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1 Introduction

In the regional economic literature, the logit model represents a popular choice for capturing dis-
crete choice behaviours, for example, in explaining foreign direct investment (FDI) decisions of
multinational enterprises (Ascani et al., 2016; Crescenzi et al., 2013). These specifications more-
over allow for individual-level heterogeneity by relying on fatter distributional tails as compared
to competing probit specifications (see, for example, Cameron and Trivedi, 2005), and assume
that individual observations are independent. When modelling spatial data, however, the latter
assumption are often violated, since regional random choice observations frequently exhibit spatial
dependence (Calabrese and Elkink, 2014). Spatial dependence in choice outcomes results in a
situation where observed choices at one location are similar to choices made at nearby locations.
Particularly for regional economic applications, spatial dependence thus appears generally more
likely than spatial independence (LeSage and Pace, 2009). However, it is worth noting that neglect-
ing spatial dependence among the observations might result in severely biased and inconsistent
estimates (Anselin, 2002).

The importance of controlling for spatial dependence when modelling spatial data in the
random choice framework has been well documented using the probit model (see, for example,
Anselin, 2002; McMillen, 1992; Smith and LeSage, 2004). Proposed estimation techniques rely
both onmethods of general moments (GMM) (McMillen, 1992; Anselin, 2002), as well as Bayesian
Markov-chain Monte Carlo (MCMC) estimation (Smith and LeSage, 2004). The Bayesian esti-
mation technique exploits the (non-spatial) approach of Albert and Chib (1993), who treat the
observed binary outcome variables as indicators relating to a latent (unobserved) level of utility,
which is directly in line with the random choice literature. This latent utility approach allows for an
implementation in MCMC algorithms using draws from a truncated normal distribution. Spatial
autoregressive variants by LeSage (2000) and Smith and LeSage (2004) instead rely on draws from
truncated multivariate normal distributions. An overview on spatial discrete choice models is given
by Smirnov (2010). In contrast, using the same procedure for the spatial autoregressive logit model
have been held back by the difficulty of the logit log-likelihood incorporating multiple intractable
integrals. Two notables exceptions (Brasington et al., 2016; Klier and McMillen, 2008) rely on a
GMM estimation approach. This, however, suffers from the usual shortcoming of GMM-related
approaches, i.e. for the estimation it requires instrumental variables and the parameter space of the
spatial autocorrelation coefficient is not bounded.

The current paper builds on recent advances in Bayesian estimation of binomial-type model
specifications (Polson et al., 2013), which rely on introducing a latent Pólya-Gamma distributed
variable to facilitate Bayesian Markov-chain Monte Carlo estimation. Our version of the logit
model allows for spatial dependence in the log-odds of the logit process. A particular advantage
of this approach is that conditional on the latent Pólya-Gamma variable, the resulting conditional
posterior distribution of the slope parameters is Gaussian, hence standard sampling procedures
can be employed. Additionally, sampling for both the latent variable as well as for the slope
parameter is computationally efficient. These virtues of the proposed spatial logit specification
appear particularly useful, since recent advances in the spatial econometric literature rely on more
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flexible model specifications, which can be incorporated in such a modelling framework in a
straightforward and computationally efficient way. Examples of such flexible potential extensions
include explicitly allowing for non-linearity in the parameters (Cornwall and Parent, 2017; LeSage
and Chih, 2018; Koch and Krisztin, 2011; Krisztin, 2017; 2018; Piribauer, 2016), multivariate
spatial econometric frameworks (Crespo Cuaresma et al. 2018), shrinkage approaches for big data
applications (Pfarrhofer and Piribauer, 2019; Piribauer and Crespo Cuaresma, 2016), uncertainty
about the nature of spatial spillovers (Vega and Elhorst, 2013; LeSage and Fischer, 2008), or
allowing for continuous spatial effects (Laurini 2017).

Due to the resulting normally distributed conditional posterior distribution of the slope pa-
rameters, the proposed spatial autoregressive logit specification might be extended to allow for
more flexible and hierarchical model specifications in a straightforward way. We demonstrate the
appealing virtues of the proposed approach – both in terms of parameter precision and computing
time – in a series of Monte Carlo studies. Alternative benchmark specifications include a standard
(non-spatial) logit model, a classic linear spatial autoregressive model estimated directly on the
binary data, the spatial autoregressive specification of Klier and McMillen (2008), as well as a
spatial autoregressive probit model specification (LeSage et al., 2011; LeSage and Pace, 2009).

We moreover use European regional data on FDI activities to illustrate the performance of the
proposed Bayesian spatial autoregressive logit specification. In the empirical application we utilise
information on FDI press announcements from the fDi Markets database, which is maintained by
a specialist division of Financial Times Ltd. Specifically, we aim at modelling the occurrence of
greenfield FDI investments in host regions in Europe along different stages of the value chain by
explicitly accounting for spatial autoregressive log-odds and regional neighborhood characteristics.
To illustrate the flexibility of the Bayesian estimation approach we allow for uncertainty over the
number of nearest neighbors in the spatial specification.

The paper is structured as follows. Section 2 outlines the characteristics of our Bayesian spatial
autoregressive logit model specification. Section 3 describes the Bayesian Markov-chain Monte
Carlo estimation strategy employed to estimate the model. To demonstrate the efficiency both in
terms of parameter precision as well as computational aspects, Section 4 presents Monte Carlo
studies demonstrating the efficiency of the proposed approach, by benchmarking the results of
our proposed approach to several other well-known specifications. Section 5 contains an applied
illustration using regional NUTS-2 data on FDI investments in Europe. The final section concludes.

2 Model specification

Let yi (for i = 1, . . . , N) denote a binary outcome for a region i between two, mutually exclusive
events. We aim to model the probability of making choice 1, which we denote as p(yi = 1). Based
on the logit framework, we may model this probability as a function of the log-odds µi:

p(yi = 1) =
exp µi

1 + exp µi
. (2.1)
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In a standard framework, µi is typically specified as a linear combination of a matrix of explanatory
variables and a corresponding vector of unobserved slope parameters.

Particularly for (small-scale) regional data, the assumption of spatial dependence of observa-
tions might be more reasonable as compared to spatial independence (LeSage and Pace, 2009). In
order to introduce spatial dependence among the regions we may assume that the log-odds µi in
Eq. (2.1) do not solely depend on the characteristics of own region i, but also on other regions’
characteristics. In the spatial econometric literature, such regional interdependencies are usually
incorporated using non-negative and row-stochastic spatial weight matrices. A spatial weight
matrix W contains information on the N × N spatial linkages between the regions in the sample
and is usually treated as being given. Specifically, wi j > 0 for i , j if region i and j are assumed
as being neighbors, otherwise wi j = 0. Since no region is assumed as being a neighbor to itself,
wii = 0 for all i.

