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Abstract

This paper analyses the effect of firm learning on labor market efficiency in a fric-

tional labor market with asymmetric information. I consider a model with random

matching and wage bargaining a la Pissarides (1985, 2000) where worker ability is

unknown to firms at the hiring stage. Firm learning increases relative expected earn-

ings in high-ability jobs and, thereby, enhances imitation incentives of low-ability

workers. The net effect on aggregate expected match surplus and unemployment is

indeterminate a priori. Numerical results show that firm learning does not increase

labor market efficiency.
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1 Introduction

The inability of the labor market to allocate resources efficiently has been attributed

to two important sources of frictions. First, search frictions may impose costs on the

formation of suitable worker-firm matches. Second, asymmetric information may result

in adverse selection of workers at the stage of hiring. The existing literature shows that

these frictions together may seriously hamper efficient resource allocation in the labor

market and increase the rate of unemployment.1 However, there is also evidence for

firms to learn fast about workers’ types.2 The ongoing digitalization of the workplace,

which measures individual performance ever more precisely, is likely to speed up firm

learning even further.3 This may ameliorate distortions due to imperfect information of

firms.

In this paper, I analyze the implications of firm learning for labor market efficiency

in a Diamond-Mortensen-Pissarides search and matching framework with asymmetric

information about worker ability and endogenous unobservable worker effort on the job.

Due to asymmetric information, adverse selection is possible: workers may misreport

their type at hiring and receive a wage that exceeds the wage based on their true type.

This is possible because firms cannot observe worker effort initially, and so cannot infer

a worker’s type from observed output. In consequence, effort on the job may be sub-

optimal. Within this framework, I address a number of questions, e.g.: How does firm

learning affect the search behavior of workers and firms? How does it affect a worker’s

choice of effort on the job, the surplus of a worker-firm match4, (relative) wages and

unemployment rates, and aggregate labor market efficiency?

1I review some of this literature below.
2Lange (2007) estimates the speed at which firms learn about the ability of their workers. He finds

that firms’ initial expectation errors decline by 50% during the first three years of employment.
3See, for example, O’Connor (2013), Kantor and Streitfeld (2015), and The Economist (2015) on

working conditions at Amazon where worker performance is monitored continuously in real time.
4Match surplus is the difference between the expected present value of the future incomes that the

two parties to a match earn and the expected present value of income that they forgo by participating
in the employment relationship (Mortensen and Nagypal (2007, p. 330)).
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If asymmetric information causes distortions in the labor market, then an increase

in the rate at which firms learn about the true type of a worker can be expected to

improve labor market outcomes. Interestingly, however, I find that in the presence of

search frictions, the effect of firm learning on labor market efficiency is not necessarily

positive and may, in fact, be negative. This is because, if job offers and wages are based

on the expected surplus of a worker-firm match, firm learning increases incentives for

low-ability workers to imitate high-ability workers. If this effect is sufficiently large, the

average expected match surplus decreases, and the average unemployment rate increases,

as firms learn faster about a worker’s type.

More specifically, I consider a frictional labor market with random matching and

wage bargaining a la Pissarides (1985, 2000), where workers and firms meet randomly

according to a matching function, and wages are determined via bargaining between

workers and firms. In contrast to this benchmark model, information is asymmetric

in my model: workers are perfectly informed about their ability, but firms learn only

gradually about a worker’s ability upon observing his effort over time. The effort of

workers on the job is endogenous; it is unobservable by the firm initially but affects

worker output and, thereby, serves as a signal of worker ability. Starting wages are

based on the worker’s current output (which depends on (true) worker ability and effort

on the job) as well as the worker’s future expected output (which depends on reported

worker ability). After the firm learns the worker’s true type, the wage is re-negotiated.

Workers decide to search for jobs based on their option value of search, which varies

with reported ability. By misreporting his type, a low-ability worker benefits from a

greater job arrival rate and earns a higher starting wage. In turn, he also faces a greater

cost of effort. In case of adverse selection, relative arrival rates and expected earnings

in high-ability jobs increase in the rate of firm learning, increasing imitation incentives

of low-ability workers. Then, firm learning has two important counter-vailing effects

on the expected match surplus of high-ability workers in separating equilibrium. On
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the one hand, given efforts, faster firm learning increases their surplus, since effort is

suboptimal before firm learning but optimal thereafter (direct effect). On the other

hand, faster firm learning decreases their surplus, because the (suboptimally high) effort

before firm learning increases even further in response to greater imitation incentives of

low-ability workers (indirect effect). The net effect is indeterminate a priori. In pooling

equilibrium, faster firm learning unambiguously increases the average expected match

surplus, decreasing the (common) unemployment rate. Existence, just as efficiency, of a

separating or pooling equilibrium may depend on the rate of firm learning.

In numerical simulations, I find that a separating equilibrium exists that corresponds

to equilibrium under perfect information. In this case, there is no adverse selection, and

firm learning has no effect on labor market efficiency.

Related literature

There is a growing literature on the problem of worker-firm matching in the presence

of costly search and asymmetric information. For example, Lockwood (1991) suggests

that adverse selection increases inefficiency in a frictional labor market where firms test

workers prior to hiring and unemployment is used as a signal of productivity. More

recently, Inderst (2005) analyzes labor market equilibria in a model with random search

and adverse selection where new participants enter the market. He derives conditions for

the existence of a unique separating equilibrium. Guerrieri, Shimer and Wright (2010)

analyze equilibrium existence and efficiency in labor markets with directed search and

adverse selection. They show that there always exists a separating equilibrium, which

is not generally efficient. In comparison, I consider equilibria in labor markets with

random search and adverse selection where firms are allowed to learn about workers’

types. I show that firm learning may affect equilibrium existence and efficiency, and it

does not generally increase the latter. In numerical simulations, I find that a separating

equilibrium exists that is efficient independently of the rate of firm learning. Camera
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and Delacroix (2004) and Michelacci and Suarez (2006) consider firms’ choice of the

wage setting mechanism (wage posting versus wage bargaining) in the presence of search

frictions and adverse selection. All of the above consider stationary environments without

firm learning or wage dynamics.

Another strand of the literature focuses on wage dynamics in search models with asym-

metric information. For example, Carrillo-Tudela and Kaas (2015) determine worker

turnover and optimal wage contracts in a model with wage posting and firm learning

about workers’ types. Moen and Rosen (2006) analyze optimal wage contracts in a

random search model where firms do not observe workers’ effort nor their type. Sim-

ilarly, Moen and Rosen (2011) and Tsuyuhara (2016) analyze optimal wage contracts

with unobservable worker effort (and type) and directed search. These papers focus on

the retention and incentive effects of wages in the presence of adverse selection or moral

hazard. They do not, however, address the implications of firm learning for labor market

efficiency.

The literature on firm learning typically focuses on implications for worker turnover.

Examples for theoretical contributions include Jovanovic (1979), Moscarini (2005) and

Papageorgiou (2018), where workers and firms jointly learn about match quality over

time. Empirical contributions such as Altonji and Pierret (2001), Lange (2007) and

Kahn (2013) provide evidence for the degree of asymmetric information and the speed

of firm learning. My paper implements firm learning in a tractable model of random job

search and wage bargaining with asymmetric information about both worker ability and

worker effort. In this setting, I analyze the effect of firm learning on job search, effort on

the job, match surplus, (relative) wages and unemployment rates, and aggregate labor

market efficiency.

The rest of the paper is organized as follows. Section 2 describes the framework of the

model. Sections 3-4 characterize equilibria in case of perfect and imperfect information,

respectively. Section 5 discusses the role of firm learning for equilibrium existence and
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efficiency. Section 6 simulates the model numerically. Section 7 concludes.

2 Model framework

2.1 Workers and firms

Consider a continuous time economy with a continuum of workers and firms. Workers

are either employed, or unemployed and searching for a job. They are one of two types,

high-ability or low-ability, with ability pi, i ∈ {H,L}, pH > pL > 0, and cost of effort e,

c(e), with c(0) = 0, ∂c(e)/∂e > 0, and ∂2c(e)/∂e2 > 0.5 The measure of workers of both

types per period is assumed constant and equal to αH = α and αL = 1− α, 0 < α < 1,

respectively. Employed workers are displaced into unemployment according to a Poisson

process with parameter δ > 0 due to job destruction shocks. When unemployed, workers

receive a constant payoff of b per period. Workers search for jobs only when unemployed

– there is no on-the-job search.

Firms each consist of one job, which is either filled or vacant. They must pay a cost k for

keeping an open vacancy. The output of a job that is filled with a worker of type i who

exerts effort e is equal to yi = pie. That is, for any given level of effort e > 0, output of

a high-ability worker is greater than output of a low-ability worker, pHe > pLe.

Both firms and workers are risk-neutral. The objective of workers and firms is to maxi-

mize their present discounted value of expected income. Future values are discounted at

rate r.

Workers are perfectly informed about their type, but firms do not know a worker’s ability

at the hiring stage and only learn about it over time at exogenous rate ψ, 0 < ψ < 1 per

period.6

5The single-crossing condition, which ensures that the indifference curves of high- and low-ability
workers in wage-effort space intersect only once, is fulfilled even though cost functions are homogeneous
(see below).

6The implicit assumption here is that it is too costly for firms to observe the effort (and implied
ability) of a worker immediately.
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2.2 The matching process

There is an aggregate matching function m(v, u) that gives the number of matches

between searching firms and workers (divided by the fixed total labor force equal to

1) each period. The matching function is assumed to be non-negative, increasing and

concave in both arguments, v, the number of vacancies, and u, the number of unemployed

workers, and homogeneous of degree one. There are no matches, if there are no vacancies

or unemployed workers, m(0, u) = m(v, 0) = 0. Vacancies are filled at rate q( vu) =

m(1, uv ) = m(v, u)/v, with ∂[q( vu)]/∂[ vu ] < 0. Unemployed workers find jobs at rate

f( vu) = v
uq(

v
u) = m(v, u)/u, with ∂[ vuq(

v
u)]/∂[ vu ] > 0. The ratio v

u is a measure of labor

market tightness and is denoted in the following with θ.

