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1 Introduction

As brought up by Jegadeesh and Titman (1993), price momentum and reversal are the

two most pervasive pricing anomalies existing on financial markets. They are difficult to

explain and extremely inconsistent with information efficient markets as well as rational

agents. According to rational explanations, the existence of these anomalies should be

almost impossible; otherwise, they should immediately be exploited and traded away.

Besides Holden and Subrahmanyam (2002) and Cespa and Vives (2012), who explain

momentum with an increase in information precision and Andrei and Cujean (2017), who

provide a rational model by employing word-of-mouth communication in a Grossman and

Stiglitz (1980) setting, most of the prevailing models trying to explain these phenomenoa

are settled in the behavioral literature. The basic idea in this field of research is to explain

momentum and reversal by the irrational behavior of agents, like Barberis, Shleifer, and

Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998) and Hong and Stein (2007).

These explanations attribute to individuals various behavioral biases and assume that

agents would persistently act irrationally.

In this paper we shift focus from the agent to the information signal and propose

the idea that momentum and reversal are not caused by possible irrational behaviour of

agents, but rather due to the information structure on the market. We impose that not all

information is equal but differs regarding its uncertainty. Using this line of thought, im-

plementing a heterogeneous signal structure results in the occurrence of signal-dependent

under- and over-reaction, compared to a model with homogeneous information. This

establishes momentum and reversal patterns without the necessity to assume the irra-

tionality of agents.

In the literature on asset pricing under asymmetric information, there are two com-

peting equilibrium concepts, namely Rational Expectations Equilibrium (REE) and game

theoretic Bayesian Nash Equilibrium (BNE). We translate the above stated idea of het-

erogeneous information by implementing the information structure of signal-specific dif-

ferences in uncertainty in a Bayesian equilibrium model of strategic trading. We show

that in such a model, momentum and reversal—two patterns seemingly inconsistent with

rational behavior—can be explained without recourse to the irrationality of traders. This

provides some evidence that the rational existence of momentum and reversal is nested in

the posed idea concerning the presence of heterogeneous information with different levels

of uncertainty.

The analysis in this paper is based on a Kyle (1985) type of model. The original

setting is modified in two dimensions: first, the informed trader only observes a noisy

signal about the true liquidation value of the risky security and not the original liquidation

value; and second, a heterogeneous information structure is introduced. There exist two

kinds of different signals, one of them having a higher degree of uncertainty than the
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other. The difference in uncertainty is modelled with the help of a higher variance in the

noise term of the signal.

We show that given these two modifications, the basic mechanics of the model still

work, although very interesting new insights into the behavior of agents emerge. Fur-

thermore, equilibrium prices support patterns of momentum and reversal.

The remainder of the paper is structured as follows. First, the modified structure

of the model is introduced by discussing a single-auction equilibrium to show the main

implications of the modifications. In a second step, we establish a two-period model

and prove that equilibrium prices in this setting on average support price patterns like

momentum and reversal. The two-period model is then further extended to a sequential

auction equilibrium with N periods, which features very similar equilibrium conditions

as those in Kyle (1985), the original paper. The main finding is that besides other im-

plications, a heterogeneous signal structure supports price momentum and price reversal

in a simple game theoretic model with a BNE.1

2 The static model

There exist three different groups of risk-neutral players. An investor who is informed,

since he observes a signal concerning the true fundamental value of a risky asset (hence-

forth referred to as the informed investor or insider). Many different liquidity traders

who do not maximize their utility but simply trade for reasons outside of the model

(”noise traders”). Their demand might e.g. stem from idiosyncratic information that is

not of common interest, such as the need to hedge against endowment shocks or private

investment opportunities in incomplete market settings (see Brunnermeier, 2005, p. 421).

A risk-neutral market maker who knows the signal structure of the informed, as well as

the aggregate order flow of the informed investor and noise traders. However, he does

not know the exact signal and the exact distribution it comes from. The basic process

is as follows. The informed investor observes a signal about the true value of the risky

asset. Given this information and taking into account his influence on price, he acts like

an information monopolist and places a market order. The noise traders— trading for

reasons outside of the model—submit their individual demand. Given this information,

the market maker sets a price, after observing aggregate order flow. When doing so, he

considers the information structure on which the informed trader bases his orders. The

whole model has the flavor of a BNE model as all players take the strategies of all the

other players as given and the market maker updates his beliefs using Bayes’ rule. How-

1The stated results are established under the restriction that the informed agent is only allowed to
play linear strategies. Relaxing this assumption should not alter the general mechanics of the model,
however it extremely increases the mathematical complexity and precludes closed form solutions.
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ever, we concentrate our analysis on the case in which the informed agent is restricted to

playing linear strategies, as they are the only ones allowing for a closed-form solution.

2.1 Derivation of the single-auction equilibrium

In a first step and to gain a better understanding, we study the major implications of the

modified setting by analyzing a static model of one-shot trading.

2.1.1 Environment

In this setting, a single risk-neutral informed trader and a number of uninformed liquidity

traders submit market orders to a risk-neutral market maker. The market maker observes

the aggregated order flow and clears the market at a single price.2 The informed trader

does not know the actual demand of the noise traders when submitting his order, but only

its distribution. The ex-post liquidation value of the risky asset is denoted by θ, which is

distributed normally with mean θ̂ > 0 and variance σ2
θ . The quantity demanded by noise

traders denoted by u is normally distributed with mean zero and variance σ2
u.

3 There are

two possible noisy signals, Si with i ∈ {H,L} about the true value of θ, SH = θ+ εH and

SL = θ+ εL, which differ in their noise term ε. Both noise terms are normally distributed

with mean zero, but have different variances σ2
εH

and σ2
εL

. Their relationship is restricted

by the inequality σ2
εH
≥ σ2

εL
. This implies that SL is a more valuable signal than SH . It

has higher precision and hence incorporates less uncertainty. The informed trader always

observes only one signal, either SH or SL, with probability p and 1 − p, respectively.

However, he knows whether the signal that he observes is SH or SL. The demand of the

insider is labeled x and aggregate demand X, which comprises the quantities requested

by informed and noise traders X = x+ u, with u being the demand of the noise traders.

The price is referred to as P .

The time line of events is almost identical to the original setting in (Kyle, 1985).

First, θ is realized, the informed trader observes the signal Si about the true value of θ

and chooses his order size x. Additionally, the uninformed traders’ demand u is realized.

Second, the market maker observes aggregate order flow x + u and sets a single price P

to clear the market. Finally, uncertainty resolves and the asset pay off is realized. Figure

1 gives a time line of the events.

2As is common in this literature, the market maker is assumed to set semi-strong informationally-
efficient prices; thus, his expected profit is zero. We do not explicitly model the underlying Bertrand
competition with potential rival market makers in this paper.

3The fact that noise traders’ demand is assumed to be normally distributed makes it unnecessary to
specify off-equilibrium beliefs. Due to the normality assumption, the support of aggregate order flow
ranges from −∞ to ∞ and any order flow can potentially arise in equilibrium.
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t0 t1 t2

Informed agents
receive their signal
and choose x.
Noistraders’ demand
u realizes

Market maker ovserves
aggregate demand X
and sets price P
to clear the market

Payoff of risky asset
is realized

Figure 1: The time line shows the sequence of events in the model. At t = 0, the informed agents
receive their private signal Si and posit their market order x. Further noise traders’ demand u is realized.
In the next step at t = 1, financial markets open, the market maker observes aggregate demand and
sets a price P to clear the market. Uncertainty is resolved at t = 3 and the pay off of the risky asset θ
materializes

The expected profits E[π|Si] of the informed trader are given by E[π|Si] = (E[θ|Si]−P )x′.

In equilibrium, two conditions have to hold.

1. Profit maximization: For any trading strategy x′ and for any signal S

E[π(x, P )|Si] ≥ E[π(x′, P )|Si].

2. Market efficiency: The price set by the market maker satisfies

P (X,P ) = E[θ|x+ u].

Informed demand x is a function of the type of the signal Si, the price P as well as the

parameters of the distribution of uninformed demand u. It can be written as x(Si, P, u).

The informed agent chooses his demand taking into account his impact on price as well

as the pricing rule of the risk-neutral market maker. The signal structure of the model

can be summarized as follows.

Signal structure

The terminal value of the asset is given by θ ∼ N (θ̂, σ2
θ). As the informed trader observes

one of two possible noisy signals SH or SL of the true value of the risky asset with

probability p and 1 − p, respectively. The signals follow a mixture distribution, with a

probability density function f defined as

f(S) = pfSH (S) + (1− p)fSL(S) (1)

The components of this mixture distribution are distributed as follows

SL = θ + εL εL ∼ N (0, σ2
εL

) −→ SL ∼ N (θ̂, σ2
θ + σ2

εL
)

SH = θ + εH εH ∼ N (0, σ2
εH

) −→ SH ∼ N (θ̂, σ2
θ + σ2

εH
)

(2)
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The informed trader knows which of the two signals SH or SL he observes. θ and SL as

well as θ and SH are distributed bivariate normal N ∼ (µSL
,ΣSL

) and N ∼ (µSH
,ΣSH

),

with

µSL
= µSH

=

(
θ̂

θ̂

)
, ΣSL

=

(
σ2
θ σ2

θ

σ2
θ σ2

θ + σ2
εL

)
, ΣSH

=

(
σ2
θ σ2

θ

σ2
θ σ2

θ + σ2
εH

)
.

Given the above distributions and applying the projection theorem for jointly normal

distributed variables, we can calculate the values of E[θ|SH ], V ar[θ|SH ], E[θ|SL]

and V ar[θ|SL].

E[θ|SL] = θ̂ +
σ2
θ

σ2
θ + σ2

εL

(SL − θ̂) and V ar[θ|SL] = σ2
θ −

σ4
θ

σ2
θ + σ2

εL

(3)

E[θ|SH ] = θ̂ +
σ2
θ

σ2
θ + σ2

εH

(SH − θ̂) and V ar[θ|SH ] = σ2
θ −

σ4
θ

σ2
θ + σ2

εH

(4)

2.1.2 Optimization

According to the market efficiency condition and due to risk neutrality, the pricing rule

of the market maker in equilibrium is a function of aggregate demand and is given by

E[θ|X]. The informed agent maximizes his expected profit, E[π|Si], which comprises the

difference between the expected pay off of the asset given the signal and the price of the

asset times the quantity of his stock holdings. The maximization problem of the informed

agent writes

max
x

E[π|Si] = E[(θ − P1)x|Si]. (5)

The risk-neutral market maker follows a linear pricing rule of the form P1 = P0 + λX

while implying that the informed investor’s demand is linear in θ and has the form

x = β(E[θ|Si]− P0). λ can be interpreted as the responsiveness of the market maker to

changes in aggregate supply and hence market depth. β defines the trading aggressiveness

of the informed investor. If β is high, the informed investor reacts more strongly upon his

private information. P0 denotes the unconditional expectation of the risky asset’s pay off,

P0 = E[θ] = θ̂. The market maker can only observe the aggregate demand of informed

and noise traders, X = x + u, and is unable to distinguish between x and u. He sets

the price conditional on his information set FU which comprises aggregate demand X,

FU = {X}. Given this pricing rule, the optimization problem 5 of the informed trader
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can be rewritten as

max
x

E[(θ − P0 − λ(x+ u))x|Si],

resulting in the FOC

E[θ|Si]− P0 − 2λx = 0,

with x being

x =
1

2λ
(E[θ|Si]− P0). (6)

The SOC implies λ > 0, which we have imposed. Given x = β(E[θ|Si]− P0), equation 6

yields β = 1
2λ

. It becomes visible that x inherits its distribution from SH and SL.

Using the results 3 and 4 and specifying

FL =
σ2
θ

σ2
θ + σ2

εL

and FH =
σ2
θ

σ2
θ + σ2

εH

(7)

and hence,

V ar [E[θ|SH ]] = F 2
H(σ2

θ + σ2
εH

) and V ar [E[θ|SL]] = F 2
L(σ2

θ + σ2
εL

).

Informed demand, x, is defined as

xH = β(E[θ|SH ]− θ̂) = βFH(SH − θ̂),
xL = β(E[θ|SL]− θ̂) = βFL(SL − θ̂),

and distributed

xH ∼ N (0, β2F 2
H(σ2

θ + σ2
εH

)) and xL ∼ N (0, β2F 2
L(σ2

θ + σ2
εL

)).

Aggregate demand, X, is defined and distributed as

XH = xH + u = βFH(SH − θ̂) + u and XL = xL + u = βFL(SL − θ̂) + u,

XH ∼ N (0, β2F 2
H(σ2

θ + σ2
εH

) + σ2
u) and XL ∼ N (0, β2F 2

L(σ2
θ + σ2

εL
) + σ2

u).
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Given the distributions of XH and XL, X and θ are distributed jointly normal.

