lt ord(ttt))=d.l(t) ;

C.fx(t)$(ord(t) lt ord(ttt))=C.l(t) ;

ts(t) = yes$(ord(t) ge ord(ttt)) ;

ts2(t) = yes$(ord(t) ge ord(ttt) and ord(t) lt card(ts)) ;

* Inner loop starts here

loop(tt$(ord(tt) ge ord(ttt) and ord(tt) lt card(ts)),

deltaD(t)$(ord(t) eq ord(tt)) = 1 ;

display deltaD;

* Solve the model with reduced demand in one period:

Solve MSR˙YES using mcp ;

* Remembering the effect on CumC in this scenario:

CumCC˙REP(ttt,tt) = CumC.l ;

* Nullifying the reduced demand before next loop

deltaD(t) = 0 ;

);

);

display CumCC˙REP ;
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