Firms offer jobs either for high-ability workers or for low-ability workers, so I distinguish

between vacancy rates for high- and low-ability workers, vi, i ∈ {H,L}, as well as

unemployment rates for high- and low-ability workers, ui, i ∈ {H,L}. Since firms cannot

distinguish between different types of workers at the time of hiring, the arrival rate for

firms offering a job of type i is given by q(θi) = q( vi
uii+uij

), i 6= j, where uii and uij are

the numbers of workers of type i and j, respectively, who are searching for job i7 (to be

determined in equilibrium).

2.3 Wage contracts

A wage contract in a job of type i, i ∈ {H,L}, is a pair (wi, yi), where wi is the wage and

yi is output. Wage contracts are negotiated between workers and firms at the time of

hiring (for the period before firm learning, which we call the probation period), and they

are re-negotiated after the firm has learned the worker’s type. Wages are determined

by the generalized Nash bargaining solution, which gives a fraction β of the match’s

expected joint surplus to the worker, where β is an exogenous measure of relative worker

7Here, in contrast to standard matching models with homogeneous jobs, workers search for jobs either
of type i or type j.
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bargaining power. The expected match surplus depends on expected output and, in

turn, on worker effort, as described below.

2.4 Timing of events

At the beginning, each worker finds out about his type i, i ∈ {H,L}. Then, firms with

unfilled jobs decide whether or not to post a vacancy (of type i or type j) to recruit un-

employed workers, depending on the expected values of vacancies.8 Unemployed workers

of type i decide whether to search for a job of type i or j 6= i, or remain unemployed,

depending on the expected gain from employment. Employed workers lose their jobs

with exogenous probability δ, whereupon the worker becomes unemployed and the job

becomes vacant. Among workers and firms in established matches, the timing of events

is as follows:

1. Firms and employed workers bargain over the wage contract ωi ≡ (wi, yi), as

described in section 2.3 above.

2. Each employed worker of type i chooses effort, ei, which is unobservable to the

firm.

3. The firm and worker produce observable output yi(ei), generating expected match

surplus Si(ei, e
′
i), where ei (e′i) is worker effort before (after) firm learning. The

worker is paid the corresponding wage, wi(ei, e
′
i), and firms receive corresponding

profits, πi(ei, e
′
i) = yi(ei)− wi(ei, e′i).

4. Firms learn about their worker’s type with exogenous probability ψ, whereupon

firms and employed workers bargain over the new wage contract ω′i ≡ (w′i, y
′
i) for

the next period onward.

8Due to free entry of firms, the expected values of vacancies of different types of jobs are the same
and equal to zero (see below). Therefore, firms are indifferent between posting a vacancy of type i or
type j in equilibrium.
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5. Each employed worker of type i chooses a level of effort, e′i. Outputs, expected

match surplus, wages, and profits are given by y′i(e
′
i), S

′
i(ei, e

′
i), w

′
i(ei, e

′
i), and

π′i(ei, e
′
i) = y′i(e

′
i) − w′i(ei, e

′
i), where ei (e′i) is worker effort before (after) firm

learning.

2.5 Bellman equations

Consider a firm with a job of type i (producing output yi) and a worker with ability of

type i, i ∈ {H,L}.

The firm’s expected value of a filled job is Ji(πi(ei, e
′
i)). After the firm learns the worker’s

type and the wage is renegotiated, the firm receives a continuation value of J ′i(πi(ei, e
′
i)).

The expected value of a vacant job is Vi. These values are given implicitly by the

following Bellman equations:

rJi(πi(ei, e
′
i)) = πi(ei, e

′
i) + δ[Vi − Ji(πi(ei, e′i))] + ψ[J ′i(πi(ei, e

′
i))− Ji(πi(ei, e′i))],(1)

rJ ′i(πi(ei, e
′
i)) = πi(ei, e

′
i) + δ[Vi − J ′i(πi(ei, e′i))], (2)

rVi = −k + q(θi)[Ji(πi(ei, e
′
i))− Vi]. (3)

Equation (1) shows that the expected value for a firm with a filled job i includes the firm

profit, πi(ei, e
′
i) = yi(ei)−wi(ei, e′i), plus the expected loss, if the match is destructed and

the job becomes vacant, which happens at rate δ, plus the expected change in the job’s

value after the firm has learned the worker’s type and his wage has been renegotiated to

w′i(ei, e
′
i), which happens at rate ψ.910 Equation (2) shows that the expected continuation

value of a job of type i, after the firm has learned the worker’s type and the wage has been

renegotiated to w′i(ei, e
′
i), equals the profit, πi(ei, e

′
i) = yi(e

′
i)−w′i(ei, e′i), plus the loss in

9Workers never quit, so the only reason for the termination of a match is the exogenous separation
process δ.

10Workers lose their jobs with strictly positive probability, so their wage after firm learning, w′i(ei, e
′
i),

is related to effort both before and after firm learning, ei and e′i, via the value of unemployment (see
below).
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case of job destruction. Equation (3) shows that the expected value of a vacant job of

type i includes the cost of posting a vacancy (e.g., recruiting costs), k, plus the expected

gain of filling the job (with a worker of type i or j), which happens with probability

q(θi).

The worker obtains an expected value of Wii(wi(ei, e
′
i)), if employed in a job of type i,

and he obtains an expected value of Wij(wj(ej , e
′
i)), if employed in a job of type j, i 6= j.

In the former case, he chooses effort ei, and in the latter case he deviates to effort
pj
pi
ej , so

that the firm takes him to be a type-j worker, observing output yj(ej) = pjej = pi(
pj
pi
ej),

and pays him the wage wj(ej , e
′
i).

11 After the firm learns the worker’s type, the worker

exerts effort e′i and receives a continuation value of W ′i (w
′
i(ei, e

′
i)). The worker receives

an expected value of Ui, if unemployed. The corresponding Bellman equations are as

follows:

rWii(wi(ei, e
′
i)) = wi(ei, e

′
i)− ci(ei) + δ[Ui −Wii(wi(ei, e

′
i))] + ψ[W ′i (w

′
i(ei, e

′
i))−Wii(wi(ei, e

′
i))]

(4)

rWij(wj(ej , e
′
i)) = wj(ej , e

′
i)− ci(

pj
pi
ej) + δ[Ui −Wij(wj(ej , e

′
i))] + ψ[W ′i (w

′
i(ei, e

′
i))−Wij(wj(ej , e

′
i))]

(5)

rW ′i (w
′
i(ei, e

′
i)) = w′i(ei, e

′
i)− ci(e′i) + δ[Ui −W ′i (w′i(ei, e′i))] (6)

rUi = b+ max [θiq(θi)(Wii(wi(ei, e
′
i))− Ui), θjq(θj)(Wij(wj(ej , e

′
i))− Ui)]. (7)

Equation (4) shows that the expected value of employment of a worker of type i in a job

of type i includes the wage wi(ei, e
′
i) minus the cost of effort ci(ei) plus the expected loss

of a separation to unemployment, which happens at rate δ, plus the expected gain after

the firm has learned the worker’s type and his wage has been renegotiated to w′i(ei, e
′
i),

11The difference in efforts that workers of different abilities are required to undertake in order to earn
a given wage ensures that the marginal rate of substitution between effort and the wage (at any given
effort and wage) is greater for L- than for H-workers. Therefore, the single-crossing condition is fulfilled,
even though effort cost functions are the same.
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which happens at rate ψ. The expected value of a worker of type i being employed in a

job of type j includes the wage wj(ej , e
′
i) minus the cost of effort ci(

pj
pi
ej) instead, while

his expected value after firm learning includes the renegotiated wage w′i(ei, e
′
i) minus the

cost ci(e
′
i), according to equations (5) and (6), respectively. Equation (7) shows that the

expected value of unemployment for a worker of type i includes unemployment income b

plus the option value of searching. The latter consists of the possibility of meeting a firm

with a job i at rate θiq(θi), or the possibility of meeting a firm offering a job j at rate

θjq(θj), times the expected increase in value associated with the offers, respectively.12

The arrival rates for workers of type i depend not only on their own search behavior and

that of firms, but also on the search behavior of workers of type j 6= i. In particular,

depending on whether a worker i’s incentive constraint is fulfilled or not (see below), we

distinguish between two possibilities: first, workers of type i search for jobs of type i 6= j

(separating equilibrium); second, both workers of type i and workers of type j search for

jobs of the same type (pooling equilibrium).13

The incentive constraint for a worker of type i requires that the option value of searching

for a job of type i is at least as large as that of searching for a job of type j, OV SSii(ei, e
′
i) ≥

OV SSij(ej , e
′
i), that is:

θiq(θi)(Wii(wi(ei, e
′
i))− Ui) ≥ θjq(θj)(Wij(wj(ej , e

′
i))− Ui). (8)

It describes the main trade-off faced by a worker of type i when searching for a job. In

a job of type j, worker i earns the potentially higher wage wj with potentially greater

probability θjq(θj) but also has to exert a potentially greater level of effort compared

12In principle, offers may also be rejected, but we are interested in situations where W (w) > U , and
J(y − w) > V , so that there is something to bargain over.

13The third theoretical possibility, that workers of type i search for jobs of type j 6= i, is excluded
by the single-crossing condition, which implies that, if the incentive constraint is not fulfilled for the
high-ability (low-ability) type, then it is fulfilled for the low-ability (high-ability) type. In other words,
if it does not (does) pay off for an H-worker (L-worker) to provide extra effort sufficient to earn wage
wH instead of wL, then it pays off for an L-worker (H-worker) even less (more).
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to a job of type i. Worker i will search for a job of type i and self-select into the right

contract when the expected gain from searching for a job j (instead of job i) does not

exceed the expected extra cost of effort. He will mimick the other type j, choosing effort

pj
pi
ej to earn wage wj(ej , e

′
i) with probability θjq(θj), otherwise.

3 Perfect information equilibrium

In the following, I determine the equilibrium contracts between workers and firms in the

case of perfect information, where both the worker and the firm know the worker’s type.

This case serves as a benchmark for the case of imperfect information, where firms do

not know a worker’s true type at the time of hiring and only learn about it gradually

over time (to be discussed in the next section).