θ

XH

∼ N

[(
θ̂

0

)
,

(
σ2
θ βFHσ

2
θ

βFHσ
2
θ β2F 2

H(σ2
θ + σ2

εH
) + σ2

u

)]
θ

XL

∼ N

[(
θ̂

0

)
,

(
σ2
θ βFLσ

2
θ

βFLσ
2
θ β2F 2

L(σ2
θ + σ2

εL
) + σ2

u

)]

Based on the joint distribution of X and θ, the market maker sets the price, P , conditional

on the amount of aggregate demand X that he observes, P = E[θ|X]. The market maker

cannot distinguish between the two demands XH and XL. He simply observes X, which

is either XH or XL with probability p and 1−p. Therefore, X is distributed as a Gaussian

mixture. Due to the inherited mixture structure of X, the conditional expectation is a

weighted average

P1 = E[θ|X] = ωLE[θ|XL] + ωHE[θ|XH ]

= θ̂ +

(
ωL

βσ4
θ

β2σ4
θ + σ2

u(σ
2
θ + σ2

εL
)

+ ωH
βσ4

θ

β2σ4
θ + σ2

u(σ
2
θ + σ2

εH
)

)
X,

with the weights ωL and ωH being defined as

ωL =
(1− p)fXL(X)

(1− p)fXL(X) + pfXH (X)
,

ωH =
pfXH (X)

(1− p)fXL(X) + pfXH (X)
,

(8)

and ωL = (1− ωH).

2.1.3 Equilibrium

Determining the coefficients in the linear BNE yields

β =
1

2λ
,

λ = ωL
βσ4

θ

β2σ4
θ + σ2

u(σ
2
θ + σ2

εL
)

+ ωH
βσ4

θ

β2σ4
θ + σ2

u(σ
2
θ + σ2

εH
)
.

(9)

A special feature of the model is that λ is not a constant but rather a function of aggregate

demand X, since according to 9, ωi directly depends on the realization of Si. However,

in equilibrium the informed does not know the actual value of X, as he does not know

noise traders’ demand u. Hence, he does not know λ and he optimizes using the expected
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value E[λ]. Equation 9 becomes

β =
1

2E[λ]
and E[λ] = (1− p) βσ4

θ

β2σ4
θ + σ2

u(σ
2
θ + σ2

εL
)

+ p
βσ4

θ

β2σ4
θ + σ2

u(σ
2
θ + σ2

εH
)
. (10)

In equilibrium, the coefficients E[λ] and β are defined in terms of parameters of the

distributions by solving for β and plugging in E[λ] =
1

2β
. After simplifying, β is implicitly

characterized by

0 = (1− p) β2σ4
θ

β2σ4
θ + σ2

u(σ
2
θ + σ2

εL
)

+ p
β2σ4

θ

β2σ4
θ + σ2

u(σ
2
θ + σ2

εH
)
− 1

2
.

Solving the quadratic equation for β means solving a fourth-order polynomial, which has

four solutions. According to the SOC, β has to be real and positive. Thus, three of the

four solutions can be ruled out immediately, and the one surviving is

β =

√
σ2
u√

2σ2
θ

√
(2p− 1)(σ2

εH
− σ2

εL
) +

√(
(σ2

εL
+ σ2

θ) + (σ2
εH

+ σ2
θ)
)2 − 4(p− p2)(σ2

εH
− σ2

εL
)2.

(11)

For readability, define

Bp =

√
1

2

(
(2p− 1)(σ2

εH
− σ2

εL
) +

√(
(σ2

εL
+ σ2

θ) + (σ2
εH

+ σ2
θ)
)2 − 4(p− p2)(σ2

εH
− σ2

εL
)2
)
,

(12)

with
√

(σ2
εL

+ σ2
θ) < Bp <

√
(σ2

εH
+ σ2

θ) for 0 < p < 1,
√

(σ2
εL

+ σ2
θ) = Bp for p = 0,

Bp =
√

(σ2
εH

+ σ2
θ) for p = 1, and

∂Bp

∂p
> 0.

equation 11 can be written as

β =

√
σ2
u

σ2
θ

Bp.

To gain a basic understanding of the underlying mechanics, we want to take a closer look

at the special case p = 1
2
. This gives

β =

√
σ2
u

σ2
θ

4

√
(σ2

εL
+ σ2

θ)(σ
2
εH

+ σ2
θ). (13)

The above expression is nothing but

√
σ2
u

σ2
θ

, which is the original equilibrium solution in

(Kyle, 1985, p. 1319) without heterogeneous signals times the square root of a geometric
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average of the signal variances.

E[λ] - which in the following will be denoted as λ̂ - equals

λ̂ =
σ2
θ

2
√
σ2
u

1

Bp

. (14)

A special feature of the model is that λ is not a constant in equilibrium. It crucially

depends on ωH , which itself is a function of aggregate demand X. In equilibrium, λ is

hence dependent on the level of aggregate demand. The same is true for market depth,

defined as 1
λ
. If market depth is high, meaning that λ is very low, then an increase in

(aggregate) demand has only a small impact on the stock price. The opposite is true for

high values of λ and thus low market depth.

Knowing λ̂, the market depth expected by the insider
1

λ̂
is given by

1

λ̂
=

2
√
σ2
u

σ2
θ

Bp. (15)

The market depth expected by the informed trader depends on the amount of noise

trading given by
√
σ2
u, the variance of the risky asset σ2

θ , the variance of the two signals

SH and SL as well as the mixture weight p. The amount of noise trading and a high

signal variance increase market liquidity, while an increase in the volatility of the asset

pay off—which can be seen as an increase in the value of the insider’s information—

reduces liquidity as in Kyle (1985). However, the effect of an increasing asset variance is

accommodated by an increasing signal variance. This means that while ceteris paribus a

doubling in the amount of noise trading measured by its standard deviation σu doubles

market liquidity, a doubling in the asset’s variance does not halve market depth as it

simultaneously increases Bp,
∂Bp
∂σθ

> 0. The actual market depth in the economy is

random and depends on ωL and ωH , hence aggregate demand. Overall market depth

in the economy is given by E[1/λ]. Due to Jensen’s inequality, overall market depth

in the economy exceeds the market depth expected by the insider when conducting his

maximization,

2
√
σ2
u

σ2
θ

Bp < E

[
1

λ

]
.

The ex-ante expected profit of the informed trader (unconditional on S) is given by

E[π] = p
1

2

√
σ2
uBp

σ2
θ

(σ2
θ + σ2

εH
)

+ (1− p)1

2

√
σ2
uBp

σ2
θ

(σ2
θ + σ2

εL
)
.

The informed’s ex-ante expected profit is also strongly affected by the standard deviation

9



of noise traders’ demand. It increases with the variance of the asset’s pay off σθ, as it mea-

sures the informational advantage of the insider. Furthermore, E[π] decreases with the

amount of noise inherited in the informed trader’s signal as this noise distorts his infor-

mational advantage. By comparison, the insider’s ex-post maximized profit conditional

on Si is of the form (E[θ|Si]−θ̂)2

4λ̂
, which is either

E[π|SH ] =
1

2

√
σ2
uσ

2
θ

(σ2
θ + σ2

εH
)2
Bp

(
S − θ̂

)2
or

E[π|SL] =
1

2

√
σ2
uσ

2
θ

(σ2
θ + σ2

εL
)2
Bp

(
S − θ̂

)2
.

2.2 Comparison with benchmark

In this section, we compare the results of the static equilibrium derived in the previous

section with a benchmark setting in which the type of signal is common knowledge.4

Hence, the market maker knows the underlying distributions of S and X. This can

be seen as the classical Kyle (1985) setting with two regimes and the insider receives

a noisy signal about the fundamental value of the asset rather than the asset value it-

self. All involved parties know the prevailing regime that they are currently in. A part

of the variables defining the equilibrium as well as the key statistics of the model are

signal-dependent. In comparison, the respective variables in the benchmark setting are

all constants and not affected by the value of the signal. We have to bear this in mind

when comparing the equilibrium solutions of the two models. It can be shown that for

reasonable differences between σεH and σεL , BωH is a convex function. Hence, in the

following paragraph E [BωH ] is replaced by BE[ωH ]. This means that the comparison is

conducted by using the prior component weights of the mixture p and not their Bayesian

updates ωH as it makes the calculations much simpler and will not alter the direction

of the results. The equilibrium price given a heterogeneous signal structure is either

above or below the price without a heterogeneous signal, depending on the type of the

signal.5 The overall expected informativeness of the price is unaffected by the heteroge-

neous signal structure and in both cases it is unaffected by the amount of noise trading

like in Kyle (1985). However, given the two different signal regimes, the average volatility

over- or understates the volatility in the respective single regimes. Market depth in the

informationally-restricted model is not constant, but rather a function of actual aggre-

gate demand. Overall, it is lower than in the benchmark model. Nevertheless, this does

4Common knowledge implies that the informed trader as well as the market maker have access to the
signal type and take the information into account. Regardless whether they know the signal or its type,
the noise traders ignore it and act for reasons outside of the model, as already stated.

5This ambiguity is the root of resulting over- and under-reaction occurring in a setting comprising
more than one period described in section 3.3.1.

10



not hold looking at signal-dependent market depth. In the regime with high uncertainty,

market depth is on average lower, whereas in the regime with lower uncertainty market

depth is on average higher than in the benchmark setting. In general, the unconditional

expected profit in equilibrium assumes that asymmetric information regarding the signal

structure exceeds that without asymmetric information about the signal structure. This

is true unless the difference in the signal variances becomes marginal. The expected profit

of the insider further increases with the variance of the asset as well as the amount of

noise trading. By contrast, an increase in the noisiness of the signal reduces profit. The

results are the same when analyzing maximized profits.

Price Depending on the signal, the equilibrium price is either higher or lower than

the equilibrium price of the benchmark model.6 The prevailing mechanism is that given

a signal with high uncertainty, the equilibrium price exceeds the price of the benchmark

model. In the regime with low signal variance, the equilibrium price is below that of the

benchmark model. The reason for this behavior is that the equilibrium price can be seen

as a weighted average of the prices in the two regimes of the benchmark model and thus

it has to be somewhere in between the two. Technically speaking, when looking at the

linear pricing rule of the market maker P (X) = θ̂ + λX, with λBenSH = 1
2

σ2
θ√

σ2
u(σ

2
θ+σ

2
εH

)
,

λBenSL = 1
2

σ2
θ√

σ2
u(σ

2
θ+σ

2
εL

)
and E[λEqui] = 1

2

σ2
θ√
σ2
uBp

, it holds that λBenSH < λ̂Equi < λBenSL .

Informativeness of the price system As aggregated demand is known to all agents—

insider as well as market maker, the informativeness of the price system in the economy

corresponds to the informativeness of aggregate demand X. In other words, the equilib-

rium price is a sufficient statistic of aggregate demand. It is measured by the variance

of the fundamental value of the asset given the information revealed in the economy

V ar[θ|X]. Unconditional on the signal Si and not knowing the prevailing signal regime,

there is no difference from the benchmark model and one half of the informed’s private

information is incorporated in aggregate demand. This is due to the fact that the vari-

ance of a normal mixture is simply a weighted average of the variances of the mixture

components assessed by their mixture weights. However, when differentiating between

the two signal regimes, the informativeness of the economy compared to the benchmark

model changes substantially. For an uninformed agent, the price system over-rates the

variance in the low volatility regime and under-rates the uncertainty inherited in the high

volatility regime.

Market depth In line with expectations, the additional uncertainty in the static equi-

6This pattern is the basic source of under- and over-reaction induced by the model if there is more
than one trading period.
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librium compared to the benchmark setting reduces overall market depth as long as the

difference between the two regimes is not marginal. It can be shown that p 1
λBenSH

+ (1−
p) 1

λBenSL
> 1

λ̂Equi
for all p as long as σεH − σεL is not marginally small.7 However, de-

pending on the different regimes, compared to the benchmark, the market is more liquid

in the state of lower uncertainty and vice versa. This is advantageous to the informed

agent, as the additional market depth helps the insider to exploit his informational advan-

tage more aggressively compared to the benchmark setting. The natural mechanism that

market makers reduce market liquidity when confronted with a better-informed insider

is thus dampened by the asymmetric information about the signal structure. Given the

properties of Bp, it is easy to see that

E

[
1

λEqui

]
>

1

λ̂Equi
>

1

λBenSL
=

2
√
σ2
u

σ2
θ

√
σ2
θ + σ2

εL
∀ 0 < p < 1.