The core part of the spatial autoregressive (SAR) logit model is given by:

µ = ρWµ + Xβ + ε

µ = A−1(Xβ + ε), (2.2)

with A−1 = (IN − ρW )
−1 where IN denotes an N × N identity matrix. The N × K matrix

X = [x1, . . . , xK ] collects the K vectors of explanatory variables and β denote the respective K ×1
vector of slope parameters. The N × 1 vector ε contains independently and identically Gaussian
distributed disturbance terms, with zero mean and σ2 variance. The (scalar) parameter ρmeasures
the strength of spatial autocorrelation with sufficient stability condition ρ ∈ (−1, 1), where positive
(negative) values of ρ indicate positive (negative) spatial autocorrelation. In the absence of spatial
autocorrelation (ρ = 0), the model framework collapses to a classical linear setup.

In such a spatial autoregressive (SAR) model specification, the N × 1 vector of log-odds
µ = [µ1, . . . , µN ]

′ thus also depends on the characteristics of other regions in the sample. Spatial
dependence is introduced by the spatial multiplier A−1 = (IN − ρW )

−1 =
∑∞

r=0 ρ
rW r .1

Note, that the residuals of the SAR logit model consist of two disinct components: first,
the heteroscedastic errors arising from the logistic model in Eq. (2.1) and second, a normally
distributed error term ε with σ2 variance. Spatial dependence in the errors is captured through the
latter. Similar as in the spatial variant of the probit model (see LeSage et al., 2011), the variance
σ2 is restricted to unity, in order to correctly identify the logistic errors.

The likelihood of the parameter vector β, given an N × 1 vector of observed choices y can be
written as:

L(β |y) =
N∏
i=1

(exp µi)yi

1 + exp µi
, (2.3)

1It is worth noting that the standard SAR model can be extended to more flexible spatial econometric model
specifications in a straightforward way. Specifically, one may additionally include spatially lagged explanatory variables,
resulting in a so-called spatial Durbin model (SDM) specification (see, for example LeSage and Pace 2009). A similar
extension is presented in the empirical exercise.
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where L(·) denotes the likelihood function. However, it is worth noting that the likelihood
contribution of observation i relies on the product of the probabilities p(yi = 1) and p(yi = 0).
This results in the well-known problem that the log-likelihood is not linear, which may severely
complicate parameter estimation and inference.

3 Estimation strategy

Wepropose estimation of the spatial autoregressive logit specification stated above using aBayesian
Markov-chain Monte Carlo approach. In order to efficiently deal with the logit framework, we
follow an estimation strategy proposed in Polson et al. (2013) by introducing a latent Pólya-Gamma
variable. The introduction of this latent quantity allows to recast the conditional posterior distri-
bution of the slope parameters in the logit framework to a Gaussian distribution. Conditional on
this latent Pólya-Gamma variable we may thus use standard Markov-chain Monte Carlo algorithms
for spatial autoregressive methods in a straightforward and flexible way (see, for example, LeSage
1997, or LeSage and Pace 2009).

Polson et al. (2013) show that the introduction of a Pólya-Gamma variable can severely facilitate
Bayesian estimation of binomial-type model specifications. A particularly useful result of the work
by Polson et al. (2013) is given by the following identity:

(exp µi)a

(1 + exp µi)b
= 2−b exp(κiµi)

∫ ∞

0

(
exp
−ωiµ

2
i

2

)
p(ωi)dωi a, µi ∈ R, b ∈ R+, (3.1)

where κi = a − b/2 and ωi is a Pólya-Gamma distributed random variable with scale b and
location parameter zero, p(ωi) ∼ PG(b, 0). Note that the above integral identity does not rely
on numerical approximation of the binomial term, and can be estimated by sampling from the
conditional posterior Pólya-Gamma distribution. Using the results in Polson et al. (2013) and
Windle et al. (2014), the conditional posterior for ω = [ω1, . . . , ωN ]

′ also takes the form of a
Pólya-Gamma distribution:

p(ω |β, ρ, y) = PG
(
1, A−1Xβ + A−1ε

)
. (3.2)

Computationally efficient sampling algorithms for the Pólya-Gamma conditional posterior in Eq.
(3.2) are provided by Polson et al. (2013) and Windle et al. (2014) and are implemented in the R
package BayesLogit.

Combining Eq. (3.1) with Eq. (2.3) and setting a = yi and b = 1 yields the contribution to the
likelihood of observation i in our specific econometric setting:

exp(µi)yi
1 + exp(µi)

∝ exp(κiµi)
∫ ∞

0

(
exp
−ωiµ

2
i

2

)
p(ωi)dωi . (3.3)
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By conditioning on ω and the spatial autoregressive parameter ρ, the conditional posterior for β is
thus given by:

p(β |ρ,ω, y) ∝ p(β)
N∏
i=1

exp(κiµi − ωiµ
2
i /2) (3.4)

∝ p(β) exp
{
−

1
2
(Az − Xβ)′Ω (Az − Xβ)

}
, (3.5)

with N × N matrix Ω = diag(ω1, ..., ωN ) and z = [κ1/ω1, ..., κN/ωn]
′. By eliciting a normally

distributed prior density for β with prior mean µ
β
and variance Σβ , p(β) ∼ N(µ

β
,Σβ), the

conditional posterior distribution for the slope parameters β is therefore Gaussian:

p(β |ρ,ω, y) = N(µβ,Σβ), (3.6)

with posterior quantities µβ = Σβ
(
X ′ΩAz + Σ−1

β µβ

)
andΣβ =

(
X ′ΩX + Σ−1

β

)−1
. Equation (3.6)

shows the particular advantage of the introduction of the latent Pólya-Gamma variable. Due to the
fact that given ω the conditional posterior distribution for β is normally distributed, the proposed
framework may be extended to hierarchical or more flexible specifications in a straightforward
way. This appears to be appealing for extending binomial-type model specifications to allow for
recent advances in spatial econometric literature, such as but not limited to, including uncertainty
in spatial structure (LeSage and Fischer 2008, LeSage and Pace 2007), uncertainty about the
explanatory variables (Pfarrhofer and Piribauer 2019, Crespo Cuaresma et al. 2018, Piribauer and
Crespo Cuaresma 2016), or flexible specifications for parameter heterogeneity (LeSage and Chih
2018, Cornwall and Parent 2017, Piribauer 2016).