3.1 Workers and firms

With perfect information, both the worker and the firm know the worker’s type. In this

case, we have ψ = 0, Ji(πi(ei, e
′
i)) = J ′i(πi(ei, e

′
i)) ≡ J∗i (πi(e

∗
i )), Vi ≡ V ∗i , Wii(wi(ei, e

′
i)) =

W ′i (w
′
i(ei, e

′
i)) ≡ W ∗i (w∗i (e

∗
i )), Ui ≡ U∗i , and θi ≡ θ∗i .

14 The Bellman equations for firms

and workers are given by:

rJ∗i (πi(e
∗
i )) = πi(e

∗
i ) + δ[V ∗i − J∗i (πi(e

∗
i ))], (9)

rV ∗i = −k + q(θ∗i )[J
∗
i (πi(e

∗
i ))− V ∗i ], (10)

rW ∗i (w∗i (e
∗
i )) = w∗i (e

∗
i )− ci(e∗i ) + δ[U∗i −W ∗i (w∗i (e

∗
i ))] (11)

rU∗i = b+ θ∗i q(θ
∗
i )(W

∗
i (w∗i (e

∗
i ))− U∗i ), (12)

14Wij(wj(ej , e
′
i)) is not relevant in case of perfect information, since workers of type i cannot pretend

to be a different type.
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where θ∗i =
v∗i
u∗i

, since only workers of type i search for jobs of type i (u∗ii = u∗i and

u∗ij = 0).

3.2 Wage bargaining

Job matches produce economic rents (due to search frictions), which are shared between

firms and workers according to the generalized Nash bargaining solution:15

w∗i (e
∗
i ) = arg max [(W ∗i (w∗i (e

∗
i ))− U∗i )β(J∗i (πi(e

∗
i ))− V ∗i )1−β]. (13)

This results in equilibrium wages1617

w∗i (e
∗
i ) = yi(e

∗
i )− (r + δ)(1− β)S∗i , (14)

where

S∗i =
yi(e

∗
i )− c(e∗i )− b

r + δ + θ∗i q(θ
∗
i )β

(15)

and

q(θ∗i )(1− β)S∗i = k. (16)

Equations (15) and (16) determine the equilibrium values S∗i and θ∗i .
18 Combining the

two equations, the latter can be expressed implicitly by

r + δ + θ∗i q(θ
∗
i )β

(1− β)q(θ∗i )
=
yi(e

∗
i )− c(e∗i )− b

k
. (17)

Wage contracts in jobs of type i, i ∈ {H,L}, are given by (w∗i (e
∗
i ), yi(e

∗
i )), according to

equation (14).

15It is assumed that the constraints W ∗i (w∗i (e∗i ))− U∗i ≥ 0 and J∗i (πi(e
∗
i ))− V ∗i ≥ 0 are fulfilled.

16See Appendix A for details.
17I henceforth write S∗i and θ∗i in short-hand notation for S∗i (e∗i ) and θ∗i (e∗i ) to improve readability.
18A unique equilibrium exists, given standard regularity conditions ∂[q(θ∗)]

∂θ∗ < 0, ∂[θ
∗q(θ∗)]
∂θ∗ > 0, q(0)→

∞, q(∞)→ 0.
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3.3 Steady state unemployment

Steady state turnover implies that the flow rate into employment equals the flow rate

out of employment:

θ∗Hq(θ
∗
H)u∗H = δ (α− u∗H) and θ∗Lq(θ

∗
L)u∗L = δ (1− α− u∗L) . (18)

The steady-state rates of unemployment for both types of workers in case of perfect

information are, therefore, given by

u∗H =
δα

δ + θ∗Hq(θ
∗
H)

and u∗L =
δ(1− α)

δ + θ∗Lq(θ
∗
L)
, (19)

which decrease in θ∗H and θ∗L (determined in equation (17)), respectively.

Figure 1 illustrates the equilibrium characterized by equations (15) and (16), depicted

in curves SS and ZZ, respectively. An increase in output net of the cost of effort,

yi(e
∗
i )− c(e∗i ), increases the value of the match, according to (15), shifting up curve SS

in the graph. In consequence, the surplus, S∗i , increases, and the rate at which workers

(firms) contact firms (workers), θ∗i q(θ
∗
i ) (q(θ∗i )), increases (decreases). The net wage,

w∗i (e
∗
i ) − c(e∗i ), increases19 and the unemployment rate, u∗i , decreases according to (14)

and (19), respectively. And vice versa.

3.4 Effort

Since worker types are observable, wage contracts can be made contingent on a worker’s

effort, which can be directly inferred from observable output. Furthermore, since the

wage bargaining scheme splits any joint surplus between the worker and the firm, the

effort that is optimal for both parties is the one that maximizes the joint surplus.20

19To see this, subtract c(e∗i ) from both sides in (14) and note that 1− (r+δ)(1−β)
r+δ+θ∗i q(θ

∗
i )β

> 0 and yi(e
∗
i )−

c(e∗i ) ≥ b.
20This effort serves to maximize both the worker’s and the firm’s expected values (see Appendix A).
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Therefore, under perfect information, wage contracts (w∗i (e
∗
i ), yi(e

∗
i )) specify outputs

yi = pie
∗
i , where efforts e∗i are chosen to maximize the joint surplus (see equations (15)-

(16)) as a function of (variable) effort e:

e∗i = arg max
e

yi(e)− c(e)− b
r + δ + θiq(θi)β

. (20)

The first-best efforts, e∗i , are, therefore, implicitly given by

pi =
∂c(e)

∂e
. (21)

Proposition 1 Perfect information. In the case of perfect information, equilibrium

consists of the value functions J∗i , V
∗
i ,W

∗
i , U

∗
i , i ∈ {H,L}, that satisfy the Bellman

equations (9)-(12), the free-entry condition V ∗i = 0, efforts e∗i that satisfy the conditions

for optimal effort (21), wages w∗i (e
∗
i ) that satisfy the bargaining solution (14), and the

unemployment and vacancy rates u∗i and v∗i that satisfy the steady-state conditions (19).

Corollary 1. With perfect information, the surplus and, in turn, the net wage and the

job finding rate of high-ability workers is greater than that of low-ability workers.

See (15)-(16) together with (21) and the fact that pH > pL.

4 Imperfect information equilibria

In the case of imperfect information, firms do not know a worker’s true type at the

time of hiring. They can, however, screen workers during wage negotiations via the

choice between different wage contracts, along the lines of the standard screening model

by Rothschild and Stiglitz (1976).21 In the following, I solve for the (pure strategy)

subgame perfect Nash equilibria in this case, which are defined as follows.

21In the present context, workers choose the optimal contract together with firms, whereas, in the
standard model, they choose among the contracts offered by firms.
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Definition. A subgame perfect Nash equilibrium (SPNE) is a set of expected value

functions

Ji, J
′
i , Vi,Wii,Wij ,W

′
i , Ui, i, j 6= i ∈ {H,L} for firms and workers, effort levels ei, e

′
i,

wages wi, w
′
i, and unemployment and vacancy rates ui, uj , vi, vj , u

′
i, u
′
j , v
′
i, v
′
j such that

- wage contracts satisfy the generalized Nash bargaining rule with relative worker

bargaining power β,

- workers’ search and efforts on the job are optimal given wage contracts and costs of

effort,

- firms’ search and profits are optimal given wage contracts and the free-entry condi-

tions Vi = 0, i ∈ {H,L}, and

- the unemployment rates ui, i ∈ {H,L}, are in steady state.

I consider pure strategy equilibria only, distinguishing between

(a) separating equilibrium, where high- and low-ability workers produce different levels

of output and earn different wages with different probabilities (as firms can infer a

worker’s type), and

(b) pooling equilibrium, where high- and low-ability workers produce the same level

of output and earn the same wage with the same probability.
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4.1 Separating equilibrium

In separating equilibrium, the expected value functions of firms and workers are given

by:

rJSi (πi(e
S
i , e
′S
i )) = πi(e

S
i , e
′S
i ) + δ[V S

i − JSi (πi(e
S
i , e
′S
i )) + ψ[J ′Si (πi(e

S
i , e
′S
i ))− JSi (πi(e

S
i , e
′S
i ))],

(22)

rJ ′Si (πi(e
S
i , e
′S
i )) = πi(e

S
i , e
′S
i ) + δ[V S

i − J ′Si (πi(e
S
i , e
′S
i ))], (23)

rV S
i = −k + q(θSi )[JSi (πi(e

S
i , e
′S
i ))− V S

i ], (24)

rWS
ii (w

S
i (eSi , e

′S
i )) = wSi (eSi , e

′S
i )− c(eSi ) + δ[USi −WS

ii (w
S
i (eSi , e

′S
i ))] + ψ

[
W ′Si (w′Si (eSi , e

′S
i ))−

WS
ii (w

S
i (eSi , e

′S
i ))
]
, (25)

rW ′Si (w′Si (eSi , e
′S
i )) = w′Si (eSi , e

′S
i )− c(e′Si ) + δ[USi −W ′Si (w′Si (eSi , e

′S
i )], (26)

rUSi = b+ θSi q(θ
S
i )[WS

ii (w
S
i (eSi , e

′S
i ))− USi ], (27)

where θSi =
vSi
uSi

, since only workers of type i search for jobs of type i (uSii = uSi and

uSij = 0).22

Note that, even though firms can distinguish between worker types from the start

in a separating equilibrium, the values of filled jobs before and after firm learning,

JSi (πi(e
S
i , e
′S
i )) and J ′Si (πi(e

S
i , e
′S
i )), are not necessarily the same. This is because the out-

put that wage contracts must specify to separate workers of a given type from workers

of the other type before firm learning may be different from output after firm learn-

ing.23 For the same reason, the values of employment before and after firm learning,

WS
ii (w

S
i (eSi , e

′S
i )) and W ′Si (w′Si (eSi , e

′S
i )), are not necessarily the same.

22I use θSi , and SSi , S′Si (see below), in short-hand notation for θSi (eSi , e
′S
i ), SSi (eSi , e

′S
i ), S′Si (eSi , e

′S
i ).