Profit The unconditional (on the signal) expected profit of the insider in the bench-

mark model is given by E[πH ] = 1
2

√
σ2
uσ

2
θ√

σ2
θ+σ

2
εH

and E[πL] = 1
2

√
σ2
uσ

2
θ√

σ2
θ+σ

2
εL

. Hence, overall

unconditional expected profit in the benchmark model writes pE[πH ] + (1 − p)E[πL],

compared to pE[πH ] Bp√
σ2
θ+σ

2
εH

+ (1− p)E[πL] Bp√
σ2
θ+σ

2
εL

in our model. While unconditional

profit increases with the amount of noise trading σ2
u, as well as the value of information,

σ2
θ , it is a decreasing function of the variance of the noise term, σεi . These properties hold

both for the benchmark as well as in our model. However, the overall expected profit of

the insider in our static equilibrium exceeds the overall expected profit of the insider in

the benchmark model for all 0 < p < 1, as long as the difference between the two noise

terms is not marginal. Again, the classical pattern that benchmark profits are higher

in the regime with higher signal uncertainty while equilibrium profits are higher in the

regime with lower signal uncertainty is confirmed. Nevertheless, overall profits are higher

in our model compared to the benchmark case. This is intuitive as in our model the

insider should be able to monetize his additional information. The gain in profit that he

receives from being able to trade more aggressively in the low-uncertainty setting always

more than outweighs the limitation that he faces in the regime given higher uncertainty.

The same holds for maximized profits, which in the benchmark setting are given by

E[π|SH ] =
1

2

√
σ2
uσ

2
θ

(σ2
θ + σ2

εH
)2

√
σ2
θ + σ2

εH
(S−θ̂)2 and E[π|SL] = 1

2

√
σ2
uσ

2
θ

(σ2
θ+σ

2
εL

)2

√
σ2
θ + σ2

εL
(S−θ̂)2.

(16)

7The difference in between the two regimes would have to be < 1 ∗ 10−9 to give an indication of the
magnitude.

12



Compared to

E[π|SH ] =
1

2

√
σ2
uσ

2
θ

(σ2
θ + σ2

εH
)2
Bp(S − θ̂)2 and E[π|SL] = 1

2

√
σ2
uσ

2
θ

(σ2
θ+σ

2
εL

)2
Bp(S − θ̂)2, (17)

if the signal structure is not common knowledge. The profits are still proportional to

market depth, like in Kyle (1985), although they are standardized by the squared signal

variance. This leads to a strong emphasis on the expected profit in the low volatility

regime.

To summarize, the equilibrium price given a heterogeneous signal structure is either

above or below the price without a heterogeneous signal, depending on the type of the

signal.8 The overall expected informativeness of the price is unaffected by the heteroge-

neous signal structure and in both cases it is unaffected by the amount of noise trading,

like in Kyle (1985). However, given the two different signal regimes, the average volatility

over- or understates the volatility in the respective single regimes. Market depth in the

informationally-restricted model is not constant, but rather a function of actual aggre-

gate demand. Overall, it is lower than in the benchmark model. Nevertheless, this does

not hold looking at signal-dependent market depth. In the regime with high uncertainty,

market depth is on average lower whereas in the regime with lower uncertainty market

depth is on average higher than in the benchmark setting. In general, the unconditional

expected profit in equilibrium assuming asymmetric information regarding the signal

structure exceeds that without asymmetric information about the signal structure. This

is true unless the difference in the signal variances becomes marginal. The expected profit

of the insider further increases with the variance of the asset as well as the amount of noise

trading. By contrast, an increase in the noisiness of the signal reduces profit. The results

are the same when analyzing maximized profits. The results above prove that knowing

whether the signal regime that the economy actually faces is valuable information that

pays to possess and is also exploited by the insider.

3 The two-period model

In this section, we expand the model by an additional period where the signal regime is

revealed after the first period. After solving for the equilibrium of the two-period model,

we examine potential price dynamics in such an equilibrium and put the results under

further scrutiny by conducting a numerical analysis.

8This ambiguity is the root of resulting over- and under-reaction occurring in a setting comprising
more than one period described in section 3.3.1.
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3.1 Derivation of equilibrium

We start out by deriving the equilibrium solution and characterizing the equilibrium price

in the two-period setting using backward induction.

3.1.1 Environment

In the two-period model, the signal type of the informed trader is revealed after the first

period. The structure of the first period is equal to the single-auction setting. In the

second period after the revelation of the signal type, additional noise trader demand enters

the market and a new round of trading starts. Figure 2 shows the timeline of events. The

informed agent does not receive any new signal. However, he is now optimizing his profit

over two periods, taking into account the pricing rule as well as the new information

set of the market maker, the new public information that enters the market after the

first period. The market maker still sets the price according to his pricing rule, now

incorporating all information available at each point in time. This means that after the

type of the signal is revealed after period one, the market maker can distinguish between

the two distributions and will do so. He revises his first-period pricing rule to correctly

incorporate the action of the informed trader in the first period in period two prices. This

leads to two possible states of the world: one based on the high-variance regime in the first

period and the second based on the low-variance regime. Additionally, this separation

in the second period inherits different levels of trading aggressiveness of the informed

trader, which causes different βs for the two mixture components of the distribution of

aggregate demand. The value function of the informed trader writes

Vt(xt) = Et

[
2∑
t=1

(θ − Pt)xt|Si

]
, (18)

where

Et[π|Si] = Et[(θ − Pt)xt|Si] (19)

is the expected profit of the informed trader in period t. The model is solved by backward

induction.

3.1.2 Optimization

The Bellman equation writes

max
x1

E[(θ − P1)x1 + V1|Si]. (20)
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t0 t1 t2 t3

Informed agents
receive their signal
and choose x1.
Noistraders’ demand
u1 realizes.

Market maker observes
aggregate demand X1

and sets price P1

to clear the market.

Additional noise trader-
demand u2 realizes.
Signal uncertainty
resolves.
Market maker observes
aggregate demand X2

and sets price P2

to clear the market.

Payoff of risky asset
is realized.

Figure 2: The time line shows the sequence of events in the two-period model. At t = 0, the informed
agents receive their private signal Si and posit their market order x. Further noise traders’ demand u
is realized. At t = 1, financial markets open, the market maker observes aggregate demand X1 and sets
a price P1 to clear the market. In the next step at t = 2, the uncertainty about the signal structure
i = H/L is revealed, additional noise traders, u2, enter the market and informed agents place their order
for the second round of trading, x2. Market makers observe aggregate demand X2 and set the price P2

to clear the market. Uncertainty is resolved at t = 3 and the pay off of the risky asset θ materializes.

The conjectured demands of the informed trader are still assumed to be linear func-

tions in each period. They are given by x1 = β1(E[θ|Si]− θ̂) and x2 = β2(E[θ|Si]− P ∗1 ).

The pricing rule of the market maker for t = 1 is the same as in the single-auction

equilibrium and of the form

P1 = E[θ|X1] = θ̂ + λ1X1. (21)

The pricing rule in t=2 is still linear, but it incorporates all information that the market

maker possesses at this point in time. In the second period, the signal type is publicly

revealed and the part of the market maker’s information set stemming from period one

becomes more precise. The market maker’s pricing rule in t = 2 can be written as

P2 = E[θ|X1, X2] = P ∗1,i + λ2iX2, (22)

where P ∗1,i is the revised price of the first period, which incorporates the additional infor-

mation about the signal type. It is given by

P ∗1,i = Ei[θ|X1] = θ̂ + λ∗1,iX1. (23)

Solving the model by backward induction, the maximization of the final period writes

max
x2

E[(θ − P2)x2|Si, P1, X1]. (24)

Plugging the pricing rule 22 into 24 gives

max
x2

E
[(
θ − P ∗1,i − λ2(x2 + u2)

)
x2|Si, P ∗1,i

]
,
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yielding the FOC

E
[
(θ − P ∗1,i − 2λ2x2 − λ2u2|Si, P ∗1,i

]
= 0. (25)

Solving for x2 yields the demand of the strategic trader in t = 2 depending on the signal

type:

x2,i =
1

2λ2,i

(
E [(θ|Si]− P ∗1,i

)
. (26)

The second-order condition is given by 2λ2,i > 0.

Knowing that the value function of a risk-neutral agent is quadratic, one can utilize 26

and plug it into the Bellman equation 20:

max
x1

E [(θ − P1)x1 + (θ − P2,i(x
∗
2))x

∗
2|Si] , (27)

resulting in the FOC

E [θ|Si]− θ̂ − 2λ1x1 −
λ1,i
2λ2,i

(
E [θ|Si]− θ̂ − λ∗1,ix1

)
= 0. (28)

The first-period demand of the informed agent is given by

x1,i =
2λ2,i − λ∗1,i

4λ1λ2,i − λ∗1,i
2

(
E [(θ|Si]− θ̂

)
. (29)

The second-order condition is given by
4λ1λ2,i−λ∗1,i

2

2λ2,i
> 0.

3.1.3 Equilibrium

In the two-period model, the β coefficients in equilibrium are given by:

β1,i =
2λ2,i − λ∗1,i

4λ1λ2,i − λ∗1,i
2 , β2,i =

1

2λ2,i
. (30)

It becomes immediately clear that the revelation of the uncertainty regime after period

one leads to different βs depending on the signal and hence a different distribution of

aggregate demand compared to the static model.

As the model is symmetric and for reasons of simplicity, the coefficients in the high-

uncertainty regime are stated in the following. The coefficients of the low-uncertainty

regime can be obtained analogously by simply replacing the subscript H with L. A

detailed description of all equilibrium coefficients as well as the distributional details of

the model are given in appendix B.3.
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The equilibrium coefficients of the two-period model write

β1H =
2λ2H − λ∗1H

4λ1λ2H − λ∗1H
2 , β2H =

1

2λ2H
, (31)

with

β2H =

√
σ2
u2

(σ2
θ + σεH

2)

σ2
θ

√
β1H

2σ4
θ + σ2

u1
(σ2

θ + σεH
2)

2β1H
2σ4

θσεH
2 + σ2

u1
(σ2

θ + σεH
2)2

(32)

and

λ2H =
σ2
θ

2
√
σ2
u2

(σ2
θ + σεH

2)

√
2β1H

2σ4
θσεH

2 + σ2
u1

(σ2
θ + σεH

2)2

β1H
2σ4

θ + σ2
u1

(σ2
θ + σεH

2)
, (33)

λ1 = (1− ωH)
β1Lσ

4
θ

β1L
2σ4

θ + σ2
u(σ

2
θ + σ2

εL
)

+ ωH
β1Hσ

4
θ

β1H
2σ4

θ + σ2
u(σ

2
θ + σ2

εH
)
, (34)

λ∗1H =
β1Hσ

4
θ

β1H
2σ4

θ + σ2
u(σ

2
θ + σ2

εH
)
. (35)

The second-order conditions guarantee β2H > 0 as well as β1H > 0. This abstracts the

informed agent from destabilizing prices in the first period to make extreme profits in

the second period. Given that λ∗1H < λ1, it is also obvious that β1H is smaller than the

respective β of a model without two different uncertainty regimes. The informed agent

does not trade as aggressively on his information in the high-uncertainty case as he would

without having the uncertainty about the signal regime in the first period. In the case

of the low-uncertainty regime, exactly the opposite is true and the informed agent trades

more aggressively than in the case without signal uncertainty. Compared to the static

model, there exist different signal-dependent trading intensities.

In the first period, the following conditions hold in equilibrium. λ1H < λ1 < λ1L, which

implies according to equation 30 that β1H < β∗1H and β1L > β∗1L with β∗1,i denoting the

value of β in the respective regime without the heterogeneous signal structure. This im-

plies that compared to a model without uncertainty regarding the information regime,

the strategic trader trades more aggressively in the low-variance regime than he would in

the high-variance regime. Furthermore, it holds that β1H < β1L for 1 ≤ σεL < σεH and
∂β1,i
∂σε,i

> 0, which is puzzling at first sight.
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Figure 3: development of β and β − S subject to an increase in σεH = σ −H over the first period of
the model and for four different levels of noise trading σu = nz = {1/2, 1, 3/2, 2}. σεL is fixed at 1.

3.2 Discussion and comparison with benchmark

We first want to introduce a new variable, namely β−Si. β measures the trading activity

of the informed agent given his expectation about the terminal value of the risky asset

E[θ|Si] as well as his expectation about the price of the respective period E[P |Si]. In

the following, it is also referred to as the informed agent’s trading aggressiveness. In

comparison, β−Si is a statistic measuring the insider’s trading activity towards the pure

signal; hence, β scaled by the respective update factor Fi. Therefore, β − Si decreases

with the variance of noise trading, while β exhibits an opposite reaction and increases

with the variance of noise trading. β only captures the fact that an increasing variance

of noise trading makes it much easier for the insider to hide, while β − Si also captures

the fact that increasing σεi reduces the precision of the signal.