Conditional on ω using Theorem 1 from Polson et al. (2013), the conditional posterior distri-
bution for the spatial autoregressive parameter ρ is given by:

p(ρ|β,ω, y) ∝ |A| exp
{
−

1
2
(Az − Xβ)′Ω (Az − Xβ)

}
p(ρ), (3.7)

where p(ρ) denotes the prior density of ρ. Standard prior choices for ρ involve a uniform or a
beta distribution (see, for example, LeSage and Pace 2009). However, the conditional posterior for
ρ is not reducible to a well-known distribution which can easily be sampled from. We therefore
use a griddy Gibbs step (Ritter and Tanner 1992) in order to sample from the conditional posterior
for ρ. This can be easily achieved using the numerical integration procedure as in LeSage and Pace
(2009).2

2An alternative, however, computationally more intensive approach also frequently used in the spatial econometric
literature involves a Metropolis-Hastings step for the spatial autoregressive parameter (see, for example, LeSage and
Pace 2009).
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Markov-chain Monte Carlo sampling procedure

Given the conditional posterior distributions stated above, Markov-chain Monte Carlo algorithms
can be employed by sequentially sampling from the conditional posteriors. With suitable starting
values for β and ρ, our sampler involves the following steps:

I. Update ω by drawing from p(ω |β, ρ, y) using Eq. (3.2),

II. Update β by drawing from p(β |ρ,ω, y) using Eq. (3.6),

III. Update ρ using a griddy Gibbs step from p(ρ|β,ω, y) based on Eq. (3.7).

The Markov-chain Monte Carlo algorithm cycles through steps I. to III. B times by excluding the
first B0 draws as burn-ins. Inference on the parameters is conducted using the B − B0 remaining
draws.3

4 Simulation study

To assess the accuracy of our model, we benchmark its performance with regards to several
competing model specifications on a set of artificially generated data in a series of Monte Carlo
studies4. Our benchmark data generating process is a spatial autoregressive logit model with a
constant and containing two randomly generated explanatory variables:

ỹi = Binom
(
1,

exp µ̃i
1 + exp µ̃i

)
,

µ̃ = Ã
−1 (

β̃0 + x̃1 β̃1 + x̃2 β̃2 + ε̃
)
,

where Ã =
(
IN − ρ̃W̃

)
and Binom(·, ·) denotes the binomial distribution. To maintain succinct

notation we label the simulated true values in the Monte Carlo application with a tilde. The
explanatory variables x̃1 and x̃2 are both normally distributed, with zero mean and unity variance.
For each Monte Carlo iteration we randomly generate β̃0, β̃1, and β̃2 from a normal distribution
with standard deviation 0.05 and means of 0.5, 1, and −1, respectively. The vector of residuals ε̃ is
generated from a normal distribution, with zeromean and unity variance. The row-stochastic spatial
weight matrix W̃ is constructed using 5-nearest neighbors based on a randomly generated spatial
location pattern, stemming from a normal distribution with zero mean and unity variance. We vary
the strength of spatial dependence ρ̃ ∈ [0, 0.5, 0.8]. Additionally, to evaluate the performance of
the samplers with regard to sample size, we let N ∈ [400, 1000].

For the Monte Carlo simulation study, we compare the following five model specifications:

1. SAR Logit: The Bayesian spatial autoregressive logit specification sketched above.

3Convergence of the MCMC algorithm was checked using the convergence diagnostics proposed by Geweke (1991)
and Raftery and Lewis (1992). Convergence diagnostics have been calculated using the R package coda.

4Detailed R-codes are available from the authors upon request.
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2. GMMSAR Logit:5 The GMM spatial autoregressive estimation approach introduced in Klier
and McMillen (2008).

3. Linearized GMM SAR Logit:6 The linearized version of the GMM spatial autoregressive
estimation approach, which is advocated as a resonable approximation of the computationally
expensive GMM SAR Logit by Klier and McMillen (2008).

4. SAR Probit: A Bayesian spatial autoregressive probit specification put forward by LeSage
et al. (2011).

5. SAR: A Bayesian version of a standard spatial autoregressive model specification (LeSage
and Pace 2009), assuming normally distributed errors with σ2 variance, without imposing
restrictions to the binary nature of the dependent variable: y = A−1(Xβ + ε), with ε ∼
N(0, σ2IN ).

6. Logit: A standard logit specification assuming no spatial autocorrelation (ρ = 0).

Our prior set-up is as follows. We use a Gaussian prior for β with zero mean and variance
108 and for ρ we use a four-parameter Beta prior specification as outlined in LeSage and Pace
(2009), with bounds set equal to −1 and 1 and shape parameters 1.01. For the SAR specification
we use an inverse-gamma prior for σ2 with rate and shape parameters 0.1. This corresponds to
weakly informative prior distributions for all of our parameters. In the Monte Carlo study we
benchmark the root mean squared error of the estimated spatial autoregressive parameter, as well
as the summary spatial impact metrics to their true values. Since the data generating process in the
simulation study involves a spatial lag, we follow LeSage and Pace (2018) and report predictive
performances with respect to spatial impact metrics in the spirit of LeSage and Pace (2009) rather
than focussing on slope parameters. In addition to the magnitude of spatial dependence ρ, we
moreover report average direct and indirect (spillover) impacts. Both metrics are given by a non-

5Estimates for GMM SAR Logit have been produced using the R package McSpatial. However, for high spatial
autocorrelation ρ̃ = 0.8, GMM SAR Logit appeared to have severe problems to produce any estimates in more than
99% of all simulation runs. We have therefore omitted GMM SAR Logit in the simulation study for ρ̃ = 0.8.

6Estimates for Linearized GMM SAR Logit have been produced using the R package McSpatial. In this setting,
however, it is worth noting that estimates of ρ may exceed unity. In these cases we have restricted the estimate for ρ to
0.99 for calculation of spatial impact metrics.
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linear combination of the slope parameters, ρ, and W . Details on the calculation of the impact
metrics can be found in the appendix.

Table 1: Root mean squared error measures for the Monte Carlo runs

N Model
ρ̃ = 0.0 ρ̃ = 0.5 ρ̃ = 0.8

direct indirect ρ direct indirect ρ direct indirect ρ

400

SAR Logit 0.097 0.033 0.081 0.169 0.323 0.344 0.359 1.424 0.243
GMM SAR Logit 0.118 0.101 0.258 0.136 0.237 0.234
Linearized GMM SAR Logit 0.105 0.096 0.232 0.222 12.915 0.334 0.539 43.039 0.897
SAR Probit 0.182 0.029 0.128 0.191 0.364 0.369 0.509 1.529 0.482
SAR 0.317 0.027 0.076 0.335 0.393 0.420 0.416 1.580 0.493
Logit 0.079 0.000 0.000 0.247 0.417 0.500 0.960 1.667 0.800

1,000

SAR Logit 0.056 0.022 0.052 0.088 0.284 0.261 0.383 1.435 0.221
GMM SAR Logit 0.063 0.066 0.152 0.103 0.199 0.194
Linearized GMM SAR Logit 0.059 0.070 0.147 0.187 9.270 0.285 0.575 44.066 0.886
SAR Probit 0.184 0.018 0.078 0.188 0.346 0.302 0.305 1.506 0.431
SAR 0.313 0.019 0.052 0.331 0.384 0.376 0.416 1.570 0.476
Logit 0.050 0.000 0.000 0.229 0.417 0.500 0.871 1.657 0.800

Notes: Results are based on 1,000 Monte Carlo iterations. For each Monte Carlo iteration, the corresponding sampling algorithms
are run using 1,000 draws, where the initial 700 draws were discarded as burn-in. The columns direct and indirect correspond to
summary marginal effects (for details, see the Appendix). The values given for direct, indirect, and ρ correspond to the average
RMSE(·) over all Monte Carlo iterations. Bold values denote the lowest average RMSE scores.