23In consequence, workers’ wages and firms’ profits may not be the same before and after firm learning.
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Wage bargaining results in (expected) wages before and after firm learning given by24

wSi (eSi , e
′S
i ) = yi(e

S
i ) + ψ(1− β)S′Si − (r + δ + ψ)(1− β)SSi , (28)

w′Si (eSi , e
′S
i ) = yi(e

′S
i )− (r + δ)(1− β)S′Si , (29)

where the (expected) surplus before and after firm learning is given by25

SSi =
(r + δ)(yi(e

S
i )− c(eSi )) + ψ(yi(e

′S
i )− c(e′Si ))− (r + δ + ψ)b

(r + δ + ψ)(r + δ + θSi q(θ
S
i )β)

, (30)

S′Si =
yi(e

′S
i )− c(e′Si )− (b+ θSi q(θ

S
i )βSSi )

r + δ
, (31)

and, combining (30) with the free-entry condition q(θSi )(1 − β)SSi = k, θSi is given

implicitly by

(r + δ + ψ)(r + δ + θSi q(θ
S
i )β)

(1− β)q(θSi )
=

(r + δ)(yi(e
S
i )− c(eSi )) + ψ(yi(e

′S
i )− c(e′Si ))− (r + δ + ψ)b

k
.

(32)

Finally, the steady-state rate of unemployment for the two types of workers is given by

uSH =
δα

δ + θSHq(θ
S
H)

and uSL =
δ(1− α)

δ + θSLq(θ
S
L)
. (33)

Equilibrium is characterized by equations (28)-(33) for any given levels of effort before

and after firm learning, eSi and e′Si .

Lemma 1. In separating equilibrium, taking effort levels eSi and e′Si , i ∈ {H,L}, as

given, an increase in the firm learning rate, ψ, increases expected values of workers and

firms, if and only if output net of the cost of effort is greater after firm learning than

before: yi(e
′S
i )− c(e′Si ) > yi(e

S
i )− c(eSi ). Then, the surplus, SSi , and the job finding rate

24Results are derived analogously to the case of perfect information, see Appendix B.
25Note that, for ψ = 0, the expressions for SSi and θSi collapse to the expressions of the standard model

(compare (15) and (17)).
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of workers, θSi q(θ
S
i ), increase, while the unemployment rate, uSi , decreases. And vice

versa. If yi(e
′S
i ) − c(e′Si ) = yi(e

S
i ) − c(eSi ), then the firm learning rate has no effect on

labor market outcomes.

Expected values of workers and firms, WS
ii (w

S
i (eSi , e

′S
i )), USi and JSi (πi(e

S
i , e
′S
i )), increase

in the surplus before firm learning, SSi (see Appendix B). For given effort levels eSi and

e′Si , the surplus, SSi , in turn, increases in the firm learning rate, ψ, if and only if output

net of the cost of effort is greater after firm learning than before. And vice versa.

Let us next consider equilibrium efforts before and after firm learning, eSi and e′Si . After

firm learning, worker types are observable. Therefore, wage contracts can be conditioned

on effort, which, similarly to the case of perfect information, is chosen to maximize the

(post-learning) surplus, given by equation (31),

e′Si = arg max
e

yi(e)− c(e)− (b+ θSi q(θ
S
i )βSSi )

r + δ
, (34)

where SSi is given by (30) and θSi is given by (32), with effort before learning, eSi ,

considered as given.

As a result, optimal effort after firm learning, e′Si , is equal to the first-best and given

implicitly by

pi =
∂c(e)

∂e
. (35)

Lemma 2. In separating equilibrium, efforts after firm learning are equal to first-best

levels of effort : e′SH = e∗H , e′SL = e∗L.

The first-order condition for the maximization problem (34) is pi− ∂c
∂e − θ

S
i q(θ

S
i )β

∂SSi
∂e −

βSSi
∂[θSi q(θ

S
i )]

∂e = 0. Note that
∂SSi
∂e = 0 and

∂[θSi q(θ
S
i )]

∂e = 0, if and only if pi = ∂c
∂e . The

second-order condition is fulfilled as long as ∂2c(e)
∂e2

is sufficiently large, which is assumed.

From Lemmas 1-2, it follows that an increase in the firm learning rate is beneficial

for both workers and firms, if (any given) effort before firm learning deviates from the
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first-best: eSi 6= e∗i .

Before firm learning, firms cannot distinguish between worker types. Since the job arrival

rate and starting wage are greater in jobs of type H than in jobs of type L at any given

effort e, low-ability workers have an incentive to imitate high-ability workers, unless the

required cost of effort is sufficiently large. Assume that, at eH = e∗H , the incentive

constraint (8) for low-ability workers is binding. Then, following standard screening

models26, wage contracts are (wSi (eSi , e
′S
i ), yi(e

S
i )) with outputs yi = pie

S
i and efforts

eSL = e∗L, eSH , where effort of high-ability workers before firm learning, eSH , is defined

to solve the incentive constraint for low-ability workers with equality, given eSL = e∗L.27

That is, the option value of search for low-ability workers when searching for high-

ability jobs is equal to their option value of search when searching for low-ability jobs,

OV SSLH = OV SSLL:

θSHq(θ
S
H)(WS

LH(wSH(eH , e
′S
H ))− USL ) = θSLq(θ

S
L)(WS

LL(wSL(eSL, e
′S
L ))− USL ) (36)

or, equivalently,

θSHq(θ
S
H)

r + θSHq(θ
S
H)

(rWS
LH(wSH(eH , e

′S
H ))− b) =

θSLq(θ
S
L)

r + θSLq(θ
S
L)

(rWS
LL(wSL(eSL, e

′S
L ))− b), (37)

where

WS
LH(wS

H(eH , e
′S
H )) =

(r + θSHq(θ
S
H))[(r + δ)(wS

H(eH , e
′S
H )− c(pH

pL
eSH)) + ψ(w′S

L (eSL, e
′S
L )− c(e′SL ))] + bδ(r + δ + ψ)

(r + δ + ψ)r(r + δ + θSHq(θ
S
H))

,

WS
LL(wS

L(eSL, e
′S
L )) =

(r + θSLq(θ
S
L))[(r + δ)(wS

L(eSL, e
′S
L )− c(eSL)) + ψ(w′S

L (eSL, e
′S
L )− c(e′SL ))] + bδ(r + δ + ψ)

(r + δ + ψ)r(r + δ + θSLq(θ
S
L))

,

26Screening as a response to the problem of asymmetric information was first studied by Rothschild
and Stiglitz (1976) and Wilson (1977) in the context of insurance markets.

27Single-crossing ensures that, if one of the two incentive constraints is fulfilled with equality, then the
other constraint is fulfilled strictly (see Appendix C).
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eSL = e′SL = e∗L as given by (21), wSL(eSL, e
′S
L ) = w′SL (eSL, e

′S
L ) = w∗L(e∗L) as given by (14),

and θSL = θ∗L as given by (17).28

That is, eSH is chosen so that a low-ability worker is just indifferent between choosing

effort pH
pL
eH and being paid starting wage wSH(eSH , e

′S
H ) with probability θSHq(θ

S
H), and

choosing his first-best effort e∗L and being paid starting wage w∗L(e∗L) with probability

θ∗Lq(θ
∗
L).

There are at most two solutions to (36)29, and only the maximum solution represents a

potential equilibrium. This is because, among any two solutions eH1 and eH2, eH1 < eH2,

(with corresponding labor market tightness θSH1 and θSH2) the option value of search of

high-ability workers at effort eH2 is greater than at effort eH1 (so at eH1, they have an

incentive to deviate to eH2):

θSH2q(θ
S
H2)(W

S
HH(wSH(eH2, e

′S
H ))− USH) > θSH1q(θ

S
H1)(rW

S
HH(wSH(eH1, e

′S
H ))− USH) (38)

or, equivalently,

θSH2q(θ
S
H2)

r + θSH2q(θ
S
H2)

(rWS
HH(wSH(eH2, e

′S
H ))− b) >

θSH1q(θ
S
H1)

r + θSH1q(θ
S
H1)

(rWS
HH(wSH(eH1, e

′S
H ))− b).

(39)

To see this, note that equation (36) implies that

θSLq(θ
S
L)

r + θSLq(θ
S
L

(rWS
LL(wSL(eSL, e

′S
L ))− b) =

θSH1q(θ
S
H1)

r + θSH1q(θ
S
H1)

(rWS
LH(wSH(eH1, e

′S
L ))− b)

=
θSH2q(θ

S
H2)

r + θSH2q(θ
S
H2)

(rWS
LH(wSH(eH2, e

′S
L ))− b).

Inequality (39) follows from c(pHpL eH2) − c(eH2) > c(pHpL eH1) − c(eH1), θ
S
H2 > θSH1, and

28Note that OV SSLL(e∗L, e
∗
L) = OV S∗L(e∗L).

29There may be one or two solutions, or none. See Figure 4 for numerical results.
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w′SH (eH2, e
′S
H )− c(e′SH ) > w′SH (eH1, e

′S
H )− c(e′SH ) > w′SL (eSL, e

′S
L )− c(e′SL ) (compare Appendix

C).

Lemma 3. In separating equilibrium, low-ability workers choose the first-best effort,

eSL = e∗L, and high-ability workers choose a (sub-)optimal level of effort greater than or

equal to the first best, eSH ≥ e∗H , before firm learning.

High-ability workers choose the first-best effort, eSH = e∗H , if the incentive constraint

for low-ability workers (36) is slack at eH = e∗H . Otherwise, their effort is greater than

the first best, eSH > e∗H . The greater the benefit for low-ability workers when imitating

high-ability workers, the greater must be the output (and implied worker effort) specified

in wage contracts for H-jobs to separate high-ability from low-ability workers.

Lemma 4. In separating equilibrium, faster firm learning does not affect the effort of

low-ability workers; it increases the effort of high-ability workers during the probation

period, if eSH > e∗H .

If eSH > e∗H , faster firm learning increases the option value of searching for high-ability

jobs for low-ability workers, OV SSLH (see the left-hand side of equation (37)), while

leaving their option value of searching for low-ability jobs, OV SSLL = OV S∗L, unchanged.