Figure 3 shows the development of β1L and β1H as well as β − S1L and β − S1H for

different levels of signal noise in the high-variance regime σεH = σ−H ∈ [1, 3]. The signal

noise in the low-variance regime is held constant at the level of 1, σεL = 1. The amount

of noise trading ranges from 1/2 to 3, σu = nz ∈ [1/2, 3]. The informed agent’s trading

aggressiveness increases with noise traders’ demand in both regimes, H and L. The higher

the noise trading, the more that the strategic trader is able to act on his informational

advantage without revealing too much of his private information. Kyle (1985, p. 1316)

refers to this phenomenon that ”the noise traders provide camouflage” for the insider.

18



Furthermore, β increases with the variance of the signal’s noise component in the high-

uncertainty regime, σεH . The economic intuition explaining this behavior is very similar

to the noise trader effect already stated: the more uncertainty that is incorporated in

the economy, the lower the risk of the informed revealing too much information to the

market maker by his actions.

The most striking fact is the path of β1L. It not only increases with σεH , but also

constantly above β1H with a steadily growing spread, β1L > β1H ∀ 1 ≤ σεL < σεH .

This is true despite σεL being held constant at the level of one. The technical explanation

of this pattern is entrenched in equation 30. The economic reason is the informed agent’s

advantage in profitability when trading on the low-variance signal compared to the high-

variance signal. Hence, the informed agent acts more decisively on the more informative

signal, whereas he relatively scales back his reaction to the signal with the higher un-

certainty. As the market maker is unable to distinguish between the two regimes, the

informed trader exploits his informational advantage in the favorable regime and in re-

turn sacrifices some profit in the comparatively less favorable regime. The basic idea

behind this trade balancing between regimes is once again to avoid revealing too much

information—he skews his trading towards the favorable regime). The mechanism be-

comes even more obvious looking at β−S1,i. As already mentioned, β−S1,i measures the

trading aggressiveness of the informed regarding the spread between the unconditional

expectation of the asset’s pay off and the pure signal, S − θ̂. Compared to β1,i, which

measures the trading activity taking into account the difference between the conditional

expectation of the asset’s pay off and the unconditional expectation (E[θ|Si]− θ̂), β−S1,i

incorporates the effect of a higher signal variance directly into the trading behavior of the

informed agent. It shows the combined effect that an increase in signal noise in the high-

uncertainty regime has on the trading behavior of the agent when observing a certain

signal S. The graph shows a decreasing trading intensity in the high-variance regime,

as the indirect effect of an increase in β1H is over-compensated by the direct effect of an

increasing σεH on signal precision. The opposite is true in the low-variance regime. As σεL
is held constant at one, the effect is purely governed by the increase of β1L. Nonetheless,

trading activity with respect to a certain signal in the low-uncertainty regime increases

with σεH . If the informed receives a signal in the low-variance regime, he reacts by scaling

up his trading activity, while in the high-variance regime he cuts back. The described

pattern is consistent for all mixture weights. However, the more weight that is placed on

the high-variance regime, the more aggressive the trading of the informed agent becomes

in the low-variance regime.

Figure 4 shows the development of the complete range of coefficients of the model,

β, β − S and λ, for both periods as well as regimes. In the second period β, as the first
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Figure 4: development of the main coefficients of the model, β, β − S and λ subject to an increase in
σεH = σ −H over both periods and for four different levels of noise trading σu = nz = {1/2, 1, 3/2, 2}.
σεL is fixed at 1.
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period, the level of noise trading increases in both regimes. Furthermore, β2H increases

with σεH and constantly exceeds its first period peer β1H . By contrast, β2L remains

rather constant, as its sole exposure to σεH is via β1L. The enhanced trading activity in

the second period is in line with the economics of the model. Trading activity/intensity

between the periods is linked by the informativeness of prices. If the informed agent

trades more aggressively in the first period, he is penalized by facing a worse price in

the second period. In the last period of trading, the informed agent no longer faces this

trade off. Therefore, in a two-period model, the informed will exploit his information

more actively with higher trading intensity in the second period. When taking a closer

look at the graph, the stated mechanism is confirmed with respect to βH but not in line

with the development of βL. The reason is an intertemporal shift of trading activity

from the second period to the first in the low-uncertainty regime. The informed agent

increases his trading intensity in the first period to exploit his additional informational

advantage concerning the state of the uncertainty regime. For this purpose, he sacrifices

trading opportunities in the second period when the state of the regime is revealed and

his informational advantage is no longer as strong. This mechanism is also depicted by

the evolution of λ. In the second period, λ2,i is simply given by 1/2 the reciprocal of β2,i

and hence the trading activity of the informed agent has a strong and direct influence

on market depth. In period one, this mechanism is much more involved, leading to an

increase in trading activity as β1L has a smaller impact on market depth in the first period

of the low-variance regime. The informed agent makes use of this fact by increasing his

trading activity in the low-variance regime of the first period.

3.3 Over- and under-reaction

In the following, we analyze the equilibrium price dynamics of the model and further

elaborate on their main characteristics by conducting a numerical analysis.

3.3.1 Price dynamics

The above-stated two-period equilibrium supports under- as well as over-reaction in

prices, without giving rise to arbitrage opportunities as prices are fully rational given

the respective information sets of the agents. The market maker quotes a price that is

exactly his conditional expectation of the pay off of the risky asset given his information.

His information set comprises observed aggregate demand. Like in the static model,

prices are a linear function of aggregate demand. In the first period, when observing

aggregate demand, the market maker does not know which signal informed demand is

based on. Hence, the price is set as a linear combination of the two possible states of the

world. In either case, there exists a mispricing compared to the price, which would exist
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given the market maker had complete information about the signal regime. In the second

period, the market maker learns about the kind of signal and is able to quote a price that

incorporates all new information up to that point. Hence, the mispricing inherited from

the first period resolves and causes the respective price pattern. It is possible to show

that the market maker systematically over- or underestimates the price in the first pe-

riod depending on which signal SH or SL the strategic trader observes. This means that

the expected price dynamics exhibit momentum and reversal patterns in the two-period

model.

Proposition 1. In the above-stated sequential two-period equilibrium, there exist two

distinct price movements between period one and two.

(i) There is always over-reaction if informed demand is based on the signal with high

uncertainty. This leads to a price reversal when the uncertainty regarding the signal

regime is resolved.

(ii) There is always under-reaction if informed demand is based on the low-uncertainty

signal. This leads to price momentum when the uncertainty regarding the signal

regime is resolved.

Given the complete information set of the market maker after the second period, the

equilibrium price of the second period P2,i writes as

P2H = E[θ|X1H , X2H ] = P ∗1H + λ2HX2H ,

P2L = E[θ|X1L, X2L] = P ∗1L + λ2LX2L,
(36)

with P ∗1,i being the hypothetical price in period one if the market maker had known the

type of the signal and X2,i being the new aggregate demand in period two. The two

hypothetical first-period prices for the two regimes are given by

P ∗1H = E[θ|X1H ] = θ̂ + λ∗1HX1H ,

P ∗1L = E[θ|X1L] = θ̂ + λ∗1LX1L,
(37)

with

λ∗1H =
β1Hσ

4
θ

β1H
2σ4

θ + σ2
u(σ

2
θ + σ2

εH
)

and λ∗1L =
β1Lσ

4
θ

β1L
2σ4

θ + σ2
u(σ

2
θ + σ2

εL
)
.

The actual price in period one P1 is given by

P1 = E[θ|X1] = θ̂ + λ1X1, (38)
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with λ1 being a weighted average of λ∗1H and λ∗1L written as

λ1 = ωHλ
∗
1H + (1− ωH)λ∗1L. (39)

The weights are determined by

ωH =
pfX1H

(X1)

(1− p)fX1L
(X1) + pfX1H

(X1)
and (1−ωH) =

(1− p)fX1L
(X1)

(1− p)fX1L
(X1) + pfX1H

(X1)
.

Knowing that X2,i is mean zero the expected price difference at the beginning of period

two ∆Pi = P2,i − P1 is defined by

E[∆Pi|X1, i] = E[P2,i|X1, i]− P1

= P ∗1,i − P1,
(40)

the expected price movement can be characterized by the difference between the actual

and the hypothetical first-period price. Simplifying the expression, the expected price

difference in the respective regime writes

P ∗1L − P1 = ωH(λ∗1L − λ∗1H)X1,

P ∗1H − P1 = (1− ωH)(λ∗1H − λ∗1L)X1,

and is purely governed by the difference between the values of λ∗L and λ∗H . It is easy to see

that P ∗1H < P1 < P ∗1L ∀ X > 0 and P ∗1H > P1 > P ∗1L ∀ X < 0. Hence, one can on average

observe an under-reaction, momentum, following the signal with the higher precision SL

and an over-reaction, reversal, following the signal containing more uncertainty, namely

SH . This pattern is also supported by the covariances of the price changes in the different

regimes. Given S = SL, cov(∆P1,∆P2) > 0, whereas if S = SH , cov(∆P1,∆P2) < 0.

These findings are summarized in proposition 2.

Proposition 2. Depending on the signal:

(i) Price changes/returns are positively correlated given the signal in the low-variance

regime, cov(∆P1L,∆P2L) > 0 and thus exhibit momentum.

(ii) Price changes/returns are negatively correlated given the signal in the high-variance

regime, cov(∆P1H ,∆P2H) < 0 and thus exhibit reversal.

Proof. The proof of proposition 2 is given in appendix B.4.

The general correlation pattern in the economy unconditional on the signal is governed

by two effects: first, the variance of aggregate demand; and second, the mixture weight p.

It is easy to see that the model creates signal-dependent momentum and reversal patterns
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Figure 5: Development of λ∗1L, λ1 and λ∗1H subject to an increase in σεH = σ − H for four different
levels of noise trading σu = nz = {1/2, 1, 3/2, 2} as well as different mixture weights p = {1/3, 1/2, 2/3}.
σεL is fixed at 1.

and additionally allows for overall momentum or reversal in the economy depending on

the ratio of high- to low-variance signals.

3.3.2 Numerical comparative statics

In order to develop a better understanding of the properties of the price movement and

given that the direction of the effect as well as its magnitude are primarily governed by

λ, we want to more closely elaborate on the properties of λ1, λ
∗
1L and λ∗1H .

Figure 5 shows the development of the values of λ subject to an increase in the signal

variance σεH for different values of noise trading and different mixture weights, while σεL
is held constant at one. In the graph, the red and green line show the values of λ∗1L
and λ∗1H . The blue line shows the value of λ1, which the actual price in period one is

based on. The difference between the red and blue line determines the magnitude of the

under-reaction and thus is responsible for the momentum effect. The difference between

the blue and green line depicts the strength of an over-reaction in the model and thus

governs the reversal pattern. Ceteris paribus, the mispricing in either direction increases

with σεH .

Furthermore, mispricing is the highest when noise trading is at a low level and it

24



reduces with increasing levels of noise trading. This is in line with intuition. Given low

levels of noise trading, aggregate demand is more informative for the market maker. Thus,

the market maker reacts more strongly to his information, which increases the mispricing.

Given high levels of noise trading, the market maker does not weight his information as

heavily in his pricing rule. This is depicted in the steady decrease in the overall level of

λ. Additionally, the difference between λ∗1L, λ1 and λ∗1H decreases. The magnitude of the

resulting mispricing deteriorates with an increasing level of noise trading.

A change in the mixture weights p in favor of a higher probability of the low-variance

regime p < 0.5 shifts the blue line closer to the red one. This means that on average it is

more probable that the economy experiences a scenario of under-reaction. Nevertheless,

the magnitude of the price effect is smaller. At the same time, the probability of observ-

ing over-reaction reduces. Nonetheless, if an over-reaction occurs it has a more severe

magnitude, as can be seen by the larger difference between the blue and the green line.

The intuition is as follows. The market maker knows that it is more likely that he un-

derestimates the price and reacts by trying to minimize this effect. However, when he is

surprised by the other regime, the resulting price movement is more severe. The opposite

is true for values of p > 0.5. In this case, over-reactions are more likely and smaller in

magnitude while under-reactions do not occur as much. However, if they occur, they are

of greater magnitude.

4 Extension to a sequential equilibrium with N pe-

riods

In this section we extend the two-period model to N trading periods, derive the solution

to such a generalized sequential auction equilibrium and characterize its price dynamics.