The results of the Monte Carlo study are presented in Table 1. For each scenario and model
specification, the reported metrics in the table correspond to 1,000 Monte Carlo runs. Information
on the sample size N and the alternative model specifications used are shown in the first and second
columns. The table reports average root mean squared error point estimates for the average direct
and indirect impacts as well as ρ corresponding to ρ̃ = [0.0, 0.5, 0.8].

In the case of no spatial autocorrelation (ρ̃ = 0), Table 1 shows particular appealing results
for the standard logit specification (Logit). This result holds true for both moderate and large
sample sizes. Since Logit resembles the true data generating process for ρ̃ = 0, these results
appear little surprising. However, for both sample sizes considered, our spatial autoregressive logit
specification (SAR Logit) appears to produce the second-best solution for predicting the summary
direct effects by closely tracking the reported root mean squared errors for the standard logit case.
However, for indirect effects and for the spatial autoregressive parameter ρ both the SAR and SAR
Probit specifications also appears to slightly outperform SAR Logit.

In terms of predicting the spatial dependence parameter in the absence of spatial autocorrelation
in the data generating process (ρ̃ = 0), the results in the table moreover reveal that both reported
GMM-based approaches (GMM SAR Logit and Linearized GMM SAR Logit) perform rather poorly
as compared to the alternative specifications. This outperformance of the alternative approaches
can be seen for both moderate (N = 400) and large sample sizes (N = 1, 000).

In terms of point predictions for moderate spatial autocorrelation (ρ̃ = 0.5), results for direct
and indirect effects significantly change. Formoderate sample sizes (N = 400) theGMMSAR Logit
produces the most precise predictions, closely tracked by SAR Logit. In the case of large sample
sizes (N = 1, 000) the results appear more mixed, withGMMSAR Logit producing the most precise
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predictions for indirect effects, while the SAR Logit outperforms all other competing specifications
in predicting direct effects. In terms of predicting the spatial autoregressive parameter ρ the GMM
SAR Logit exhibits the lowest bias in terms of RMSE for both sample sizes considered.

Note, that the Linearized GMM SAR Logit performs particularly poorly in the case of moderate
to high spatial autocorrelation when predicting indirect effects. This is due to the fact that estimate
for ρ produced by the linearized GMM specifications is not bounded. While we impose a bound
for the indirect effect calculations an estimate for ρ close to one still results in severely biased
indirect effects, as evidenced by the results.

In settings with high spatial autocorrelation (ρ̃ = 0.8), the outperformance of SAR Logit
compared to the competing specifications appears particularly pronounced. As an only exception
the SAR Probit specification slightly outperforms the SAR Logit in terms of predicting direct effects
in the case of large sample sizes (N = 1, 0000).

To sumup, Table 1 demonstrates that the proposed SARLogit specification produces particularly
appealing results in the presence of spatial autocorrelation. The standard (non-spatial) logit
model specification is preferable only in the absence of spatial autocorrelation. GMM SAR Logit
outperforms SAR Logit only in the presence of moderate spatial autocorrelation. It is moreover
worth noting, that in the presence of high spatial autocorrelation the GMM SAR Logit algorithm
failed to converge in the vast majority of the draws.

5 An empirical illustration to modelling European subnational FDI

This section aims at empirically illustrating our proposed estimation approach for pan-European
subnational foreign direct investment data. More specifically we aim at explaining the occurrence
of FDI activity in a certain destination region along different stages of the value chain. The
importance of attracting foreign direct investment for the purposes of fostering economic growth
is empirically well documented (see, for example, Huber et al., 2017; Blonigen and Piger, 2014;
Eicher et al., 2012). The determinants that appear particularly crucial in this aspect are trade-
openness (Balasubramanyam et al., 1996), a well-developed human capital stock (Borensztein
et al. 1998) or the degree of embeddedness of foreign firms in local economies (Markusen and
Venables 2000; Rodriguez-Clare 1996) as well as the general business environment (Blomstrom
and Kokko, 2003; Xu, 2000). Multiple studies emphasize the importance of spatial issues as well
(see Baltagi et al., 2007; Ekholm et al., 2007, among others), emphasizing the role of global, as
well as local spillovers.

Therefore, in the empirical specification we include spatially lagged explanatory variables as
well, resulting in a so-called spatial Durbin log-odds specification. In the spatial econometric
literature, the choice of the spatial weight matrix is often seen as being crucial. Since empirical
results may be strongly affected by the choice of the spatial weight matrix, we therefore extend the
model specification by allowing for ξ alternative spatial weight matrix specification. Our spatial
Durbin specification can be written as:

µt = (IN − ρW (ξ)t )
−1(αt + Z tγ +W t (ξ)Z tϑ + ε), (5.1)
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where the (scalar) spatial autoregressive parameter ρ, and the N × N spatial weight matrixW t (ξ),
conditional on the parameter ξ, are defined as before. The positive discrete scalar parameter
ξ ∈ {1,w} acts as an indicator to choose betweenw alternative spatial weight matrices. Conditional
on ξ, the entries in W t (ξ) are assumed as being given. Z t denotes a N × K matrix of explanatory
variables at time period t = 1, . . . ,T with corresponding K × 1 vector of slope parameters γ. αt
denotes a time period fixed effect and the termW t (ξ)Z t is a spatial lag of the matrix of covariates
with associated vector of parameters ϑ and explicitly includes the regions’ characteristics of their
neighbors. Note that the spatial Durbin version of the logit specification given in Eq. (5.1) can
be easily specified as a standard spatial autoregressive logit specification by collecting all the
explanatory variables into a matrix X t . By vertically stacking X t for all t along with the time
fixed effects into a matrix X and defining W (ξ) = diag(W 1(ξ), . . . ,WT (ξ)), the equations for the
Markov-chain Monte Carlo algorithm can be applied (conditional on ξ) as discussed before.