There are three different channels. First, the relative arrival rate of high-ability jobs

increases, since θSHq(θ
S
H) increases in ψ, while θSLq(θ

S
L) = θ∗Lq(θ

∗
L) remains unchanged

(see Lemmas 1-2). Second, relative starting wages in high-ability jobs increase, since

wSH increases in ψ30, while wSL = w∗L is constant. Third, an increase in ψ shortens the

probation period, and the net wage of low-ability workers increases after probation.31 In

response to an increase in the benefit of imitation for low-ability workers, the effort of

high-ability workers, eSH > e∗H , has to increase, which decreases their match surplus.

Figure 2 illustrates an example of a separating equilibrium with an effort of high-ability

30This follows from ∂SSH/∂ψ > 0 and ∂(θSHq(θ
S
H))/∂ψ > 0. The simple proof is available upon request.

31To see this, note that θSH > θSL (see Appendix C). Therefore, for the equality condition (36) to be
fulfilled, eH must such be that wSH(eH , e

′S
H )− c( pH

pL
eSH) < wSL(eSL, e

′S
L )− c(eSL) = w′SL (eSL, e

′S
L )− c(e′SL ).
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workers greater than the first-best: eSH = eH2 > e∗H . It depicts the option values of

search of high- and low-ability workers, OV SSHH , OV SSLL and OV SSLH , as functions

of worker effort before firm learning, e. Note that the functions OV SSii , i ∈ {H,L},

are concave and increasing (decreasing) in e, if pi >
∂c(e)
∂e (pi <

∂c(e)
∂e ). They attain

their maximum at first-best levels of effort, e∗i , where OV SSii = OV S∗i , i ∈ {H,L}. In

separating equilibrium, eSL = e∗L is the effort of low-ability workers, and eSH is the effort

of high-ability workers. At eSH , the option value of search of low-ability workers when

searching for H-jobs is equal to their option value when searching for L-jobs. Among any

two solutions to (36), eH1 and eH2, where eH2 > eH1 and eH2 > e∗H , only the maximum

solution, eH2, constitutes an equilibrium (see above).

Proposition 2 Imperfect information: Separating Equilibrium.

In separating equilibrium, low-ability and high-ability workers are unemployed with proba-

bilities uSL = u∗L and uSH , given by (33) and (19), respectively. When employed, their wage

contracts are (wSi (eSi ), yi(e
S
i )) before firm learning and (w′Si (e′Si ), yi(e

′S
i )), i ∈ {H,L}, af-

ter firm learning, respectively, where

wSH(eSH , e
′S
H ), w′SH (eSH , e

′S
H ), and wSL(eSL, e

′S
L ) = w′SL (eSL, e

′S
L ) = w∗i (e

∗
i ) are given by (28) and

(14),

eSH = max
[
e∗H , eH : θSHq(θ

S
H)(WS

LH(wSH(eH , e
∗
H))− USL ) = θSLq(θ

S
L)(WS

LL(wSL(eSL, e
∗
L))− USL )

]
,

eSL = e′SL = e∗L and e′SH = e∗H as given by (21),

θSi is given by (32),

and (eSi , e
′S
i , w

S
i , w

′S
i , θ

S
i , u

S
i ) satisfy the value functions JSi , J

′S
i , V

S
i ,W

S
ii ,W

′S
i , U

S
i , i ∈

{H,L}, given in (22)-(27), with V S
i = 0.

Corollary 2. In separating equilibrium, an increase in the firm learning rate, ψ, does

not affect the expected match surplus of low-ability workers. It does not affect the expected

match surplus of high-ability workers and, in turn, has no effect on aggregate efficiency,

if eSH = e∗H . If eSH > e∗H , firm learning increases the effort of high-ability workers, which
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decreases their expected match surplus, and may, in turn, decrease aggregate efficiency

in the labor market.

Follows from Lemmas 1-4. The net effect of firm learning will be discussed in more detail

in sections 5-6.

4.2 Pooling equilibrium

In pooling equilibrium, the expected value functions of firms and workers are given as

follows:

rJPi (πP (eP)) = πP (eP) + δ[V P
i − JPi (πP (eP))] + ψ[J ′Pi (π′Pi (eP))− JPi (πP (eP))],(40)

rJ ′Pi (π′Pi (eP)) = π′Pi (eP) + δ[V P
i − JP

′
i (π′Pi (eP))], (41)

rV P
i = −k + q(θPi )[JPi (πP (eP))− V P

i ], (42)

rWP
i (wP (eP)) = wP (eP)− c(ePi ) + δ[UPi −WP

i (wP (eP))] + ψ[W ′Pi (w′Pi (eP))−WP
i (wP (eP))],

(43)

rW ′Pi (w′Pi (eP)) = w′Pi (eP)− c(e′Pi ) + δ[UPi −W ′Pi (w′Pi (eP))], (44)

rUPi = b+ θPi q(θ
P
i )(WP

i (wP (eP))− UPi ), (45)

where eP = (ePH , e
P
L , e

′P
H , e

′P
L ), and profits, outputs, and wages during the probation

period are the same for both types of workers:

πP (eP) = yP (ePL )− wP (eP),

yP (ePL ) ≡ yL(ePL ) = yH(ePH) = pLe
P
L = pHe

P
H .

Since both types of workers apply for the same jobs, wages are negotiated based on

the expected surplus, which is a function of the expected values of firms and workers,
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SP = JP (πP (eP))− V P +WP (wP (eP))− UP , where

JP (πP (eP)) = αJPH(πP (eP)) + (1− α)JPL (πP (eP)), (46)

V P = αV P
H + (1− α)V P

L , (47)

WP (wP (eP)) = αWP
H (wP (eP)) + (1− α)WP

L (wP (eP)), (48)

UP = αUPH + (1− α)UPL . (49)

Wage bargaining results in starting wages given by3233

wP (eP) = yP (ePL ) + ψ(1− β)(αS′PH + (1− α)S′PL )− (r + δ + ψ)(1− β)SP , (50)

where

SP =

(r + δ)(yP (ePL )− αc(ePH)− (1− α)c(ePL )) + ψ(α(yH(e′PH )− c(e′PH )) + (1− α)(yL(e′PL )− c(e′PL )))− (r + δ + ψ)b

(r + δ + ψ)(r + δ + θP q(θP )β)
,

(51)

and θP = θPH = θPL is implicitly defined by

(r + δ + ψ)(r + δ + θP q(θP )β)

(1− β)q(θP )
=

1

k

[
(r + δ)(y(ePi )− (αc(ePH) + (1− α)c(ePL ))+ (52)

+ψ(α(yH(e′PH )− c(e′PH )) + (1− α)(yL(e′PL )− c(e′PL )))− (r + δ + ψ)b
]
.

After firm learning, output, profit and wages are given by

yi(e
′P
i ) = pie

′P
i ,

π′Pi (eP) = yi(e
′P
i )− w′Pi (eP),

32See Appendix D for details.
33SP , S′Pi and θP is short-hand notation for SP (eP), S′Pi (eP), and θP (eP).
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w′Pi (eP) = yi(e
′P
i )− (r + δ)(1− β)S′Pi , (53)

where

S′Pi =
yi(e

′P
i )− c(e′Pi )− (b+ θP q(θP )βSP )

r + δ
. (54)

The steady-state rate of unemployment is the same for both types of workers and given

by

uP =
δ

δ + θP q(θP )
. (55)

Equilibrium is characterized by (50)-(55) for given levels of effort before and after firm

learning, ePL , ePH = pL
pH
ePL , e′PL and e′PH .

Lemma 5. In pooling equilibrium, taking effort levels ePi and e′Pi , i ∈ {H,L}, as

given, an increase in the firm learning rate, ψ, increases expected values of workers

and firms, if and only if (expected) output net of the expected cost of effort is greater

after firm learning than before: αyH(e′PH ) + (1 − α)yL(e′PL ) − αc(e′PH ) − (1 − α)c(e′PL ) >

yP (ePL )−αc(ePH)−(1−α)c(ePL ). Then, the expected surplus, SP , and the job finding rate of

workers, θP q(θP ), increase, while the unemployment rate, uP , decreases. And vice versa.

If αyH(e′PH ) + (1−α)yL(e′PL )−αc(e′PH )− (1−α)c(e′PL ) = yP (ePL )−αc(ePH)− (1−α)c(ePL ),

then the firm learning rate has no effect on labor market outcomes.

Expected values of workers and firms, WP (wP (eP)), UP and JP (πP (eP)), increase in the

expected surplus, SP (see Appendix E). For given effort levels ePi and e′Pi , the expected

surplus, SP , in turn, increases in the firm learning rate, ψ, if and only if (expected)

output net of the expected cost of effort is greater after firm learning than before. And

vice versa.

Next, consider equilibrium efforts in pooling equilibrium before and after firm learning,

ePi and e′Pi .

Lemma 6. In pooling equilibrium, efforts after firm learning are equal to first-best levels

of effort: e′PH = e∗H , e′PL = e∗L.

25



After firm learning, effort is equal to the first-best, e′Pi = e∗i , analogously to the case of

separating equilibrium, see section 4.1.34

Lemma 7. In pooling equilibrium, low-ability workers choose a suboptimal level of effort

greater than the first-best, ePL > e∗L, and high-ability workers choose a suboptimal level of

effort smaller than the first-best, ePH < e∗H , before firm learning.

The effort of low-ability workers before firm learning, ePL , is the effort that maximizes

the expected match surplus in pooling equilibrium before firm learning:

ePL = arg max
e

SP = αSPH(e) + (1− α)SPL (e), (56)

where SPH(e) = JPH(πP (eP))− V P
H +WP

H (wP (eP))− UPH , SPL (e) = JPL (πP (eP))− V P
L +

WP
L (wP (eP)) − UPL , e′PH = e∗H , e′PL = e∗L, ePH = pL

pH
e, and ePL = e. The expected surplus

SP is a weighted average of the expected surplus of low- and high-ability workers. It

follows that ePL > e∗L and ePH < e∗H , or, using ePH = pL
pH
ePL , e∗L < ePL < pH

pL
e∗H and

pL
pH
e∗L < ePH < e∗H .

Lemma 8. In pooling equilibrium, faster firm learning does not affect worker effort.

In pooling equilibrium, worker efforts ePi and e′Pi are chosen to maximize the respective

expected surplus, SP and S′Pi , i ∈ {H,L}, both before and after firm learning. They are

independent of the rate of firm learning.