4.1 The Model

In this section, we generalize the two-period setting to a model in which not only two

but N rounds of trading take place sequentially. The structure is almost identical to the

two-period setting. The signal type of the informed trader is again revealed after the

first period; however, trading does not stop after the second period but rather continues

up to period N . Overall, there are n auctions in this setting. The time at which the

nth auction takes place is denoted as tn. At each auction, new noise trader demand

enters the market. Noise trader demand at time tn, is denoted as un. In each period tn,

noise trader’s demand is normally distributed with variance σ2
u and is independent over

time, although the quantity traded by noise traders in one auction is independent of the

quantity traded at other auctions. The distribution of un is given by un ∼ N (0, σ2
un), with
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σ2
un being constant for all n. Hence, we can write σ2

un = σ2
u ∀ n. This corresponds to the

original setting in Kyle (1985), assuming the time intervals between the different rounds

of trading to be one, ∆t = tn− tn−1 = 1. Informed demand at time tn is indicated as xn,

and corresponding aggregate demand of the nth auction writes Xn. The distributions of

the signal as well as the liquidation value of the asset remain unchanged. The market

clearing price at each auction set by the market maker is denoted Pn. The informed

agent does not receive any new information throughout the n trading periods. Trade is

structured in the same way as before.

The information set of the informed in the nth auction includes the signal regarding

the liquidation value as well as all past prices set by the market maker up to the current

point in time F In = (P1, ..., Pn−1, Si). The informed trader still optimizes his profits taking

into account the pricing rule of the market maker as well as the change in the information

set of the market maker after the first period. However, he now optimizes not only over

two but rather over n periods. The insider takes into account the impact of his actions

not only on the price of the current auction but also on all future auctions.

The market maker still sets the price according to his linear pricing rule, again in-

corporating all information available at each point in time. After the revelation of the

signal type at the end of period one, the market maker—analogous to the two-period

setting—is able to distinguish between the two distributions and will do so. He revises

his first-period pricing rule to correctly incorporate the action of the informed trader in

period one in the prices that he sets in future periods. The information set of the market

maker in period tn includes all prices including Pn as well as past aggregate demand

FMM
n = (X1, X1,i..., Xn−1,i, Xn,i). After period one, the economy exhibits two potential

paths.

4.2 Optimization

The informed wants to maximize his expected profit. Hence, he wants to maximize

πn =
N∑
k=n

(θ − Pk)xk, (n = 1, ..., N). (41)

The maximization is conducted in two steps. First, the informed agent optimizes his

demand path up to the end of the first period, when uncertainty regarding the risk

regime is resolved. This first step is very similar to the original optimization in Kyle

(1985). The Bellman equation for the periods n = (2, ..., N) - which in the following are

denoted as m - writes

max
xm

Em [Um(xm, Pm) + Vm(xm+1, Pm+1)|Si] , (42)
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with Um being the utility function of period two and Vm the respective value function,

which is quadratic for risk-neutral agents,

Um = (θ − Pm)xm,

Vm = αm(θ − Pm)2 + δm.

Plugging in yields the following maximization problem

max
xm

Em
[
(θ − Pm)xm + αm(θ − Pm)2 + δm|Si

]
. (43)

The pricing rule of the market maker and hence the price process of the economy for the

periods (m, ..., N) starting at n = 2 is given by the first-difference equation

Pi,m = Pi,m−1 + λi,mXm. (44)

Pi,m−1 for m = n = 2 is equal to the revised price of the first period, which incorporates

the additional information about the signal type, P ∗1,i. After plugging in 44 as expression

for price, the maximization writes

max
xm

Em[ (θ − (Pi,m−1 + λi,m(xm + um)))xm

+ αm (θ − (Pi,m−1 + λi,m(xm + um)))2 + δm|Si].
(45)

The resulting FOC regarding xm is given by

Em[θ − Pi,m−1 − 2λi,mxm − λi,mum
− 2λi,mαm (θ − (Pi,m−1 + λi,m(xm + um))) |Si] = 0.

(46)

The resulting demand of the informed trader is

xm =
(1− 2αmλi,m)

2λi,m(1− αmλi,m)
(Em[θ|Si]− Pi,m−1), (47)

subject to the boundary condition αN = δN = 0 and the second-order condition

λi,m(1− αmλi,m) > 0. (48)

In the next step, we maximize the first-period problem given the maximization up to

period m = 2, taking into account the optimal behavior of the informed agent up to
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period 2. The Bellman equation writes

max
x1

E [U1(x1, P1) + Um(xm, Pm) + Vm(f(xm, Pm))|Si] , (49)

given

U1 =(θ − P1)x1

Um =(θ − Pm)xm

Vm =αm(θ − Pm)2 + δm

Pm =(Pi,m−1 + λi,mXm

Pi,m−1 =P ∗1,i = θ̂ + λ∗1,iX1

P1 =θ̂ + λ1X1.

Plugging into the maximization yields

max
x1

E[(E[θ|Si]− θ̂ − λ1(x1 + u1))x1

+ ((E[θ|Si]− θ̂ − λ∗1,i(x1 + u1)− λi,m(xm + um))xm

+ αm((E[θ|Si]− θ̂ − λ∗1,i(x1 + u1)− λi,m(xm + um))2 + δm].

(50)

Using the fact that

xm =
(1− 2αmλi,m)

2λi,m(1− αmλi,m)
(Em[θ|Si]− θ̂ − λ∗1,i(x1 + u1)), (51)

and calling

ψ =
(1− 2αmλi,m)

2λi,m(1− αmλi,m)
, (52)

ϕ = (E[θ|Si]− θ̂), (53)

we can write

xm = ψ(ϕ− λ∗1,i(x1 + u1)). (54)

Taking the first derivative regarding x1 yields the FOC

0 =ϕ− 2λ1x1 − 2ψλ∗1,i(ϕ− λ∗1,ix1) + 2ψ2λ∗1,iλi,m(ϕ− λ∗1,ix1)
− 2αmλ

∗
1,iϕ+ 2αmλ

∗
1,i

2x1 + 4αmψλ
∗
1,iλi,m(ϕ− λ∗1,ix1)

− 2αmψ
2λ∗1,iλ

2
i,m(ϕ− λ∗1,ix1).

(55)
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Solving for x1 and plugging back in expressions 52 and 53 results in the first-period

demand of the informed agent given by

x1 =
2λ(H/L),m(1− αmλ(H/L),m)− λ∗1(H/L)

4λ1λ(H/L),m(1− αmλ(H/L),m)− λ∗1(H/L)
2 (E[θ|SH/L]− θ̂), (56)

subject to the second-order condition

4λ1λ(H/L),m(1− αmλ(H/L),m)− λ∗1(H/L)
2

2λ(H/L),m(1− αmλ(H/L),m)
> 0. (57)

4.3 Market maker’s filtering problem and price process

The price process—let’s call it the market maker’s filtering problem—looks as follows.

The properties of the price process are very close to the those in the two-period model,

with the difference being that it goes beyond the second period. First, we investigate the

price process for the periods starting at m after the information about the signal regime

is resolved. The derivation is in line with that in Kyle (1985), with the sole difference

that being the informed agent observes a signal about the terminal value of the asset and

not the liquidation value itself. First, we define the beliefs of the market maker regarding

the insider’s trading strategy.

xm,i = βm,i(E[θ|SH/L]− Pi,m−1) (58)

Xm,i = βm,i(E[θ|SH/L]− Pi,m−1) + um (59)

Next, we define the market maker’s information set by FUm−1 = {X1,i, ..., Xm−1,i}. To

enhance the readability, we will drop the subscript i ∈ {H,L}, which indicates the

variance regime. This is without loss of generality, as at this stage of the model the

market maker knows the type of the signal and all the calculations are conducted for

either stage H or stage L .

We further define

Σθ,m−1 = V AR[θ|FUm−1]
ΣS,m−1 = V AR[S|FUm−1]
ΣX,m−1 = V AR[Xm|FUm−1]
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Using the results 92, 93, 94, 95 and 96 from the two-period case in the appendix, one can

show

E[Xm|FUm−1] = 0

Cov[θ,Xm|FUm−1] = βmFΣθ,m−1

ΣX,m−1 = β2
mF

2ΣS,m−1 + σ2
um .

Due to the linear structure of the equilibrium, the price Pm is given by

Pm = Pm−1 + λmXm,

and the market efficiency condition implies

Pm − Pm−1 = λmXm = E[θ − Pm−1|FUm].

Therefore, according to the projection theorem, λm is defined as

λm =
βmFΣθ,m−1

ΣX,m−1
=

βmFΣθ,m−1

β2
mF

2ΣS,m−1 + σ2
um

,

and

Σθ,m = Σθ,m−1 −
(βmFΣθ,m−1)

2

β2
mF

2ΣS,m−1 + σ2
um

,

=
β2
mF

2(ΣS,m−1 − Σθ,m−1)Σθ,m−1 + Σθ,m−1σ
2
um

β2
mF

2ΣS,m−1 + σ2
um

,

ΣS,m = ΣS,m−1 −
(βmFΣS,m−1)

2

β2
mF

2ΣS,m−1 + σ2
um

,

=
ΣS,m−1σ

2
um

β2
mF

2ΣS,m−1 + σ2
um

.

Using the fact that

ΣS,m−1 = Σθ,m−1 + V AR[ε|FUm−1],
V AR[ε|FUm−1] = Σε,m−1,
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Σθ,m =
(β2

mF
2Σε,m−1 + σ2

um)Σθ,m−1

β2
mF

2ΣS,m−1 + σ2
um

,

Σθ,m = λm ∗ (βmFΣε,m−1 +
σ2
um

βmF
),

λm can be rewritten as

λm =
βmFΣθ,m

β2
mF

2Σε,m−1 + σ2
um

. (60)

For the first period, the coefficients of the model are

λ∗1H =
β1HFHΣθ

ΣXH

=
β1HFHΣθ

β2
1HF

2
HΣSH + σ2

um

, (61)

λ∗1L =
β1LFLΣθ

ΣXL

=
β1LFLΣθ

β2
1LF

2
LΣSL + σ2

um

, (62)

and the actual λ1 is given by the weighted average, like in the two-period model

λ1 = (1− ωH)
β1LFLΣθ

ΣXL

+ ωH
β1HFHΣθ

ΣXH

. (63)

The price of the first period is given by

P1 = E[θ|X1] = θ̂ + λ1X1. (64)

The properties of the model between the first and second period - when the uncertainty

of the signal regime resolves - are almost identical to those in the two-period case. The

only difference is that the respective βs are now defined by the recursive equations 69,

79, 70 and 76 described in theorem 4.1. From period two onwards, for each signal regime

the model follows the general solution of the original model of Kyle (1985) with a slight

modification, given that the informed agent observes a signal about the liquidation value

of the asset and not the value itself.

4.4 Nature of the equilibrium

The following theorem gives the equilibrium solution to the N -period model.

Theorem 4.1. For the sequential model with n trading periods, a linear recursive equi-

librium exists dependent on the signal regime. The coefficients defining the equilibrium

can be divided along two sub-periods.

For the periods (m = 2, ..., N), the equilibrium is defined by the following equations.
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The solution is very close to the original equilibrium in Kyle (1985) and depends sym-

metrically on the uncertainty regime. 9

xm = βm(E[θ|S]− Pm−1), (65)

∆Pm = Pm − Pm−1 = λmXm, (66)

Σθ,m = V AR[θ|FUm], (67)

E[πm|F Im] = αm−1(E[θ|S]− Pm−1)2 + δm−1. (68)

The constants solving the system of difference equations up to period m = 2 in the re-

spective uncertainty regime are given by

βm,i =
(1− 2αmλi,m)

2λi,m(1− αmλi,m)
, (69)

λi,m =
βi,mFΣθ,i,m

β2
i,mF

2Σε,m−1 + σ2
um

, (70)

Σθ,m =
β2
mF

2Σε,m−1 + σ2
um

β2
mF

2ΣS,m−1 + σ2
um

Σθ,m−1, (71)

αm−1,i =
1

4λi,m(1− αmλi,m)
, (72)

δm−1,i = αm,iλ
2
i,m−1σ

2
um + δm. (73)

For the first period, the equilibrium solution is given by

x1 = β1,i(E[θ|S]− θ̂), (74)

P1,i = θ̂ + λ1X1, (75)

λ1 = ωHλ
∗
1H + (1− ωH)λ∗1L, (76)

λ∗1H =
β1HFHΣθ

ΣXH

, (77)

λ∗1L =
β1LFLΣθ

ΣXL

, (78)

β1,i =
2λi,m(1− αmλi,m)− λ∗1,i

,
4λ1λi,m(1− αmλi,m)− λ∗1,i

2, (79)

α0,i =
λi,m(1− αmλi,m)− λ∗1,i + λ1

4λ1λi,m(1− αmλi,m)− λ∗1,i
2 , (80)

δ0,i = α1,iλ
∗
1,i

2σ2
um + δ1. (81)

where λm,i and βm,i are defined by 70 and 69 and β1,i and λ1 by 79, 78 and 77.