However, since the additional parameter ξ is treated as unknown, an additional sampling step
for ξ has to be employed in the MCMC sampling algorithm. Similar to ρ, the conditional posterior
distribution for ξ is also not of well-known form and is given by:

p(ξ |β,ω, ρ, y) ∝ |A(ξ)| exp
{
−

1
2
(A(ξ)z − Xβ − ε)′Ω (A(ξ)z − Xβ − ε)

}
p(ξ), (5.2)

with A(ξ) = IN − ρW (ξ). Sampling for the conditional posterior distribution is straightforward
by for example employing an additional Metropolis-Hastings step using independent uniform
proposals for ξ. Very similar sampling and estimation strategies to account for uncertainty among
W have also been employed in Piribauer and Crespo Cuaresma (2016) or LeSage and Pace (2009).

5.1 Regions, data, and spatial weights

Our empirical application makes use of the fDi Markets database, which is maintained by fDi
Intelligence – a specialist division of the Financial Times Ltd. Our data set provides information
on regional FDI activities from 2003 to 2011. fDi Markets relies on media sources and company
data, and reports information (among others) on the host and source (country, region and city) of
the FDI flows, sector classifications, the amount of the capital investment, as well as the amount
of created jobs. The FDI flows in the database contain all cross-border greenfield investments,
and the inclusion of investments in the database is conditional on the FDI flow generating new
employment or capital investments in the host region. The investments reported in the fDi Markets
database have been subject to several robustness checks and comparisons with other data sources
on FDI activities. The reported cross-checks support the reliability of the fDi Markets data set on
the spatial distribution of FDI (Crescenzi et al. 2013).

The dependent variable comprises information on global FDI in-flows to 266EuropeanNUTS-2
host regions in the period 2003 to 2011. The complete list of regions is presented in Table A2 in the
Appendix. The binary dependent variable measures annually whether one or more FDI investment
occurred for a panel of NUTS-2 host regions, which yields a total of 2, 394 observations.
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Observations on FDI flows contain information on 17 distinct business activities, which are
associated with various stages of the value chain, from product research and development, through
testing and manufacturing, up to to delivery and recycling. Investing companies at different
stages of the value chain exhibit heterogeneous preference structure for regional endowments.
This heterogeneity stems from unobserved characteristics of the investing firms (i.e. at their
utility structure related to their relative position along the value chain) and provides valuable
insights on investment decision processes (Ascani et al., 2016). To account for this source of
heterogeneity, we differentiate between FDI flows based on their position along the value chain.
This is achieved by grouping FDI inflows with respect to their associated business activities
into three distinct categories: upstream, downstream, and production. The upstream category
comprises conceptual product development, including design and testing, as well as management
and business administration activities. The downstream category encompasses activities linked to
the consumer, such as sales, product delivery or support. Finally, the production category contains
activities associated with the actual product creation – such as manufacturing and extraction – as
well as related activities – such as recycling. This classification is based on the general value stage
chain classification by Sturgeon (2008) and are partly reminiscent to those employed by Crescenzi
et al. (2013) and Ascani et al. (2016). Table A1 in the Appendix shows the complete list of
investment activities and categories.

Our set of covariates comprises the main variables used in the prevalent literature on regional
FDI activities and regional economic growth (see, for example, Pintar et al., 2016; Crescenzi
et al., 2013; Crespo Cuaresma et al., 2014). Since a higher demand for goods should promote
FDI activities which are launched in order to expand the local production of final goods, recent
empirical studies predominantly focus on the market size of the host region. A large market size
of the host region is therefore assumed to increase the probability to attract FDI investments. In
national and regional studies of FDI activities, the corporate tax rate is considered as another key
driver for attracting FDI flows (Bellak and Leibrecht, 2009). A higher corporate income tax is
expected to deter investment, while lower tax rates are used as a national measure to attract FDI
investments.

Additionally, typical supply-side quantities includemeasures of regional human, and knowledge
capital endowments. To approximate regional human capital endowments we use two variables
focussing on regions’ educational attainment. One variable measures the share of population
with tertiary education attainment, and a second is given by the share with low education. As
a measure for regional knowledge capital endowments we use data on patent counts to proxy
regional knowledge production. The use of regional data on patent activities appears reasonable
since patents can be seen as a direct outcome of R&D investments (see, for example, LeSage
and Fischer 2012). To construct regional knowledge capital stocks we make use of the perpetual
inventory method. We therefore followwork by Fischer and LeSage (2015) and LeSage and Fischer
(2012) by assuming Ki,t = Ki,t−1(1 − rK ) + Pi,t , where Ki,t and Pi,t denotes the knowledge capital
stock and patent counts in region i and time period t, respectively. rK = 0.10 denotes a constant
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Table 2: Variables used in the empirical illustration
Variable Description

Upstream 1 denotes that FDI in-flows associated with upstream business activities have
been reported in the region, 0 otherwise. Source: fDi Markets

Downstream 1 denotes that FDI in-flows associated with downstream business activities
have been reported in the region, 0 otherwise. Source: fDi Markets

Production 1 denotes that FDI in-flows associated with production business activities have
been reported in the region, 0 otherwise. Source: fDi Markets

Market size Proxied by means of regional gross value added, in log terms. Source: Cam-
bridge Econometrics

Population density Population per square km, in log terms. Source: Cambridge Econometrics
Corporate income tax Country-specific top statutory corporate income tax rates (including sur-

charges) Source: Eurostat
Employment in industry Share of NACE B to F (industry and construction) in total employment.

Source: Cambridge Econometrics
Employment in services Share of NACE G to U (services) in total employment. Source: Cambridge

Econometrics
Lower education workers Share of population (aged 25 and over) with lower education (ISCED levels

0-2). Source: Eurostat
Higher education workers Share of population (aged 25 and over) with higher education (ISCED levels

6+). Source: Eurostat
Regional knowledge capital Knowledge stock formation measured in terms of patent accumulation, in log

terms. Source: Eurostat

Notes: ISCED and NACE refer to the international standard classification of education and the second revision of the
statistical classification of economic activities in the European community, respectively.
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depreciation rate of regional knowledge capital.7 In addition to information on host regional market
size, human and knowledge capital stocks, we moreover include several other covariates to control
for the regional industry mix, population density, as well as other socio-economic characteristics
typically found in the empirical regional economic literature (Crespo Cuaresma et al. 2014).

For the specification of the spatial weight matrix W we used a range of nearest neighbor type
specification. Specifically, we use nearest neighbor spatial weight matrices ranging from one to 20
(i. e. ξ ∈ {1, 20}), by using a discrete uniform prior for ξ. Data on the explanatory variables used
stem from both the Cambridge Econometrics regional database as well as the Eurostat regional
database. Detailed information on the set of dependent and explanatory variables used in our
spatial autoregressive logit framework is provided in Table 2.