Proposition 3 Imperfect information: Pooling Equilibrium.

In pooling equilbrium, low- and high-ability workers are unemployed with probability uP ,

given by (55). When employed, their wage contract is (wP (eP), yP (ePL )) before firm

learning, and (w′Pi (eP), yi(e
′P
i )), i ∈ {H,L}, after firm learning, where

wP (eP) = yP (ePi )− (r + δ)(1− β)SP is given by (50),

34The corresponding maximization problem is e′Pi = arg max
e

S′Pi (e), where effort before learning, ePi ,

is considered as given.
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w′Pi (eP) is given by (53),

ePL is given by (56),

ePH = pL
pH
ePL ,

e′Pi = e∗i as given by (21),

θP is given by (52),

and (ePi , e
′P
i , w

P , w′Pi , θ
P , uP ) satisfy the value functions JP , J ′Pi , V P ,WP ,W ′Pi , UP , i, j 6=

i ∈ {H,L} given in (46)-(49), with V P = 0.

Corollary 3. In pooling equilibrium, an increase in the firm learning rate increases the

expected match surplus of low- and high-ability workers and, in turn, increases aggregate

efficiency in the labor market.

Follows from Lemmas 5-8.

4.3 Equilibrium existence

Any equilibrium, separating or pooling, exists, if there are no incentives of (high- or

low-ability) workers or firms to deviate. Consider a separating equilibrium with job

finding rates θSi q(θ
S
i ) and wage contracts (wSi , y

S
i ), (w′Si , y

′S
i )35, i ∈ {H,L}. There is no

profitable deviation to a pooling equilibrium with a common job finding rate θP q(θP )

and wage contracts (wP , yP ), (w′Pi , y
′P
i )36, if SSH ≥ SP . Then, a separating equilibrium

exists. However, if SSH < SP (and, therefore, SSL < SP , which follows from SSL < SSH due

to θSL < θSH
37), deviation to a pooling contract increases expected values for both types

of workers as well as firms, and only a pooling equilibrium exists.38

35ySi and y′Si is short-hand notation for yi(e
S
i ) and yi(e

′S
i ).

36yP and y′Pi is short-hand notation for yP (ePL) and yi(e
′P
i ).

37See Appendix C.
38Here, unlike in basic screening games without wage bargaining a la Rothschild and Stiglitz (1976),

a pooling equilibrium can exist. This is because, with wage bargaining, workers always get a fixed share
of the match surplus, and an incentive of high-ability workers to deviate to a separating contract only
exists, if SSH ≥ SP .
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5 The role of firm learning

Let us summarize the above results. In separating equilibrium, an increase in the rate of

firm learning, ψ, does not affect the expected match surplus of low-ability workers, who

choose their first-best effort both before and after firm learning. Similarly, there is no

effect on the expected match surplus of high-ability workers, if eSH = e∗H (see Lemmas

1-4):

∂SSL
∂ψ

= 0,
∂SSH
∂ψ
|eSH=e∗H

= 0.

However, if eSH 6= e∗H , firm learning has two countervailing effects on the match surplus

of high-ability workers before firm learning, SSH . On the one hand, taking eSH as given,

SSH increases in ψ (direct effect, see Lemma 1). On the other hand, eSH increases and,

therefore, SSH decreases in ψ, as imitation incentives of low-ability workers are enhanced

(indirect effect, see Lemma 3). In sum, the match surplus, SSH (and, therefore, aggregate

efficiency in the labor market, SSH + SSL) may increase or decrease, as firms learn faster:

∂SSH
∂ψ
|eSH 6=e∗H =

∂SSH
∂ψ︸ ︷︷ ︸
>0

+
∂SSH
∂eSH︸ ︷︷ ︸
<0

∂eSH
∂ψ︸︷︷︸
>0

≷ 0.

In pooling equilibrium, an increase in firm learning unambiguously increases the expected

match surplus. This is because both low- and high-ability workers exert suboptimal

levels of effort during the probation period but optimal efforts thereafter, and efforts are

independent of the rate of firm learning (see Lemmas 5-8):

∂SP

∂ψ
=
∂SP

∂ψ︸ ︷︷ ︸
>0

+
∂SP

∂ePL

∂ePL
∂ψ︸ ︷︷ ︸

0

> 0.

In addition, firm learning may change whether the expected match surplus of high-ability

workers is greater in separating or in pooling equilibrium, SSH ≷ SP . Then, the existence
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of a separating (pooling) equilibrium depends on the rate of firm learning.

These results indicate that firm learning may have a non-monotonous effect on aggregate

labor market efficiency. The net effect depends on parameter values as well as the

functional forms of the matching function and the cost-of-effort function. In section 6

below, I simulate the effect of firm learning on effort and, in turn, on the match surplus

of low- and high-ability workers, numerically. I find that the effort of high-ability workers

during the probation period is optimal, eSH = e∗H , and, therefore, SSH = S∗H > SP , for

all values of ψ ∈ [0, 1]. In consequence, the match surplus of both high- and low-ability

workers during probation equals the surplus that would obtain, if firms had perfect

information about workers’ ability from the start, and faster firm learning does not

affect labor market efficiency.

6 Quantitative analysis

In this section, I calibrate the model above. I first calculate the option values of search

for high- and low-ability workers under perfect and imperfect information. Then, I

numerically derive the respective effort levels of high- and low-ability workers, and their

corresponding match surplus. This allows me to determine equilibrium existence, and

to compare equilibrium values in a labor market with imperfect information to their

respective first-best values. Next, I perform quantitative comparative statics exercises

by simulating the effects of an increase in the rate of firm learning. Finally, I test the

sensitivity of results to the choice of parameter values.

6.1 Parameter values

In order to calculate the impact of the rate at which firms learn about the productivity

of workers on efficiency, I use parameter values to match U.S. labor market facts (see

Table 1). The model period is chosen to be one year and the discount rate r = 0.02
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is set at the current annual real interest rate in the U.S. The matching function is

assumed to be Cobb-Douglas, m(u, v) = m0u
ξv1−ξ, where m is the number of jobs

formed during one period, m0 is the matching constant, u is the number of unemployed

workers looking for a job and v is the number of vacant jobs; ξ = 0.5 is the matching

elasticity with respect to the number of unemployed workers.39 For the cost of effort, I

use a quadratic functional form, c(e) = e2. The parameter values and their respective

source, as well as the functional forms of the arrival rate for firms (as implied by the

matching function), m0q(θ), and the cost of effort, c(e), are summarized in Table 1.

Given these, I target the current average unemployment rate in the U.S. of 4%. I also

target the unemployment benefit to be 40% of the average wage of employed workers

after firm learning, following Shimer (2005). Lastly, I target an average v-u ratio of 0.72

based on Pissarides (2009). I choose the parameter values for the productivities of high-

and low-ability workers, pH and pL, the unemployment benefit b, the vacancy posting

cost k, and the matching constant m0 that most closely match the three target moments

as well as the condition that the expected match surplus of high- and low-ability workers,

respectively, (and, therefore, their option value of search) is strictly positive for a non-

empty set of effort levels e > 0.40 The firm learning rate 0 < ψ < 1 is set at 0.4 in

the baseline scenario, implying that a firm learns a worker’s true type after 2.5 years on

average. The next section 6.2 derives the corresponding labor market equilibria under

perfect and imperfect information. Changes in the firm learning rate, and their effects

on the existence and efficiency of labor market equilibria, are evaluated in section 6.3.

The relative productivity of high- and low-ability workers as well as the functional form

of the effort cost function are subject to a sensitivity analysis in section 6.4.

39Therefore, the arrival rate is θq(θ) = m0θ
1−ξ = m0θ

0.5 for workers and q(θ) = m0θ
−ξ = m0θ

−0.5 for
firms.

40This results in endogenous variable values close to or equal to their target values: an average unem-
ployment of 4%, an average replacement rate of 0.35, and an average v-u ratio of 0.7.
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6.2 Baseline results

Figure 3 plots the option values of search of high- and low-ability workers under imperfect

information, OV SSHH(e), OV SSLL(e) and OV SSLH(e), as functions of worker effort before

firm learning, e, replicating Figure 2.41 Note that OV SSHH(e) and OV SSLL(e) are concave

functions with maximum values at efforts e∗H and e∗L, respectively, where OV SSHH(e∗H) =

OV S∗H(e∗H) and OV SSLL(e∗L) = OV S∗L(e∗L). It can be seen that e∗H > e∗L, as implied by

the output and cost-of-effort functions. The figure also shows that low-ability workers

benefit from imitating high-ability workers, OV SSLH(e) > OV SSLL(e), only if effort and,

therefore, the cost of imitation, c(pHpL e)−c(e), is sufficiently small. As e increases, the cost

of imitation increases, such that OV SSLH(e) is smaller than OV SSLL(e) for sufficiently

large values of e. The maximum level of effort at which imitation pays off for low-

ability workers – eH as defined in the incentive compatibility constraint (36) – turns out

to be slightly smaller than e∗H . In consequence, the incentive contraint of low-ability

workers is slack at e∗H , and high-ability workers do not have to deviate from their first-

best in order to separate themselves from low-ability workers. Thus, eSH = e∗H and

SSH = S∗H . Since S∗H > SP , it follows that only the separating equilibrium exists. Table

2 summarizes equilibrium values under perfect and imperfect information, showing the

pooling equilibrium values in brackets for comparison.

6.3 Firm learning and the labor market

I now analyse equilibrium responses to changes in the rate of firm learning, ψ. The

blue line in Figure 4 shows the effort of high-ability workers, eH , at which the incentive

constraint for low-ability workers in separating equilibrium (ICL) is binding (see equation

(36)), as a function of ψ. Note that, if ψ is sufficiently small, low-ability workers never

benefit from imitation, so the set of eH that solve (36) is empty. At a threshold value

of ψ of around 0.06, there is exactly one solution for eH equal to about 0.7. For values

41Effort after learning is given and equal to its first-best value, e′Si = e∗i .
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of ψ greater than that, there are two solutions, of which only the maximum solution

constitutes a potential equilibrium (see section 4.1). The figure shows that, for values

of ψ above the threshold value, eH increases in ψ. However, it remains below the first-

best effort e∗H (equal to 1.5), which implies that ICL is slack at e∗H . In consequence,

high-ability workers do not have to increase their effort to a suboptimally high level to

prevent low-ability workers from imitating them. The effort of both high- and low-ability

workers, and their respective match surplus, is equal to the first best independently of

the rate of firm learning: eSi = e∗i and SSi = S∗i , i ∈ {H,L}.