Proof. The detailed derivation of theorem 4.1 is given in appendix C.

9For notational convenience, the subscripts indicating the signal regime are skipped in some parts.
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The price path in equilibrium up to period m = 2 is determined by 66. The price

in period one is given by 75. Therefore, the expected price change from period one to

period two is

E[∆Pm=2,i] = E[Pm=2,i]− P1 = λmXm

= P ∗1,i − P1.
(82)

Using 76, 78 and 77 this can be again written as

P ∗1L − P1 = ωH(λ∗1L − λ∗1H)X1,

P ∗1H − P1 = (1− ωH)(λ∗1H − λ∗1L)X1,
(83)

with λ∗1L > λ∗1H . The above result confirms the price pattern stated in propositions 1 and

2 of the two-period model for the sequential equilibrium.

According to 68, ex-ante expected profit of the insider is given by

E[π|Si] = α0(E[θ|Si]− P0)
2 + δ0, (84)

in each uncertainty regime. Inserting 80 and 81 results in

E[π|Si] =
λi,m(1− αmλi,m)− λ∗1,i + λ1

4λ1λi,m(1− αmλi,m)− λ∗1,i
2 Fi(S − θ̂)

+
λ∗1i

2σ2
u1

4λi,m(1− αmλi,m)
+ δ1,

(85)

for m = 2 (see the appendix for the detailed calculation). Compared to a setting without

scenario uncertainty, the ex-ante expected profit of the insider would write

E[π|S] =
λi,m(1− αmλi,m)

4λ∗1,iλi,m(1− αmλi,m)− λ∗1,i
2Fi(S − θ̂)

+
λ∗1i

2σ2
u1

4λi,m(1− αmλi,m)
+ δ1.

(86)

Looking at expressions 85 and 86, it becomes clear that the information asymmetry

about the heterogeneous information structure influences the expected ex-ante utility of

the informed investor in two dimensions. First, it directly enters in α0, in the numerator

via the difference between λ∗1i−λ1 and in the denominator via the product λ1λi,m. Second,

it influences the whole expression and all future periods by the different values of β1,i.
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5 Conclusion

In this paper, we have shown that patterns of security price over- and under-reaction

can exist in a simple strategic trade model with risk-neutral agents without inducing

any biases on the behavior of these agents. The result is achieved by turning the focus

away from the conduct and interaction of the agents, rather targeting the signal structure

itself. Most empirical literature like Chan (2003) or Gutierrez and Kelley (2008) as well

as theoretical models like Holden and Subrahmanyam (2002), Cespa and Vives (2012)

or Andrei and Cujean (2017) consider public news as a homogeneous information signal.

We suggest that different types of information exist and the price reaction to new infor-

mation depends on these types. More specifically, the price reaction is determined by the

uncertainty incorporated in the different types of information. Following these lines, we

have established a model that produces under-reaction given news with low variance and

thus lower uncertainty and over-reaction given news with high variance and thus higher

uncertainty. This is a very general setup and its behavior is in line with the empirical

findings of Forrer (2015), as well as the words of Fama (1998, p. 284) that

”Models dealing with predictability must specify mechanisms in such a way

that the same investors underreact to some types of events and overreact to

others.”

Furthermore, our model is not at odds with the prominent behavioral explanations of

momentum and reversal given by Daniel et al. (1998) and Barberis et al. (1998), but

rather it is complementary. Those biases seem to amplify the price patterns of the model.

The model provides an alternative source concerning how momentum and reversal can

evolve while agents make fully rational trading decisions.

For future research, it would be worthwhile to investigate how the equilibrium outcome

and the price process in the sequential equilibrium would be influenced if the information

asymmetry regarding the signal characteristics were resolved in later periods. We believe

that it should be possible to prolong the period of under- and over-reaction up to a certain

extent.
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Appendices

A The static model

Derivation of P1

P1 = E[θ|X] = ωLE[θ|XL] + ωHE[θ|XH ]

P1 = θ̂ + ωL
βFLσ

2
θ

β2F 2
L(σ2θ + σ2εL) + σ2u

X + ωH
βFHσ

2
θ

β2F 2
H(σ2θ + σ2εH ) + σ2u

X

P1 = θ̂ +

(
ωL

βFLσ
2
θ

β2F 2
L(σ2θ + σ2εL) + σ2u

+ ωH
βFHσ

2
θ

β2F 2
H(σ2θ + σ2εH ) + σ2u

)
X

P1 = θ̂ +

(
ωL

βσ4θ
β2σ4θ + σ2u(σ2θ + σ2εL)

+ ωH
βσ4θ

β2σ4θ + σ2u(σ2θ + σ2εH )

)
X

Defining the coefficients E[λ] and β in equilibrium in terms of parameters of the distributions

by solving for β and plugging in E[λ] =
1

2β
.

1

2β
= E

[
ωL

βFLσ
2
θ

β2F 2
L(σ2θ + σ2εL) + σ2u

+ ωH
βFHσ

2
θ

β2F 2
H(σ2θ + σ2εH ) + σ2u

]
0 = E

[
ωL

β2FLσ
2
θ

β2F 2
L(σ2θ + σ2εL) + σ2u

+ ωH
β2FHσ

2
θ

β2F 2
H(σ2θ + σ2εH ) + σ2u

]
− 1

2

0 = (1− p)
β2FLσ

2
θ

β2FLσ2θ + σ2u
+ p

β2FHσ
2
θ

β2FHσ2θ + σ2u
− 1

2

0 = (1− p)
β2σ4θ

β2σ4θ + σ2u(σ2θ + σ2εL)
+ p

β2σ4θ
β2σ4θ + σ2u(σ2θ + σ2εH )

− 1

2

(87)

Solving equation 87 for β means solving a fourth-order polynomial, which has four solutions. As

according to the second-order condition β has to be real and positive, three of the four solutions

can be ruled out immediately. The one surviving is

β =

√
σ2u√

2σ2θ

√
(2p− 1)(σ2εH − σ2εL) +

√(
(σ2εL + σ2θ) + (σ2εH + σ2θ)

)2 − 4(p− p2)(σ2εH − σ2εL)2,

knowing λ̂, the market depth expected by the insider
1

λ̂
is given by

1

λ̂
=

√
2σ2u
σ2θ

√
(2p− 1)(σ2εH − σ2εL) +

√(
(σ2εL + σ2θ) + (σ2εH + σ2θ)

)2 − 4(p− p2)(σ2εH − σ2εL)2,

and for p = 1/2

1

λ̂
=

2
√
σ2u

σ2θ

4

√
(σ2εL + σ2θ)(σ

2
εH

+ σ2θ).
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The ex-ante expected profits of the insider (unconditional on S) are given by

E[π] =
1

2

√
σ2u
σ2θ

Bp

(
pσ4θ

(σ2θ + σ2εH )
+

(1− p)σ4θ
(σ2θ + σ2εL)

)
,

E[π] = p
1

2

√
σ2uBp

σ2θ
(σ2θ + σ2εH )

+ (1− p)1

2

√
σ2uBp

σ2θ
(σ2θ + σ2εL)

.

B The two-period model

B.1 Optimization

As the structure of the problem is identical for both uncertainty regimes, the optimization is

valid for both regimes, indicated by the subscript i ∈ {H,L}. Knowing that the value function

for a risk-neutral agent is quadratic, one can utilize the maximized demand of period two given

in expression 26 and plug it into the maximization problem of period one.

max
x1

E [(θ − P1)x1 + (θ − P2,i(x
∗
2))x

∗
2|Si] (88)

max
x1

E
[(

(θ − θ̂ − λ1(x1 + u1)
)
x1 +

(
θ − P ∗1,i − λ2,i(x∗2 + u2)

)
x∗2|Si

]
max
x1

E

[(
(θ − θ̂ − λ1(x1 + u1)

)
x1 +

1

4λ2,i

(
θ − θ̂ − λ∗1,i(x1 + u1)

)2
− λ2,iu2x∗2|Si

]
.

(89)

Resulting in the FOC

E

[(
θ − θ̂ − λ1u1 − 2λ1x1

)
+

1

2λ2,i

(
θ − θ̂ − λ∗1,i(x1 + u1)

)
(−λ1,i)|Si

]
= 0

E [θ|Si]− θ̂ − 2λ1x1 −
λ1,i
2λ2,i

(
E [θ|Si]− θ̂ − λ∗1,ix1

)
= 0,

(90)

and yielding

x1,i =
2λ2,i − λ∗1,i

4λ1λ2,i − λ∗1,i
2

(
E [(θ|Si]− θ̂

)
.

The second-order condition is given by

4λ1λ2,i − λ∗1,i
2

2λ2,i
> 0 (91)
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B.2 Distributions

The signal distribution in the two-period setting is as follows:

First Period

x1H ∼ N (0, β1H
2FH

2(σ2θ + σ2εH )) and x1L ∼ N (0, β1L
2FL

2(σ2θ + σ2εL))

X1H = x1H + u1 = β1HFH(SH − θ̂) + u1 and X1L = x1L + u1 = β1LFL(SL − θ̂) + u1

X1H ∼ N (0, β1H
2FH

2(σ2θ + σ2εH ) + σ2u1) and X1L ∼ N (0, β1L
2FL

2(σ2θ + σ2εL) + σ2u1).

Given the distributions of X1H and X1L, aggregate demand in the first period X1 and θ are

distributed jointly normal,

θ

X1H

∼ N

[(
θ̂

0

)
,

(
σ2θ β1HFHσ

2
θ

β1HFHσ
2
θ β1H

2FH
2(σ2θ + σ2εH ) + σ2u1

)]
,

θ

X1L

∼ N

[(
θ̂

0

)
,

(
σ2θ β1LFLσ

2
θ

β1LFLσ
2
θ β1L

2FL
2(σ2θ + σ2εL) + σ2u1

)]
.

The variance of θ given X1,i is

V ar[θ|X1,i] = σ2θ −
(β1,iFiσ

2
θ)

2

β1,i
2Fi

2(σ2θ + σ2εi) + σ2u1
=

β1,i
2Fi

2σ2θσ
2
εi + σ2u1σ

2
θ

β1,i
2Fi

2(σ2θ + σ2εi) + σ2u1
(92)

Given the distributions of X1H and X1L, aggregate demand in the first period Xi and Si is

distributed jointly normal,

SH

X1H

∼ N

[(
θ̂

0

)
,

(
σ2θ + σ2εH β1HFH(σ2θ + σ2εH )

β1HFHσ
2
θ β1H

2FH
2(σ2θ + σ2εH ) + σ2u1

)]
,

SL

X1L

∼ N

[(
θ̂

0

)
,

(
σ2θ + σ2εL β1LFL(σ2θ + σ2εL)

β1LFLσ
2
θ β1L

2FL
2(σ2θ + σ2εL) + σ2u1

)]
.

The joint distribution of Xi and Si is

SH

X1H

∼ N

[(
θ̂

0

)
,

(
σ2θ + σ2εH β1Hσ

2
θ

β1HFHσ
2
θ β1H

2FH
2(σ2θ + σ2εH ) + σ2u1

)]
,

SL

X1L

∼ N

[(
θ̂

0

)
,

(
σ2θ + σ2εL β1Lσ

2
θ

β1LFLσ
2
θ β1L

2FL
2(σ2θ + σ2εL) + σ2u1

)]
.
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According to the distributions stated above, the conditional variance V ar[Si|X1,i] is given by

V ar[Si|X1,i] = σ2θ + σ2εi −
(β1,iFi(σ

2
θ + σ2εi))

2

β1,i
2Fi

2(σ2θ + σ2εi) + σ2u1

=
σ2u1(σ2θ + σ2εi)

β1,i
2Fi

2(σ2θ + σ2εi) + σ2u1
=

σ2u1(σ2θ + σ2εi)
2

β1,i
2σ4θ + σ2u1(σ2θ + σ2εi)

.

(93)

The next distribution to be evaluated is the joint distribution of F (θ|X1,i) and F (X2,i|X1,i).