5.2 Empirical results

In this subsection we present the Markov-chain Monte Carlo estimation results by using 20,000
posterior draws for our Bayesian spatial Durbin logit specification, fromwhich 15,000 are discarded
as burn-in. Table 3 presents empirical summary metrics for spatial models in the form of average
direct and indirect (spillover) effects (LeSage and Pace 2009) for the explanatory variables under
scrutiny. The presented summary impact measures are evaluated at the mean of the explanatory
variables. Details for the calculation of average direct and indirect (spillover) effects in the SDM
logit specifications are presented in the Appendix.

Average direct effects are reminiscent to non-spatial impact assessments by representing the
average impacts to a region’s dependent variable due to amarginal change of an explanatory variable
in the same region. Average indirect (or spillover) effects represent the impact due to a marginal
change in all other regions. In addition, one may also interpret average total effects which are
given by the sum of direct and indirect effects and embody the average regional impact resulting
from a marginal change in all regions in the sample. Estimation results are presented for host
regional FDI flows separated for the value chain related upstream, downstream, and production
activities in Table 3. In addition to the spatial impact metrics, the table also reports posterior
quantities for the degree of spatial dependence ρ, the parameter ξ for the spatial neighborhood,
and McFadden’s pseudo R2, a measure for the goodness of fit in logit specifications (McFadden,
1974) using posterior mean quantities.8

Columns (i) and (ii) in Table 3 show the impact metrics for upstream investment activities.
Similar to the other investment activities, upstream FDI activities appear to exhibit positive and
significant spatial autocorrelation. However, for upstream FDI spatial autocorrelation is somewhat
weaker as compared to the other two activities. As expected, the overall market size appears to
have a highly significant and positive direct impact on the probability for upstream FDI investments
occuring in the host region. The estimated direct impact for the market size variable turns out

7In the empirical application, we have also used alternative values for rK . The results, however, appeared rather
robust for the choice of rK .

8McFadden’s pseudo R2 is defined as 1− L1
L0

, where L1 denotes the posterior log-likelihood of the fitted model and
L0 the log-likelihood of a null mode containing only an intercept. Based on McFadden (1974) values between 0.2 and
0.4 are considered to be an excellent fit.
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to be particularly large among the three value chain categories under scrutiny. This corroborates
the findings of Henderson and Ono (2008), Defever (2006), or Duranton and Puga (2005), namely
that such activities are driven more by functional rather than by sectoral aspects and tend to be
located particularly in urban agglomerations. The relative importance of regional proximity to
large metropolitan areas can also be seen by a positive and significant direct and indirect impact of
the population density variable. The importance of proximity to urban agglomerations becomes
even more accentuated due to the negative and highly significantly estimated indirect effect of the
market size variable. This result suggests that a marginal increase in the market size solely in all
other regions decreases the probability to attract upstream FDI activities in the own region.

Concerning the host region’s industry mix, the table also shows positive direct impacts for
both the industry as well as service sector shares. Interestingly, the average indirect effect for
the employment share in the services sector has a negative sign. This means that an increase in
service intensity in foreign regions decreases the probability of a region’s FDI inflow. This finding
is in line with Strauss-Kahn and Vives (2009), who highlight the importance of agglomerations
in the same sector as well as a high level of business service activities for location decisions of
headquarters. Strauss-Kahn and Vives (2009) also find that low corporate tax rates appear to be
of particular importance. Table 3 also shows a negative direct impact estimate for the corporate
tax rate. Interestingly, the estimated spillover impacts for the corporate tax rates is positive which
corroborates the finding of tax competition (Bellak and Leibrecht 2009). An increase in tax rates
only in foreign regions therefore has a positive impact on attracting upstream FDI activities.

While a low educated working age population appears to have an insignificant impact on
attracting upstream FDI inflows, the impact of regional tertiary education attainment is positive
and highly significant. However, spatial spillover impacts for both human capital variables are
insignificant. Knowledge capital endowments also seem to be of importance for regions to attract
FDI inflows. Interestingly, we find no positive direct effect for own regional knowledge capital
endowments, a result also found by Dimitropoulou et al. (2013), who study the locational deter-
minants of FDI in UK regions. However, our spatial autoregressive framework shows significant
and positive average spillover impacts for regional knowledge capital. While the own regional
knowledge capital endowments appears insignificant, spatial proximity to knowledge capital thus
still plays a key role.

Concerning the number of nearest neighbors ξ, Table 3 reports rather precise posterior estimates
for all three industry classifications. For upstream FDI, the posterior mean of ξ is with 10.037
higher and more precisely estimated than for downstream and production (posterior means of 6.062
and 7.597, respectively).

Columns (iii) and (iv) of Table 3 report posterior mean estimates for regional FDI for down-
stream activities. For this classification of host FDI flows, the posterior mean estimates for the
spatial autoregressive parameter is positive and highly significant. Similar to upstream FDI, the
direct impact of the market size variable is positive and the spatial spillover metrics also appear
to be negative. Both impact measures, however, are a bit less pronounced compared to upstream
activities. The somewhat less accentuated importance of regional proximity to urban agglomera-
tions of downstream activities as compared to upstream FDI can also be seen by an insignificant
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direct effect of the population density variable. Albeit the own regional population density appears
less important, the indirect impacts show a positive (and significant) posterior mean. In order to
attract downstream FDI flows, spatial proximity to urban agglomerations thus also plays a major
role. The direct impact of the corporate tax rate also exhibits a negative sign with positive spatial
spillover effects. The spatial summary metrics for the regional sectoral structure for downstream
activities are very similar to those for upstream FDI. Employment shares for both industry and
service sectors are positively related to the probability of attracting FDI. Moreover, the table again
indicates negative spatial spillover effects of the share of employment in services.

Table 3: Summary impact measures for value chain classifications

Variable

Upstream Downstream Production
Mean SD Mean SD Mean SD
(i) (ii) (iii) (iv) (v) (vi)

D
ire

ct

Market size 1.497 0.147 1.460 0.148 1.255 0.137
Population density 0.118 0.075 0.060 0.057 -0.046 0.013
Corporate tax rate -0.081 0.039 -0.152 0.078 -0.202 0.096
Employment in industry 2.561 1.319 3.612 1.566 2.749 1.523
Employment in services 4.036 1.397 3.940 1.569 1.084 1.146
Lower education workers 1.190 0.857 0.447 0.664 -0.457 0.378
Tertiary education workers 5.096 1.436 2.572 1.168 -0.733 0.366
Regional knowledge capital -0.025 0.024 -0.004 0.042 -0.002 0.037

In
di
re
ct

Market size -0.101 0.028 -0.066 0.027 -0.132 0.050
Population density 0.147 0.086 0.254 0.095 0.268 0.103
Corporate tax rate 6.438 1.989 3.205 2.060 7.894 2.886
Employment in industry 0.216 1.621 -0.723 1.497 1.972 2.561
Employment in services -3.463 0.728 -2.572 0.763 -0.598 1.661
Lower education workers -0.415 0.738 0.362 0.668 0.568 0.832
Tertiary education workers 0.753 1.182 -0.148 1.045 2.342 1.417
Regional knowledge capital 0.173 0.095 0.231 0.100 -0.008 0.105

ρ 0.163 0.061 0.195 0.054 0.381 0.084
ξ 10.037 1.403 6.062 1.891 7.597 2.292
McFadden’s R2 0.319 0.254 0.190
Observations with positive inflows 1,027 1,465 1,328
Total number of observations 2,394 2,394 2,394

Notes: All models include fixed effects for time and a constant. Results based on 20,000 Markov-chain Monte Carlo iterations,
where the first 15,000 were discarded as burn-in. Estimates in bold are statistically significant under a 90% confidence interval.

