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Abstract

This paper addresses the spatial evolution of countries accounting for economics, geog-
raphy and (military) force. Economic activity is spatially distributed following the AK
model with the output being split into consumption, investment, transport costs and
military (for defense and expansion). The emperor controls the military force subject
to the constraints imposed by the economy but also the geography (transport costs,
border length) and the necessity to satisfy the needs of the population. The border
changes depending on how much pressure the emperor can muster to counter the pres-
sure of neighboring countries. The resulting dynamic process determines a country's
size over time. The model leads to multiple steady states, large empires and small
countries being separated by a threshold, and collapse. The resulting patterns can be
linked to historical observations.
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Growth and Collapse of Empires: A Dynamic

Optimization Model

Yuri Yegorov, Dieter Grass, Magda Mirescu, Gustav Feichtinger and Franz Wirl

1 Introduction

Most of the economic literature and in particular studies on economic growth assume

a country of �xed size or territory1 and (if at all) interacting with the rest of the world

by trading goods. However, many countries have a history of evolution, of ups and

downs, in their territory as well as in economic performance and population. In par-

ticular, some countries (we call them empires) deliberately expanded their territories

by conquering less powerful neighboring countries.

While little is known about the economics of di�erent countries and empires in the

distant past, we have much more information about the evolution of their territory.

In spite of the complex shape and change of borders, there are certain regularities in

the evolution of empires and grand theories about them, e.g. Kennedy (1987) on the

rise and decline of the United States, Taylor and Flint (2000) who also suggest the

temporal evolution of empires, and Spengler (1918, 1922) on the rise and in particular

the decline of the West and its culture. Historical examples of empires range from the

short-lived albeit vast empires amassed by Alexander the Great and Genghis Khan, to

long-lasting ones like the kingdoms of ancient Egypt, the Roman empire, the Austro-

Hungarian monarchy, and Russia. In contrast to these empires, many countries have

stayed and still stay small within their borders, neither expanding nor ending up in

another empire, cases in point ranging from the ancient Greek cities to today's Switzer-

land.

The objective of this paper is to explain this sort of stylized historical evolutions

and patterns by accounting for economics, geography and military force (`war') as

additional means of politics (according to von Clausewitz (1832): �War is but a contin-

uation of politics by other means�)2 in order to expand or defend an empire. For this

1Territory is, however, considered in regional science, starting from the German school (work of
von Thünen (1826), followed by Christaller (1933), and recently also in economic geography, see e.g.,
Fujita, Krugman and Venables (1999) and Puu (1997).

2�Der Krieg ist eine blosse Fortsetzung der Politik mit anderen Mitteln� � Clausewitz (1832)
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purpose we use a simple model of economics, or more precisely, of a stagnant (non-

growing) economy with constant population density, which covers even for around

10,000 years of the developed world, from the agricultural to the industrial revolution3

Clark (2009), of geography (accounting for transport costs depending on size) and of

the politico-economic objectives of a ruler that leads to a dynamic optimization model.

Our assumptions about (geographical) space and the economy extend Yegorov's pre-

liminary paper (2018) in which expansion or retreat are determined by the residual

expenditure on defense after accounting for subsistence consumption and capital de-

preciation. To the best of our knowledge, there is no paper in the economics literature

that attempts to endogenize the size and evolution (i.e., expansion as well as decline)

of empires. And only few papers are loosely related. Grossman and Mendoza (2001)

compare an empire's strategies of annexation (coerced or uncoerced) and conquest but

lacks the dimensions of space and dynamics, which are crucial in our model; however,

we do not di�erentiate between annexation and conquest. Turchin et al. (2013) use

computer simulation to model the historical growth of empires based on agriculture

and the ruggedness of the terrain. This model is able to replicate the locations of

historical empires. Our goal is complementary as we aim to explain the historical se-

quence of empire sizes by economic reasoning as well as their coexistence with smaller

countries and their temporal evolution. In this respect we contribute to the existing

literature by integrating di�erent aspects from di�erent �elds such as (i) socio-physics

in the derivation of the core equations, (ii) economics determining output and budget

constraints, (iii) political economics by solving for an emperor's optimal intertemporal

strategy (i.e., solving an optimal control problem), and (iv) history by interpreting our

results in terms of historical patterns and episodes. Our dynamic model introduces

to the economics of a stationary economy ('agriculture') military and geographical as-

pects, represented in analytical form in the tradition of the German school of regional

science, cf. Christaller (1993). Despite the model's simplicity, it allows for rather

complex mathematical outcomes that can be matched with history.

2 Model Formulation

2.1 Geography

Any empire is characterized by its situation on the map. Therefore, a model without

geographic considerations makes no sense. Empires can be, and typically are, rep-

3Therefore, colonialism does not �t into our explanation.
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resented by complex geometries that are further complicated by geographic speci�cs

such as rivers and mountains at the borders. However, we simplify the geography to

a two-dimensional space, more precisely to a square of length R. Thus the territory

is S = R2, which is uniformly populated and the initial size of the empire is given,

S(0) = S0. The length of the border is given by the perimeter of the square, L = 4R.