The first two moments of F (X2,i|X1,i) after the signal type is revealed are given by

E[X2,i|X1,i] = E
[
β2,i(E[θ|Si]− p∗1,i) + u2|X1,i

]
= E

[
β2,i(E[θ|Si]− p∗1,i)|X1,i

]
+ E [u2|X1,i]

= β2,i (E[θ|X1,i]− p∗1,i)︸ ︷︷ ︸
=0

+E [u2|X1,i]︸ ︷︷ ︸
=0

E[X2,i|X1,i] = 0

(94)

and

V AR[X2,i|X1,i] = V AR
[
β2,i(E[θ|Si]− p∗1,i) + u2|X1,i

]
= V AR

[
β2,i(E[θ|Si]− p∗1,i)|X1,i

]
+ V AR [u2|X1,i]

= β2,i
2V AR [E[θ|Si]|X1,i]︸ ︷︷ ︸
β2,i

2F 2
i V AR[S|X1,i]

+σ2u2

= β2,i
2F 2

i

σ2u1(σ2θ + σ2εi)
2

β1,i
2σ4θ + σ2u1(σ2θ + σ2εi)

+ σ2u2

V AR[X2,i|X1,i] = β2,i
2 σ2u1σ

4
θ

β1,i
2σ4θ + σ2u1(σ2θ + σ2εi)

+ σ2u2 .

(95)

The covariance conditional on the first period’s information COV [X2,i, θ|X1,i] is given by

COV [β2,iE[θ|Si], θ|X1,i] = COV [β2,i(θ̂ + Fi(S − θ̂), θ|X1,i]

= COV [β2,iθ̂, θ|X1,i]︸ ︷︷ ︸
=0

+COV [β2,iFi(S − θ̂), θ|X1,i]

= COV [β2,iFiS, θ|X1,i]

= COV [β2,iFiθ, θ|X1,i] + COV [β2,iFiεi, θ|X1,i]︸ ︷︷ ︸
=0

= β2,iFi

(
E[θ2|X1,i]− E[θ|X1,i]

2
)

COV [β2,iE[θ|Si], θ|X1,i] = β2,iFiV AR[θ|X1,i].

(96)

Knowing these parameters and given that F (θ|X1,i) and F (X2,i|X1,i) are jointly normal

distributed, one can calculate the price in period two, which is the expected liquidation value of

the risky asset θ conditional on the information set available to the market maker in period two;
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hence, E[θ|X1,i, X2,i, P1,i]. Applying again the projection theorem for jointly normal variables

yields

E[θ|X1,i, X2,i, P1,i] = P1,i + λ2,iX2,i. (97)

B.3 Equilibrium coefficients two-period setting

with λ2,i being

λ2,i =
COV [β2,iE[θ|Si], θ|X1,i]

V AR[X2,i|X1,i]

=
β2,iFiV AR[θ|X1,i]

β2,i
2F 2

i V AR[S|X1,i] + σ2u2
,

knowing β2,i = 1
2λ2,i

, one can solve for β2,i, yielding

β2,i
2 =

σ2u2
(
β1,i

2σ4θ + σ2u1(σ2θ + σεi
2)
)
)

σ4θ
(
2β1,i

2F 2
i σεi

2 + σ2u1
)

β2,i =

√
σ2u2(σ2θ + σεi

2)

σ2θ

√
β1,i

2σ4θ + σ2u1(σ2θ + σεi
2)

2β1,i
2σ4θσεi

2 + σ2u1(σ2θ + σεi
2)2

,

then λ2,i is given by

λ2,i =
σ2θ

2
√
σ2u2(σ2θ + σεi

2)

√
2β1,i

2σ4θσεi
2 + σ2u1(σ2θ + σεi

2)2

β1,i
2σ4θ + σ2u1(σ2θ + σεi

2)
.

Second-period coefficients for the case S = SL

β2L =

√
σ2u2(σ2θ + σεL

2)

σ2θ

√
β1L

2σ4θ + σ2u1(σ2θ + σεL
2)

2β1L
2σ4θσεL

2 + σ2u1(σ2θ + σεL
2)2

,

and

λ2L =
σ2θ

2
√
σ2u2(σ2θ + σεL

2)

√
2β1L

2σ4θσεL
2 + σ2u1(σ2θ + σεL

2)2

β1L
2σ4θ + σ2u1(σ2θ + σεL

2)
,

λ∗1H =
β1Hσ

4
θ

β1H
2σ4θ + σ2u(σ2θ + σ2εH )

λ∗1L =
β1Lσ

4
θ

β1L
2σ4θ + σ2u(σ2θ + σ2εL)

,

λ1 = (1− ωH)
β1Lσ

4
θ

β1L
2σ4θ + σ2u(σ2θ + σ2εL)

+ ωH
β1Hσ

4
θ

β1H
2σ4θ + σ2u(σ2θ + σ2εH )

.

Plugging all coefficients into equation 30, β1L and β1H are implicitly defined by the following
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system of equations:

β1L =

(
σ2θ + σ2εL

) 1
√
σ2
u2

√
σ4
θ
β2
1L

+σ2u1(σ2θ+σ2εL)
2σ4
θ
β2
1L
σ2
εL

+σ2u1(σ2θ+σ2εL)2

− σ2
θβ1L

σ4
θ
β4
1L

σ2
θ
+σ2

εL

+σ2
u1


2σ4
θ(σ

2
θ+σ

2
εL)
(

pβ1H
σ4
θ
β4
1H

+σ2
θ
σ2u1+σ

2
u1σ

2
εH

+
β1L−pβ1L

σ4
θ
β4
1L

+σ2
θ
σ2u1+σ

2
u1σ

2
εL

)
√
σ2
u2

√
σ4
θ
β2
L
+σ2u1(σ2θ+σ2εL)

2σ4
θ
β2
1L
σ2
εL

+σ2u1(σ2θ+σ2εL)2

− σ6
θβ

2
1L(

σ4
θ
β4
1L

σ2
θ
+σ2

εL

+σ2
u1

)
2

(98)

β1H =

(
σ2θ + σ2εH

) 1
√
σ2
u2

√
σ4
θ
β2
1H

+σ2u1(σ2θ+σ2εH)
2σ4
θ
β2
1H

σ2
εH

+σ2u1(σ2θ+σ2εH)2

− σ2
θβ1H

σ4
θ
β4
1H

σ2
θ
+σ2

εH

+σ2
u1


2σ4
θ(σ

2
h+σ

2
θ)
(

pβ1H
σ4
θ
β4
1H

+σ2
θ
σ2u1+σ

2
u1σ

2
εH

+
β1L−pβ1L

σ4
θ
β4
1L

+σ2
θ
σ2u1+σ

2
u1σ

2
εL

)
√
σ2
u2

√
σ4
θ
β2
1H

+σ2u1(σ2θ+σ2εH)
2σ4
θ
β2
1H

σ2
εH

+σ2u1(σ2θ+σ2εH)2

− σ6
θβ

2
1H(

σ4
θ
β4
1H

σ2
θ
+σ2

εH

+σ2
u1

)
2

. (99)

Expressions 98 and 99 can now be solved numerically for β1L and β1H .

B.4 Price behavior

Knowing that X2,i is mean zero, the expected price difference at the beginning of period two

∆P,i = P2,i − P1 is defined by

E[∆P,i|X1, i] = E[P2,i|X1,i]− P1

= E[P ∗1,i + λ2,iX2,i|X1,i]− P1

= P ∗1,i − P1.

(100)

The expected price movement can be characterized by the difference between the actual and

the hypothetical first-period price. Simplifying the expression, the expected price difference in

the respective regime writes

P ∗1L − P1 = ωH(E[θ|X1L]− E[θ|X1H ]) = ωH(λ∗1L − λ∗1H)X1

P ∗1H − P1 = (1− ωH)(E[θ|X1H ]− E[θ|X1L]) = (1− ωH)(λ∗1H − λ∗1L)X1.
(101)

Knowing the price differences given by 101, we proceed with the proof of proposition 2.

Proof. Proposition 2

First define:
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∆P1,i = P1 − P0 and ∆P2,i = P2,i − P1

cov(∆P1L∆P2L) = E[(P1 − P0)(P2L − P1)]− E[P1 − P0]E[P2L − P1]︸ ︷︷ ︸
0

= E[P1(P2L − P1)] = E[P1P2L − P 2
1 ] = E[P1P2L]− E[P 2

1 ]

= E[θ̂2] + λ1λ
∗
1LE[X2

1L] + λ2LE[P1X2L]− E[θ̂2]− λ1λ1E[X2
1L]

= λ1λ
∗
1LE[X2

1L] + λ2L (β2LE[P1(E[θ|SL]− P ∗1L)])− λ21E[X2
1L]

= λ1λ
∗
1LE[X2

1L] + λ2Lβ2L
(
λ1β1LF

2
LV ar[SL]− λ1λ∗1LE[X2

1L]
)
− λ21E[X2

1L]

=
1

2
λ1λ

∗
1LE[X2

1L] +
1

2
λ1β1LF

2
LV ar[SL]− λ21E[X2

1L]

= λ1(
1

2
λ∗1L − λ1)E[X2

1L] +
1

2
λ1β1LF

2
LV ar[SL]

(102)

For cov(∆P1L∆P2L) > 0 equation 102 implies

(λ1 −
1

2
λ∗1L) <

1

2

β1LF
2
LV ar[SL]

E[X2
1L]

, (103)

using λ1 = (1− p)λ∗1L + pλ∗1H one gets

((
1

2
− p)λ∗1L + pλ∗1H) <

1

2

β1LF
2
LV ar[SL]

E[X2
1L]

,

((
1

2
− p)λ∗1L + pλ∗1H) <

1

2

β1LF
2
LV ar[SL]

E[X2
1L]

.

(104)

Knowing

β1LF
2
LV ar[SL]

E[X2
1L]

= λ∗1L,

the inequality reduces to

pλ∗1H < pλ∗1L

λ∗1H < λ∗1L
(105)

which is true by definition.

As the problem is symmetric, cov(∆P1H∆P2H) follows analogously
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cov(∆P1H∆P2H) = E[(P1 − P0)(P2H − P1)]− E[P1 − P0]E[P2H − P1]︸ ︷︷ ︸
0

= E[P1(P2H − P1)] = E[P1P2H − P 2
1 ] = E[P1P2H ]− E[P 2

1 ]

= E[θ̂2] + λ1λ
∗
1HE[X2

1H ] + λ2HE[P1X2H ]− E[θ̂2]− λ1λ1E[X2
1H ]

= λ1λ
∗
1HE[X2

1H ] + λ2H (β2HE[P1(E[θ|SH ]− P ∗1H)])− λ21E[X2
1H ]

= λ1λ
∗
1HE[X2

1H ] + λ2Hβ2H
(
λ1β1HF

2
HV ar[SH ]− λ1λ∗1HE[X2

1H ]
)
− λ21E[X2

1H ]

=
1

2
λ1λ

∗
1HE[X2

1H ] +
1

2
λ1β1HF

2
HV ar[SH ]− λ21E[X2

1H ]

= λ1(
1

2
λ∗1H − λ1)E[X2

1H ] +
1

2
λ1β1HF

2
HV ar[SH ]

(106)

For cov(∆P1H∆P2L) < 0 equation 106 implies

λ1 >
1

2

β1HF
2
HV ar[SH ]

E[X2
1H ]

+
1

2
λ∗1H . (107)

Knowing

β1HF
2
HV ar[SH ]

E[X2
1H ]

= λ∗1H , (108)

the inequality reduces to

λ∗1H < λ1 which implies λ∗1H < λ∗1L. (109)

C Sequential equilibrium

C.1 Optimization

Optimization for the periods (m, ..., N)

Plugging Um, Vm and Pi,m−1 into the maximization yields

max
xm

Em[ (θ − (Pi,m−1 + λi,m(xm + um)))xm

+ αm (θ − (Pi,m−1 + λi,m(xm + um)))2 + δm|Si]

max
xm

Em[ (θ − (Pi,m−1 + λi,m(xm + um)))xm

+ αm((θ − Pi,m−1)2 − 2λi,m(xm + um)(θ − Pi,m−1)

+ λ2i,m(xm + um)2) + δm|Si].