6.4 Sensitivity analysis

The above results may be sensitive to the relative productivity of high- and low-ability

workers, pH/pL, and the functional form of the effort cost function, c(e). An increase

in the relative productivity of workers, pH/pL, increases the gap between the efforts

of high- and low-ability workers in the first best, which increases the difference in the

expected match surplus in high- and low-ability jobs after firm learning and, therefore,

the benefit of imitation for low-ability workers. However, it also increases the cost of

imitation. Assuming an increase in the relative productivity of H- and L-workers from

1.5 to 2, I find that the cost of imitation for low-ability workers increases by more than

its benefit (not shown). In consequence, high-ability workers are still not required to

increase their effort to a suboptimally high level, and efforts of both types of workers are

optimal. Since SSH = S∗H > SP , the separating equilibrium is the only equilibrium, and

the labor market is efficient.

Similarly, a decrease in the curvature of the effort cost function increases the gap between

the efforts of high- and low-ability workers in the first best and, therefore, the benefit

of imitation for low-ability workers. It also decreases the cost of imitation for given

levels of effort. However, using a cost function of c(e) = e1.2, I find that the cost of

imitation outweighs its benefit at the first-best effort of high-ability workers. Therefore,
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the separating equilibrium is equal to the first best, and firm learning does not affect

labor market efficiency.

7 Conclusion

This paper studies the impact of firm learning on labor market efficiency in the presence

of both search frictions and information frictions. Firms do not know worker ability at

the time of hiring and only gradually learn about it over time. I show that faster firm

learning does not necessarily increase labor market efficiency, for two reasons. First,

low-ability workers may not have an incentive to imitate high-ability workers despite

the fact that information about worker ability is asymmetric. In this case, effort (of

both types of workers) is the same as if firms had perfect information about a worker’s

type from the time of hiring, and the labor market is efficient independently of the

rate of firm learning. Second, in case of adverse selection, (high-ability) workers choose

an inefficiently high level of effort on the job during probation. After firm learning,

they choose the optimal level of effort. This (direct) effect of firm learning increases

the expected surplus of worker-firm matches. However, in separating equilibrium, firm

learning also enhances imitation incentives of low-ability workers, in turn increasing the

initial effort of high-ability workers. This is because firm learning increases the relative

arrival rate and expected earnings in high-ability jobs, which are based on both the

current and the future expected match surplus. This (indirect) effect of firm learning

decreases the expected match surplus in high-ability jobs. Depending on the relative size

of effects, faster firm learning may potentially harm labor market efficiency, decreasing

the average expected match surplus and increasing unemployment.

Numerical results show that, in the current setting, imitation is too costly for low-

ability workers at first-best levels of effort, so firm learning does not affect labor market
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efficiency. It should be interesting to consider extensions that make imitation feasible.42

Then, firm learning can be expected to put upward pressure on effort during probation

in high-ability jobs, which diminishes efficiency.

42Imitation may become feasible, if individual output cannot be perfectly observed, or if individual
output is not fully determined by worker ability and effort (but also, for example, by a random element
such as ‘luck’).
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Figures

Figure 1: Perfect information equilibrium.
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Figure 2: Separating equilibrium.
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Figure 3: Option values of search

Figure 4: Firm learning and effort on the job
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Tables

Table 1: Parameter values and functional forms.

Symbol Description Value Source/Target

q(θ) Arrival rate for firms m0θ
−ξ

c(e) Worker’s effort cost function e2

ψ Firm learning rate 0.4
r Discount rate 0.02 U.S. Federal Reserve (2018)
δ Job separation rate 0.4 Shimer (2005)
α Share of high-ability workers 0.4 U.S. Labor Statistics (2016)
ξ Matching function elasticity 0.5 Mortensen Nagypal (2007)
β Worker’s bargaining power 0.5 Mortensen Nagypal (2007)

pH Productivity of a high-ability worker 3 
Match targets:

pL Productivity of a low-ability worker 2 Unemployment rate: 0.04
b Unemployment benefit 0.9 Replacement rate: 0.4
k Vacancy posting cost 0.8 v-u ratio: 0.72
m0 Matching constant 12 S∗H > 0, S∗L > 0

NOTES: (1) An annual separation rate of 0.4 corresponds to the quarterly separation rate of

0.1 in Shimer (2005). It implies that jobs last for about 2.5 years on average. (2) A matching

function elasticity of 0.5 is well within the empirically-supported range reported by Petrongolo

and Pissarides (2001). (3) The Hosios (1990) condition for socially efficient vacancy posting in

the decentralized equilibrium requires that β = ξ.
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Table 2: Labor market equilibria under perfect and imperfect information: ψ = 0.4.

High-ability workers: Low-ability workers:
Variable first-best separating pooling first-best separating pooling

equilibrium equilibrium

Effort on the job: e∗i , e
S
i , ePi 1.5 1.5 (0.85) 1 1 (1.28)

Labor market tightness: θ∗i , θ
S
i , θP 1.59 1.59 (0.56) 0.10 0.10 (0.56)

Match surplus: S∗i , SSi , SP 0.16 0.16 (0.10) 0.04 0.04 (0.10)
Wage: w∗i , w

S
i , wP 4.46 4.46 (2.60) 1.99 1.99 (2.60)

Unemployment rate: u∗i , u
S
i , uP 0.01 0.01 (0.04) 0.06 0.06 (0.04)

NOTE: (1) Values of efforts, match surplus, and wages in separating and in pooling equilibrium

denote values during probation, respectively.
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Appendix

A. Perfect information: Wage bargaining.

Wages are negotiated according to the generalized Nash bargaining solution:43

w∗i (e
∗
i ) = arg max[(W ∗i (w∗i (e

∗
i ))− U∗i )β(J∗i (πi(e

∗
i ))− Vi)1−β].

The corresponding first-order condition is

β(J∗i (πi(e
∗
i ))− Vi)

∂W ∗i (w∗i (e
∗
i ))

∂w∗i (e
∗
i )

= −(1− β)(W ∗i (w∗i (e
∗
i ))− U∗i )

∂J∗i (πi(e
∗
i ))

∂wi(e∗i )
.

Substituting for
∂W ∗i (w

∗
i (e
∗
i ))

∂w∗i (e
∗
i )

= 1
r+δ and

∂J∗i (πi(e
∗
i ))

∂wi(e∗i )
= − 1

r+δ , we derive

W ∗i (w∗i (e
∗
i )) = U∗i + βS∗i ,

where

S∗i = J∗i (πi(e
∗
i ))− Vi +W ∗i (w∗i (e

∗
i ))− U∗i ,

or, using (9) and (11) to substitute for J∗i (πi(e
∗
i )) =

πi(e
∗
i )+δVi
r+δ and W ∗i (w∗i (e

∗
i )) =

w∗i (e
∗
i ))−c(e∗i )+δU∗i

r+δ ,

S∗i =
yi(e

∗
i )− c(e∗i )− rVi − rU∗i

r + δ
.

Substituting for rU∗i = b+ θiq(θi)(W
∗
i (w∗i (e

∗
i ))−U∗i ) = b+ θiq(θi)βS

∗
i and Vi = 0 in (7),

the surplus can be re-written as

S∗i =
yi(e

∗
i )− c(e∗i )− b

r + δ + θiq(θi)β
. (57)

43It is assumed that the constraints W ∗i (w∗i (e∗i ))− U∗i ≥ 0 and J∗i (πi(e
∗
i ))− Vi ≥ 0 are fulfilled.
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Using J∗i (πi(e
∗
i )) = (1− β)S∗i , the zero-profit condition, Vi = 0, can be re-written as

q(θi)(1− β)S∗i = k, (58)

Equations (57) and (58) determine the equilibrium values S∗i and θ∗i . The latter is given

implicitly by

r + δ + θ∗i q(θ
∗
i )β

(1− β)q(θ∗i )
=
yi(e

∗
i )− c(e∗i )− b

k
.

Using J∗i (πi(e
∗
i )) = (1− β)S∗i in (9) together with Vi = 0, we find the equilibrium wage

in the case of perfect information:

w∗i (e
∗
i ) = yi(e

∗
i )− (r + δ)(1− β)S∗i .

B. Separating equilibrium: Wage bargaining.

Wages in separating equilibrium, wSi (eSi ), are negotiated based on the generalized Nash

bargaining solution:

wSi (ei) = arg max[(WS
ii (w

S
i (eSi ))− USi )β(JSi (πSi (eSi ))− V S

i )1−β],

where β is the relative measure of worker bargaining strength.44

The corresponding first-order condition is

β(JSi (πSi (eSi ))− V S
i )
∂WS

ii (w
S
i (eSi ))

∂wSi (eSi )
= (1− β)(WS

ii (w
S
i (eSi ))− USi )

∂JSi (πSi (eSi ))

∂wSi (eSi )
. (59)

Re-writing (1) as

r
∂JSi (πSi (eSi ))

∂wSi (eSi )
= −1− (δ + ψ)

∂JSi (πSi (eSi ))

∂wSi (eSi )

44It is assumed that the constraints WS
ii (w

S
i (eSi ))− USi ≥ 0 and JSi (πSi (eSi ))− V Si ≥ 0 are fulfilled.
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and (4) as

r
∂WS

ii (w
S
i (eSi ))

∂wSi (eSi )
= 1− (δ + ψ)

∂WS
ii (w

S
i (eSi ))

∂wSi (eSi )
,

we can solve for
∂WS

ii (w
S
i (e

S
i ))

∂wSi (e
S
i )

= 1
r+δ+ψ and

∂JSi (π
S
i (e

S
i ))

∂wSi (e
S
i )

= − 1
r+δ+ψ . Substituting these in

(59), and re-arranging, we derive

WS
ii (w

S
i (eSi )) = USi + β

[
JSi (πSi (eSi ))− V S

i +WS
ii (w

S
i (eSi ))− USi

]
. (60)