The results for the importance of the market size, population density, as well as the industry
mix show that relatively urbanized regions with a particularly distinctive sectoral service structure
seemingly have the most promising prerequisites to attract FDI for both up- and downstream
activities (see also Burger et al., 2012). Similarities in the determinants for attracting FDI between
downstream and upstream activities can also be seen by the posterior estimates for the human
capital endowments. Specifically, the table shows a positive and precisely estimated direct effect
of the tertiary education attainment. Indirect effects for both human capital variables, however, are
insignificant.

Spatial impact metrics for production-related FDI are depicted in columns (v) and (vi) of Table
3. Not surprisingly, for this category of FDI inflows both the market size variable and the corpo-
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rate tax rates appear important. Inspection of the results, however, reveals that the determinants
of attracting production-related FDI appears to be different as compared to up- and downstream
activities. These findings are in line with work by Fallon and Cook (2014) and Crescenzi et al.
(2013), who also find (albeit using different functional classifications) different locational determi-
nants for production-related FDI as compared to business service oriented activities. Specifically,
the direct impact for the employment share in the industry sector appears to be of particularly
relevance, while the employment share in services is insignificant. This corroborates the findings
of Defever (2006), who argue that locational manufacturing decisions of multinational enterprises
is particularly affected by sectoral aspects. The table moreover reports negative direct impacts for
the population density variable with positive and significant indirect effects. These resemble the
stylized fact that regions with a relatively high specialization in manufacturing tend to be spatially
clustered and are typically located not directly but in the closer proximity to urban agglomerations.

Results for the human capital variable for production FDI also differ from the outcomes of
the two alternative classifications. Interestingly, the direct impact for regional tertiary education
attainment is negative. However, its indirect impact measure is positive and much larger in
magnitude. Similar to Crescenzi et al. (2013), we find no significant regional pull-factors for
knowledge capital endowments for production FDI.

6 Concluding remarks

In this paper we propose a Bayesian approach for estimating a logit specification which exibits
spatial autoregressive log-odds. Our proposed approach builds on recent advances in Bayesian
econometric modelling by introducing a latent Pólya-Gamma variable (see Polson et al. 2013).
Due to the introduction of the latent variable, the conditional posterior distribution of the slope
parameters in our spatial autoregressive logit specification takes a Gaussian form, which renders
Bayesian Markov-chain Monte Carlo estimation particularly efficient. Moreover, the resulting
Gaussian conditional posterior distribution allows to extend the proposed baseline spatial autore-
gressive logit model to more flexible specifications in a straightforward way. In a simulation study
the paper highlights the advantages of our proposed model specification as compared to existing
spatial autoregressive Probit specifications (Smith and LeSage 2004) both in terms of parameter
precision and computational time.

To illustrate our spatial logit model on a real economic data set, the paper moreover studies pan-
European regional foreign direct investment flows by focussing on FDI inflows in different stages
of the value chain. Specifically, in our empirical application we differentiate between upstream,
downstream, and production activities. European regional FDI data are constructed using the
fDi Markets database, which contains detailed information on regional FDI activities using media
sources and company data. Our empirical results suggest that controlling for spatial autocorrelation
when studying European regional FDI inflows is of fundamental importance. This particular holds
true for downstream- and production-related investment activities. For all stages in the value chain,
we find the market size, their spatial spillover effects, as well as the corporate tax rates to be of
particular importance. Our results moreover corroborate the findings in the recent literature on
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regional FDI flows, that service-related activities tend to be attracted by large metropolitan areas
while manufacturing activities are typically attracted by smaller regions in the closer proximity
to urban agglomerations (see, for example, Defever 2006 and Duranton and Puga 2005). We
additionally find marked differences in the locational investment decisions between manufacturing
and service-oriented FDI inflows (Fallon and Cook 2014, Crescenzi et al. 2013). Specifically, our
results are in line with work by Strauss-Kahn and Vives (2009) and Defever (2006), who argue
that industry-related investment decisions of multinational enterprises are particularly affected by
sectoral aspects, while service-related decisions are more determined by functional aspects. The
results moreover highlight human and knowledge capital variables as important drivers to attract
FDI.
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Appendix

Table A1: Classification of fDi Markets business functions
Classification Business activities % of classification

Upstream

Business Services 64.0
Design, Development and Testing 10.8
Education and Training 2.5
Headquarters 12.1
Information and Communication Technology and Internet Infrastructure 4.3
Research and Development 6.3

Downstream

Customer Contact Centre 4.2
Logistics, Distribution and Transportation 26.9
Maintenance and Servicing 3.4
Sales, Marketing and Support 62.1
Shared Services Centre 2.0
Technical Support Centre 1.4

Production

Construction 21.0
Electricity 5.3
Extraction 0.3
Manufacturing 72.1
Recycling 1.3

Notes: The last column indicates the percent of industry activities per FDI classification. The values are based on the
total observed FDI flows in the fDi Markets database targeting the selected NUTS-2 regions in the period 2003-2011.
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Table A2: List of regions in the study.