(110)
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The resulting FOC regarding xm is:

0 = Em[θ − Pi,m−1 − 2λi,mxm − λi,mum
+ 2αm (θ − (Pi,m−1 + λi,m(xm + um))) (−λi,m)|Si]

0 = Em[θ|Si]− Pi,m−1 − 2λi,mxm

+ 2αm(Em[θ|Si]− Pi,m−1)(−λi,m) + 2αmλ
2
i,mxm

(111)

Solving for xm:

2λi,mxm − 2αmλ
2
i,mxm = (Em[θ|Si]− Pi,m−1)

− 2αmλi,m(Em[θ|Si]− Pi,m−1)

xm2λi,m(1− αmλi,m) = (1− 2αmλi,m)(Em[θ|Si]− Pi,m−1)

(112)

xm =
(1− 2αmλi,m)

2λi,m(1− αmλi,m)
(Em[θ|Si]− Pi,m−1) (113)

The SOC is given by:

2λi,m(1− αmλi,m) > 0 (114)

Optimization for the first period, given the result from period (m−N)

max
x1

E[(θ − θ̂ − λ1(x1 + u1))x1 + (θ − θ̂ − λ∗1,i(x1 + u1)− λi,m(xm + um))xm

+ αm(θ − θ̂ − λ∗1,i(x1 + u1)− λi,m(xm + um))2 + δm|Si]

max
x1

E[(θ − θ̂ − λ1(x1 + u1))x1 + (θ − θ̂ − λ∗1,i(x1 + u1)− λi,m(xm + um))xm

+ αm(θ − θ̂ − λ∗1,i(x1 + u1))
2 − 2αm(θ − θ̂ − λ∗1,i(x1 + u1))λi,m(xm + um)

+ αm(λi,m(xm + um))2 + δm|Si]

(115)

max
x1

E[(θ − θ̂ − λ1(x1 + u1))x1 + (θ − θ̂ − λ∗1,i(x1 + u1))xm − λi,m(x2m + xmum)

+ αm(θ − θ̂ − λ∗1,i(x1 + u1))
2 − 2αmλi,m(θ − θ̂ − λ∗1,i(x1 + u1))xm

− 2αmλi,m(θ − θ̂ − λ∗1,i(x1 + u1))um

+ αmλ
2
i,m(x2m + 2xmum + u2m) + δm|Si]

(116)
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Taking expectations:

max
x1

E[(θ − θ̂ − λ1(x1 + u1))|Si]x1 + E[(θ − θ̂ − λ∗1,i(x1 + u1))xm|Si]

− E[λi,m(x2m + xmum)|Si] + E[αm(θ − θ̂ − λ∗1,i(x1 + u1))
2|Si]

− 2E[αmλi,m(θ − θ̂ − λ∗1,i(x1 + u1))xm|Si]

− 2E[αmλi,m(θ − θ̂ − λ∗1,i(x1 + u1))um|Si]

+ E[αmλ
2
i,m(x2m + 2xmum + u2m)|Si] + E[δm|Si]

max
x1

E[(θ − θ̂ − λ1x1)|Si]x1 + E[(θ − θ̂ − λ∗1,ix1)xm|Si]

− E[λi,mx
2
m|Si] + E[αm(θ − θ̂)2|Si]− 2E[αmλ

∗
1,ix1(θ − θ̂)|Si]

+ E[αλ∗1,i
2(x1 + u1)

2|Si]

− 2E[αmλi,m(θ − θ̂ − λ∗1,ix1)xm|Si]

+ E[αmλ
2
i,m(x2m + u2m)|Si] + E[δm|Si]

max
x1

E[(θ − θ̂ − λ1x1)|Si]x1 + E[(θ − θ̂ − λ∗1,ix1)xm|Si]

− E[λi,mx
2
m|Si] + E[αm(θ − θ̂)2|Si]− 2E[αmλ

∗
1,ix1(θ − θ̂)|Si]

+ E[αmλ
∗
1,i

2x21|Si]− 2E[αmλi,m(θ − θ̂ − λ∗1,ix1)xm|Si]

+ E[αmλ
2
i,mx

2
m|Si]

+ E[αmλ
2
i,mu

2
m|Si] + E[αmλ

∗
1,i

2u21|Si] + E[δm|Si]

(117)

Using the fact that

xm =
(1− 2αmλi,m)

2λi,m(1− αmλi,m)
(Em[θ|Si]− θ̂ − λ∗1,i(x1 + u1)), (118)

and defining

ψ =
(1− 2αmλi,m)

2λi,m(1− αmλi,m)
,

ϕ = (E[θ|Si]− θ̂),

yields

xm = ψ(ϕ− λ∗1,i(x1 + u1)). (119)

45



Plugging in for xm:

max
x1

E[(θ − θ̂ − λ1x1)|Si]x1 + E[(θ − θ̂ − λ∗1,ix1)(ψ(ϕ− λ∗1,i(x1 + u1)))|Si]

− E[λi,m(ψ(ϕ− λ∗1,i(x1 + u1)))
2|Si] + E[αm(θ − θ̂)2|Si]

− 2E[αmλ
∗
1,ix1(θ − θ̂)|Si] + E[αmλ

∗
1,i

2x21|Si]

− 2E[αmλi,m(θ − θ̂ − λ∗1,ix1)(ψ(ϕ− λ∗1,i(x1 + u1)))|Si]

+ E[αmλ
2
i,m(ψ(ϕ− λ∗1,i(x1 + u1)))

2|Si]

+ αmλ
2
i,mE[u2m|Si] + αmλ

∗
1,i

2E[u21|Si] + E[δm|Si]

max
x1

E[(θ − θ̂ − λ1x1)|Si]x1 + E[(θ − θ̂ − λ∗1,ix1)(ψ(ϕ− λ∗1,ix1))|Si]

− E[λi,m(ψ(ϕ− λ∗1,ix1))2|Si] + E[αm(θ − θ̂)2|Si]

− 2E[αmλ
∗
1,ix1(θ − θ̂)|Si] + E[αmλ

∗
1,i

2x21|Si]

− 2E[αmλi,m(θ − θ̂ − λ∗1,ix1)(ψ(ϕ− λ∗1,ix1))|Si]

+ E[αmλ
2
i,m(ψ(ϕ− λ∗1,ix1))2|Si]

− E[λi,m(ψλ∗1,iu1)
2|Si] + E[αmλ

2
i,m(ψλ∗1,iu1)

2|Si]

+ αmλ
2
i,mE[u2m|Si] + αmλ

∗
1,i

2E[u21|Si] + E[δm|Si]

(120)

Taking expectations, rearranging and collecting terms:

max
x1

(ϕ− λ1x1)x1 + (ϕ− λ∗1,ix1)(ψ(ϕ− λ∗1,ix1))

− λi,m(ψ(ϕ− λ∗1,ix1))2

− 2αmλ
∗
1,ix1ϕ+ αmλ

∗
1,i

2x21

− 2αmλi,m(ϕ− λ∗1,ix1)(ψ(ϕ− λ∗1,ix1))

+ αmλ
2
i,m(ψ(ϕ− λ∗1,ix1))2

− λi,m(ψλ∗1,i)
2σ2u1 + αmλ

2
i,m(ψλ∗1,i)

2σ2u1

+ αmλ
2
i,mσ

2
um + αmλ

∗
1,i

2σ2u1 + E[δm|Si] + αmE[(θ − θ̂)2|Si]

max
x1

(ϕ− λ1x1)x1 + ψ(ϕ− λ∗1,ix1)2

− λi,mψ2(ϕ− λ∗1,ix1)2

− 2αmλ
∗
1,ix1ϕ+ αmλ

∗
1,i

2x21

− 2αmλi,mψ(ϕ− λ∗1,ix1)2

+ αmλ
2
i,mψ

2(ϕ− λ∗1,ix1)2

− λi,m(ψλ∗1,i)
2σ2u1 + αmλ

2
i,m(ψλ∗1,i)

2σ2u1

+ αmλ
2
i,mσ

2
um + αmλ

∗
1,i

2σ2u1 + E[δm|Si] + αmE[(θ − θ̂)2|Si]

(121)
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Taking the first derivative regarding x1 yields the FOC:

0 =ϕ− 2λ1x1 + 2ψ(ϕ− λ∗1,ix1)(−λ∗1,i)

− 2λi,mψ
2(ϕ− λ∗1,ix1)(−λ∗1,i)− 2λ∗1,iϕ

+ 2αmλ
∗
1,i

2x1 − 4αmλi,mψ(ϕ− λ∗1,ix1)(−λ∗1,i)

+ 2αmλ
2
i,mψ

2(ϕ− λ∗1,ix1)(−λ∗1,i)

0 =ϕ− 2λ1x1 − 2ψλ∗1,i(ϕ− λ∗1,ix1) + 2ψ2λ∗1,iλi,m(ϕ− λ∗1,ix1)

− 2αmλ
∗
1,iϕ+ 2αmλ

∗
1,i

2x1 + 4αmψλ
∗
1,iλi,m(ϕ− λ∗1,ix1)

− 2αmψ
2λ∗1,iλ

2
i,m(ϕ− λ∗1,ix1)

(122)

Rearranging and collecting terms:

0 =ϕ− 2λ1x1 + 2λ∗1,i
2(ψλi,m − 1)(αmψλi,m − αm − ψ)x1

− 2λ∗1,i(ψλi,m − 1)(αmψλi,m − αm − ψ)ϕ
(123)

Finally, solving for x1 yields:

x1 =
2λ∗1,i(ψλi,m − 1)(αmψλi,m − αm − ψ)− 1

2λ∗1,i
2(ψλi,m − 1)(αmψλi,m − αm − ψ)− 2λ1

ϕ. (124)

Substituting back

ψ =
(1− 2αmλi,m)

2λi,m(1− αmλi,m)

ϕ = (E[θ|Si]− θ̂)

gives

x1 =
λ∗1,i + 2λi,m(αmλi,m − 1)

λ∗1,i
2 + 4λ1λi,m(αmλi,m − 1)

(E[θ|Si]− θ̂)

x1 =
2λi,m(1− αmλi,m)− λ∗1,i

4λ1λi,m(1− αmλi,m)− λ∗1,i
2 (E[θ|Si]− θ̂).

(125)

With the SOC:

0 < 2λ1 − 2λ∗1,i
2(ψλi,m − 1)(αmψλi,m − αm − ψ)

0 <
λ∗1,i

2 + 4λ1λi,m(αmλi,m − 1)

2λi,m(αmλi,m − 1)

0 <
4λ1λi,m(1− αmλi,m)− λ∗1,i

2

2λi,m(1− αmλi,m)

(126)
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C.2 Equilibrium coefficients N-period setting

Plugging in the optimized value of xm:

xm = ψ(ϕ− λ∗1,i(x1 + u1)) (127)

E[ (θ − (Pi,m−1 + λi,m(ψ(E[θ|Si]− Pi,m−1) + um)))ψ(E[θ|Si]− Pi,m−1)

+ αm (θ − (Pi,m−1 + λi,m(ψ(E[θ|Si]− Pi,m−1) + um)))2 + δm|Si]

(128)

Taking expectations

(E[θ|Si]− (Pi,m−1 + λi,m(ψ(E[θ|Si]− Pi,m−1)))ψ(E[θ|Si]− Pi,m−1)

+ αmE[(θ − (Pi,m−1 + λi,m(ψ(E[θ|Si]− Pi,m−1) + um)))2 |Si] + δm

(129)

ψ(E[θ|Si]− Pi,m−1)2 − λi,m(ψ(E[θ|Si]− Pi,m−1))2

+ αmE[(θ − (Pi,m−1)
2 − 2λi,m(ψ(E[θ|Si]− Pi,m−1)(θ − Pi,m−1)

+ λi,m
2(ψ(E[θ|Si]− Pi,m−1)2|Si] + αmλi,m

2σ2um + δm

= ψ(E[θ|Si]− Pi,m−1)2 − λi,m(ψ(E[θ|Si]− Pi,m−1))2

+ αm(E[θ|Si]− Pi,m−1)2 − 2λi,mψ(E[θ|Si]− Pi,m−1)2

+ λi,m
2(ψ(E[θ|Si]− Pi,m−1)2|Si] + αmλi,m

2σ2um + δm,

(130)

which can be rewritten as

(ψ − λi,mψ2 + αm − 2αmλi,mψ + αm + λi,m
2ψ2)(E[θ|Si]− Pi,m−1)2

+ αmλi,m
2σ2um + δm.

(131)

This yields

αm−1 = (ψ − λi,mψ2 + αm − 2αmλi,mψ + αm + λi,m
2ψ2),

which simplifies to

αm−1 =
1

4λi,m(1− αmλi,m)
. (132)
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The expected utility of the informed in the first period is given by:

α0 =
λi,m(1− αmλi,m)− λ∗1,i + λ1

4λ1λi,m(1− αmλi,m)− λ∗1,i
2 (133)

The overall utility of the informed trader writes:

E[π|Si] =
λi,m(1− αmλi,m)− λ∗1,i + λ1

4λ1λi,m(1− αmλi,m)− λ∗1,i
2 Fi(S − θ̂)

+
λ∗1,i

2σ2u1
4λi,m(1− αmλi,m)

+ δ1

(134)
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