In terms of total expected utility, the worker receives his threat point, USi , plus a share

β of the surplus SSi , which is defined as

SSi = JSi (πSi (eSi ))− V S
i +WS

ii (w
S
i (eSi ))− USi , (61)

or, using (22)-(23), and (25)-(26), to substitute for JSi (πSi (eSi )) =
(r+δ)πSi (e

S
i )+ψπ

′S
i (e′Si ))+(r+δ+ψ)δV Si

(r+δ)(r+δ+ψ)

and WS
ii (w

S
i (eSi )) =

(r+δ)(wSi (e
S
i )−c(eSi ))+ψ(w′Si (e′Si )−c(e′Si ))+(r+δ+ψ)δUSi

(r+δ)(r+δ+ψ) ,

SSi =
(r + δ)(yi(e

S
i )− c(eSi )) + ψ(yi(e

′S
i )− c(e′Si ))− r(r + δ + ψ)(USi + V S

i )

(r + δ)(r + δ + ψ)
. (62)

Using (60), we can re-write (27) as

rUSi = b+ θSi q(θ
S
i )βSSi . (63)

Using (63) and the zero-profit condition V S
i = 0 in (62), the surplus can be re-written

as

SSi =
(r + δ)(yi(e

S
i )− c(eSi )) + ψ(yi(e

′S
i )− c(e′Si ))− (r + δ + ψ)b

(r + δ + ψ)(r + δ + θSi q(θ
S
i )β)

. (64)

Furthermore, (60) and (61) imply

JSi (πSi (eSi )) = (1− β)SSi . (65)
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Using the free-entry condition, V S
i = 0, in (24), we have

q(θSi )Ji(π
S
i (eSi )) = k. (66)

Substituting (65) in (66), we derive

q(θSi )(1− β)SSi = k. (67)

Equations (64) and (67) are two equations in two unknowns, θSi and SSi . Combining

them, we get

(r + δ + ψ)(r + δ + θSi q(θ
S
i )β)

(1− β)q(θSi )
=

(r + δ)(yi(e
S
i )− c(eSi )) + ψ(yi(e

′S
i )− c(e′Si ))− (r + δ + ψ)b

k
.

Using (65) to substitute for JSi (πSi ) in (22) together with V S
i = 0, we find the equilibrium

wage:

wSi (eSi ) = yi(e
S
i ) + ψ

yi(e
′S
i )− w′Si (e′Si )

r + δ
− (r + δ + ψ)(1− β)SSi ,

where, analogously,

w′Si (e′Si ) = yi(e
′S
i )− (r + δ)(1− β)S′Si ,

so

wSi (eSi ) = yi(e
S
i ) + ψ(1− β)S′Si − (r + δ + ψ)(1− β)SSi .

C. Separating equilibrium: Incentive constraint of high-ability workers.

In the following, I show that the incentive constraint for high-ability workers is slack

at effort eSH as described in section 4.1. That is, high-ability workers do not find it

profitable to deviate from eSH and choose effort pL
pH
eSL to earn starting wages wSL(eSL, e

′S
H )

with probability θSLq(θ
S
L) instead of earning starting wages wSH(eSH , e

′S
H ) with probability
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θSHq(θ
S
H):

θSHq(θ
S
H)(WS

HH(wSH(eSH , e
′S
H ))− USH) > θSLq(θ

S
L)(WS

HL(wSL(eSL, e
′S
H ))− USH)

or, equivalently,

θSHq(θ
S
H)

r + θSHq(θ
S
H)

(rWS
HH(wSH(eSH , e

′S
H ))− b) >

θSLq(θ
S
L)

r + θSLq(θ
S
L)

(rWS
HL(wSL(eSL, e

′S
H ))− b). (68)

To see this, note that incentive constraint for low-ability workers (36) implies that

(θSHq(θ
S
H))(r + δ)

(r + δ + ψ)(r + δ + θSHq(θ
S
H))

wSH(eSH , e
′S
L )−

(θSLq(θ
S
L))(r + δ)

(r + δ + ψ)(r + δ + θSLq(θ
S
L))

wSL(eSL, e
′S
L ) = (69)

−
θSHq(θ

S
H)

r + θSHq(θ
S
H)

[
(r + θSHq(θ

S
H))[(r + δ)(−c(pHpL e

S
H)) + ψ(w′SL (eSL, e

′S
L )− c(e′SL ))] + bδ(r + δ + ψ)

(r + δ + ψ)(r + δ + θSHq(θ
S
H))

− b

]

+
θSLq(θ

S
L)

r + θSLq(θ
S
L)

[
(r + θSLq(θ

S
L))[(r + δ)(−c(eSL)) + ψ(w′SL (eSL, e

′S
L )− c(e′SL ))] + bδ(r + δ + ψ)

(r + δ + ψ)(r + δ + θSLq(θ
S
L))

− b
]
.

Using (69), we can re-write (68) as follows:

θSHq(θ
S
H)

(r + δ + ψ)(r + δ + θSHq(θ
S
H))

[
(r + δ)(c(

pH
pL
eSH)− c(eSH)) + ψ(w′SH − c(e′SH )− (w′SL − c(e′SL )))

]
+

−
θSLq(θ

S
L)

(r + δ + ψ)(r + δ + θSLq(θ
S
L))

[
(r + δ)(c(eSL)− c( pL

pH
eSL)) + ψ(w′SH − c(e′SH )− (w′SL − c(e′SL )))

]
> 0.

This condition holds because eSH ≥ e∗H > e∗L = eSL, so c(pHpL e
S
H)−c(eSH) > c(eSL)−c( pLpH e

S
L),

θSH > θSL, and w′SH (eSH , e
′S
H )− c(e′SH ) > w′SL (eSL, e

′S
L )− c(e′SL ).45

D. Pooling equilibrium: Wage bargaining.

Wages in pooling equilibrium, wP (ePi ), are negotiated based on the generalized Nash

45The latter two follow from the fact that, if θSH = θSL, then (r + δ)(pHe
S
H − c(eSH)) + ψ(pHe

′S
H −

c(e′SH )) = (r + δ)(pLe
S
L − c(eSL)) + ψ(pLe

′S
L − c(e′SL )) and, therefore, wSL(eSL, e

′S
L )− c(eSL) = wSH(eSH , e

′S
H )−

c(eSH) > wSH(eSH , e
′S
H )− c( pH

pL
eSH). So, for the equality condition (36) to be fulfilled, eSH must adjust until

(r + δ)(pHe
S
H − c(eSH)) + ψ(pHe

′S
H − c(e′SH )) > (r + δ)(pLe

S
L − c(eSL)) + ψ(pLe

′S
L − c(e′SL )), which implies

that θSH > θSL and w′SH (eSH , e
′S
H )− c(e′SH ) > w′SL (eSL, e

′S
L )− c(e′SL ).
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bargaining solution:

wP (ePi ) = arg max[(WP (wP (ePi ))− UP )β(JP (πP (ePi ))− V P )1−β].

where β is the relative measure of worker bargaining strength.46

The corresponding first-order condition is

β(JP (πP (ePi ))− V P )
∂WP (wP (ePi ))

∂wP (ePi )
= −(1− β)(WP (wP (ePi ))− UP )

∂JP (πP (ePi ))

∂wP (ePi )
.

Substituting for
∂WP (wP (ePi ))

∂wP (ePi )
= 1

r+δ+ψ and
∂JP (πP (ePi ))

∂wP (ePi )
= − 1

r+δ+ψ and re-arranging, we

derive

WP (wP (ePi )) = UP + βSP ,

where

SP = JP (πP (ePi ))− V P +WP (wP (ePi ))− UP ,

Using (40)-(41), (43)-(44), (46) and (48) to substitute for

JP (πP (ePi )) =
(r+δ)πP (ePi )+ψ(απ

′P
H (e′PH )+(1−α)π′PL (e′PL ))+(r+δ+ψ)δV P

(r+δ)(r+δ+ψ) and

WP (wP (ePi )) =
(r+δ)wP (ePi )−(r+δ)(αc(ePH)+(1−α)c(ePL ))+ψ(α(w

′P
H (e′PH )−c(e′PH ))+(1−α)(w′PL (e′PL )−c(e′PL )))+(r+δ+ψ)δUP

(r+δ)(r+δ+ψ) ,

and using rUP = b+ θP q(θP )βSP and the zero-profit condition V P = 0, the surplus is

SP =
(r + δ)(y(ePi )− αcP − (1− α)cP ) + ψ(α(y′PH − c′P ) + (1− α)(y′PL − c′P ))− (r + δ + ψ)b

(r + δ + ψ)(r + δ + θP q(θP )β)
.

(70)

Furthermore, the zero-profit condition implies

q(θP )(1− β)SP = k. (71)

46It is assumed that the constraints WP (wP (ePi ))− UP ≥ 0 and JP (πP (ePi ))− V P ≥ 0 are fulfilled.
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Equations (70) and (71) are two equations in two unknowns, θP and SP . Combining

them, we get an implicit expression for θP :

(r + δ + ψ)(r + δ + θP q(θP )β)

(1− β)q(θP )
=

(r + δ)(y(ePi )− αcP − (1− α)cP ) + ψ(α(y′PH − c′P ) + (1− α)(y′PL − c′P ))− (r + δ + ψ)b

k
.

Combining JP (πP (ePi )) = (1−β)SP and JP (πP (ePi )) = αJPH+(1−α)JPL =
(r+δ)πP (ePi )+ψ(απ

′
H(e′PH )+(1−α)π′L(e

′P
L ))

(r+δ)(r+δ+ψ) ,

we find the equilibrium wage:

wP (ePi ) = y(ePi )+ψ
α(yH(e′PH )− w′PH (e′PH )) + (1− α)(yL(e′PL )− w′PL (e′PL ))

r + δ
−(r+δ+ψ)(1−β)SP ,

where

w′Pi (e′Pi ) = yi(e
′P
i )− (r + δ)(1− β)S′Pi ,

so

wP (ePi ) = y(ePi ) + ψ(1− β)(αS′PH + (1− α)S′PL )− (r + δ + ψ)(1− β)SP .
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