Austria France [continued] Hungary Poland [continued] UK
Burgenland (AT) Languedoc-Roussillon Dél-Alföld Lódzkie Bedfordshire and Hertfordshire
Kärnten Limousin Dél-Dunántúl Lubelskie Berkshire, Buckinghamshire and
Niederösterreich Lorraine Észak-Alföld Lubuskie Oxfordshire
Oberösterreich Midi-Pyrénées Észak-Magyarország Malopolskie Cheshire
Salzburg Nord - Pas-de-Calais Közép-Dunántúl Mazowieckie Cornwall and Isles of Scilly
Steiermark Pays de la Loire Közép-Magyarország Opolskie Cumbria
Tirol Picardie Nyugat-Dunántúl Podkarpackie Derbyshire and Nottinghamshire
Vorarlberg Poitou-Charentes Ireland Podlaskie Devon
Wien Provence-Alpes-Côte d’Azur Border, Midland and Western Pomorskie Dorset and Somerset

Belgium Rhône-Alpes Southern and Eastern Slaskie East Anglia
Prov. Antwerpen Germany Italy Swietokrzyskie East Wales
Prov. Brabant Wallon Arnsberg Abruzzo Warminsko-Mazurskie East Yorkshire and
Prov. Hainaut Berlin Basilicata Wielkopolskie Northern Lincolnshire
Prov. Liège Brandenburg Calabria Zachodniopomorskie Eastern Scotland
Prov. Limburg (BE) Braunschweig Campania Portugal Essex
Prov. Luxembourg (BE) Bremen Emilia-Romagna Alentejo Gloucestershire, Wiltshire and
Prov. Namur Chemnitz Friuli-Venezia Giulia Algarve Bristol
Prov. Oost-Vlaanderen Darmstadt Lazio Área Metropolitana de Lisboa Greater Manchester
Prov. Vlaams-Brabant Detmold Liguria Centro (PT) Hampshire and Isle of Wight
Prov. West-Vlaanderen Dresden Lombardia Norte Herefordshire, Worcestershire
Région de Bruxelles-Capitale Düsseldorf Marche Romania and Warwickshire

Bulgaria Freiburg Molise Bucuresti - Ilfov Highlands and Islands
Severen tsentralen Gießen Piemonte Centru Inner London
Severoiztochen Hamburg Provincia Autonoma di Bolzano/ Nord-Est Kent
Severozapaden Hannover Bozen Nord-Vest Lancashire
Yugoiztochen Karlsruhe Provincia Autonoma di Trento Sud - Muntenia Leicestershire, Rutland and
Yugozapaden Kassel Puglia Sud-Est Northamptonshire
Yuzhen tsentralen Koblenz Sardegna Sud-Vest Oltenia Lincolnshire

Czech Republic Köln Sicilia Vest Merseyside
Jihovýchod Leipzig Toscana Slovakia North Eastern Scotland
Jihozápad Lüneburg Umbria Bratislavský kraj North Yorkshire
Moravskoslezsko Mecklenburg-Vorpommern Valle d’Aosta/Vallée d’Aoste Stredné Slovensko Northern Ireland (UK)
Praha Mittelfranken Veneto Východné Slovensko Northumberland and Tyne and
Severovýchod Münster Latvia Západné Slovensko Wear
Severozápad Niederbayern Latvija Slovenia Outer London
Strední Cechy Oberbayern Lithuania Vzhodna Slovenija Shropshire and Staffordshire
Strední Morava Oberfranken Lietuva Zahodna Slovenija South Western Scotland

Denmark Oberpfalz Luxemburg Sweden South Yorkshire
Hovedstaden Rheinhessen-Pfalz Luxemburg Mellersta Norrland Surrey, East and West Sussex
Midtjylland Saarland Netherlands Norra Mellansverige Tees Valley and Durham
Nordjylland Sachsen-Anhalt Drenthe Östra Mellansverige West Midlands
Sjælland Schleswig-Holstein Flevoland Övre Norrland West Wales and The Valleys
Syddanmark Schwaben Friesland (NL) Småland med öarna West Yorkshire

Estonia Stuttgart Gelderland Stockholm
Eesti Thüringen Groningen Sydsverige

Finland Trier Limburg (NL) Västsverige
Åland Tübingen Noord-Brabant Spain
Etelä-Suomi Unterfranken Noord-Holland Andalucía
Helsinki-Uusimaa Weser-Ems Overijssel Aragón
Länsi-Suomi Greece Utrecht Cantabria
Pohjois-ja Itä-Suomi Anatoliki Makedonia, Thraki Zeeland Castilla y León

France Attiki Zuid-Holland Castilla-la Mancha
Alsace Dytiki Ellada Norway Cataluña
Aquitaine Dytiki Makedonia Agder og Rogaland Comunidad de Madrid
Auvergne Ionia Nisia Hedmark og Oppland Comunidad Foral de Navarra
Basse-Normandie Ipeiros Nord-Norge Comunidad Valenciana
Bourgogne Kentriki Makedonia Oslo og Akershus Extremadura
Bretagne Kriti Sør-Østlandet Galicia
Centre (FR) Notio Aigaio Trøndelag Illes Balears
Champagne-Ardenne Peloponnisos Vestlandet La Rioja
Corsica Sterea Ellada Poland País Vasco
Franche-Comté Thessalia Dolnoslaskie Principado de Asturias
Haute-Normandie Voreio Aigaio Kujawsko-Pomorskie Región de Murcia
Île de France
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Marginal effects

In our spatial Durbin logit model the interpretation of marginal effects of the k-th explanatory
variable (with k = 1, ...,K) differs from those in linear models. This is due to the fact that (i) the
logit model is non-linear in nature and marginal effects differ by the level of the k-th variable, and
(ii) the presence of spatial autocorrelation gives rise to an N × N matrix of partial derivatives,
which makes interpretation of marginal effects richer, but also more complicated (see also LeSage
and Pace 2009).

The first issue, where the marginal effect of the probability of p(yi = 1) varies with the
level of the explanatory variable zik , is usually addressed in the logit literature by providing
marginal effects in reference to the mean value of the k-th explanatory variable, which is denoted
as zk =

∑N
i=1 zik/N . The marginal effects can thus be interpreted as the change in probability

of observing y = 1 associated with a change in the average sample observation of the k-th
explanatory variable. Note, that this also implies that marginal effects depend on the distribution
of the explanatory variable itself.

Partial derivatives of the model in Eq. (2.1), with respect to the k-th coefficient can be written
as:

µk = A−1IN zkγk + A−1W zWkθk,

∂p(y = 1|zk)
∂z′k

=
exp µk

1 + exp
(
µk

) � (
A−1IN βk + A−1W θk

)
(A.1)

= Λk,

where βk and θk denote the k-th element of β and θ, respectively. zWk denotes the average value of
the k-th spatially lagged explanatory variable, and � is the Hadamard product. Note that marginal
effects of the k-th coefficient, denoted as Λk , are an N ×N matrix due to the presence of the N ×N

spatial multiplier A−1.
Since interpreting N × N marginal effects proves cumbersome, we define in accordance with

LeSage and Pace (2009) summary impact effects. These can be readily calculated from Λk :

directk =
1
N
ι′Ndiag(Λk) (A.2)

totalk =
1
N
ι′NΛk ιN (A.3)

indirectk = totalk − directk, (A.4)

where ιN denotes an N × 1 vector of ones. The average direct effects summarize the average effect
of a marginal change in the k-th explanatory variable on the log-odds in the own region. Average
indirect effects, on the other hand, summarize the average impact due to a marginal change in all
other regions. A third measure is given by the average total effects, which summarizes the own
regional change in log-odds due to marginal change of the k-th variable in all regions.
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