2.2 Economy

Production is dispersed in a structured space, like in Yegorov (2005, 2009, 2011). An

empire produces a composite good, Y = ÃK with capital, K, as the only production

factor. This output can be used for consumption (C), investment (I), transport costs

(T ), and military expendituresW (for `war') to expand or defend the existing territory,

Y = C + I +W + T. (1)

While the huge body of literature on economic growth�classical as well as endoge-

nous growth (compare Barro and Sala-i-Martin (1995))�focuses on the accumulation

of capital (physical and/or human), we consider a stagnant economy, which was charac-

teristic for the world economy prior to the industrial revolution. Therefore, investment

must replace the depreciation of the existing capital stock, I = δK, and in the following

we work with the net productivity of capital,

A := Ã− δ. (2)

2.3 Border Dynamics

Military activity takes place at the (possibly shifting) borders of a country, at least

until the 20th century, when airplanes entered wars, not to mention long-range missiles,

nuclear weapons and meanwhile also unmanned aerial vehicles (drones). The outward

pressure on each kilometer of the border is P = W/(4R). We assume that the speed of

expansion (V ) is determined by the di�erence in military strength, or more precisely,

that it is proportional to the di�erence in pressure on either side of the border,

V = α(P − P0),

where α is a constant coe�cient and P0 is the external and exogenous pressure exercised

by the empire's neighbors. Therefore, the gained territory per unit of time is dS = LV dt
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and the equation of territorial expansion becomes4:

dS

dt
= αW − αP0L. (3)

2.4 Transport Costs

Assuming a su�ciently strong economy and an emperor who is only constrained by

providing subsistence consumption (C0) to his population, the military expenditures,

W = AK − C0, would allow for exerting pressure on the borders, thus theoretically

leading to unbounded growth. The reason for this is that the military expenditures are

quadratic in R, W = wR2 where w denotes defense expenditures per unit of territory,

while the opposing pressure at the border is proportional to 4R. However, all empires

in history have faced their limits, even the mighty Romans could not proceed further

north in Europe against the counterpressure of the Germanic tribes. A crucial limiting

aspect is that size increases transport costs as a large empire defending/expanding its

border must keep shipping goods to it. Since the average distance is proportional to

R, the volume of transported resources is proportional to total output and thus to R2,

the total transport costs (T ) are proportional to R3. Therefore,

T = βR3,

in the split-up of the aggregate output according to (1)5. Aside from these geomet-

ric motivations, `transport' costs may include other costs related to size such as an

increasingly heterogeneous population as the empire expands. For example, annexing

areas populated by people of di�erent ethnicities will decrease the likelihood of loy-

alty to the emperor, in particular with respect to defending the borders. This was

the case with the Austro-Hungarian empire when the rise of Pan-Slavism in the 19th

4There exist mathematical models of military actions: for example, Lanchester's (1916) laws about
relative military strength and Washburn and Kress (2009). The law of von Clausewitz (1832) about
the triple advantage for a successful attack is tactically correct, but here we want to model the long-
term average territorial gain via the di�erence in military potentials on the border. Formally our law
is similar to the physical law of oil moving in a pipeline; the speed of the viscous �uid is proportional
to the di�erence in pressures.

5A cubic relationship also follows when computing the transport costs from all uniformly distributed
points of the square to the center (the origin in <2 or respectively from the center to each point of
the square) assuming the Euclidean distance,

R/2∫
−R/2

R/2∫
−R/2

√
x2 + y2dxdy = const R3.
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century eroded the loyalty of the Slavic people to the House of Habsburg, culminating

in the assassination of archduke Franz Ferdinand by a pan-Slavist (Gavrilo Princip in

Sarajevo).

2.5 Dynamic Evolution of Empires

Accounting for output and expenditures for investment, consumption and transport

with the residual going to the military, the pressure exercised per unit length of the

border (4R) is

P = W/4R = (AK − C − T )/4R.

The expansion (without di�erentiating between annexing and conquering) is deter-

mined by the pressure di�erence at the border according to (3). Di�erentiating, ac-

counting for Ṡ = 2RṘ, for (3), and substituting the above expression for P yields,

Ṙ =
α (AK − C − T )

2R
− 2αP0. (4)

Since the military expenditure is the residual in the accounting in (1), substituting the

(relative) military expenditure (w),

AkR2 − cR2 − βR3 = wR2 =⇒ Ak − c− βR = w, (5)

yields

Ṙ =
α

2
Rw − 2αP0 ≤

α

2

(
R (Ak − βR)− 4P0

)
. (6)

This equation implies that neither small countries nor large empires can be sus-

tained. Small countries cannot muster the resources to counter the external pressure

whereas large empires have to spend too many resources on transport and thus lack the

money for the army necessary to defend the large border. The right-hand side in (6)

is the upper bound on expansion based on the presumption that all output except for

replacing capital and transport is given to military. Therefore, the quadratic equation

on the right-hand side determines the maximum feasible rate of expansion, which must

be positive for some values of R in order to sustain at least empires of limited size. This

requires a su�ciently strong economy facing external pressure, P0. If this condition (of
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a positive discriminant in the root below) is satis�ed, then two positive roots,

R1,2 =
Ak ±

√
(Ak)2 − 16βP0

2β
, (7)

exist and any sustainable interior, R > 0, steady state (equilibrium) must be between

these bounds. Therefore, any empire starting at R0 < R1 must end in its own dissolu-

tion, i.e., wind up as a part of its neighbor(s); since the above criterion is su�cient, the

domain of unsustainable empires could and presumably will include R0 < R1. All large

empires with R0 > R2 must collapse to smaller ones since not even their transport costs

can be covered; this can also be in a discontinuous manner as in the case of Russia

selling Alaska to the United States.

2.6 An Emperor's Objective

Suppose an emperor cares not only about the territory (and thus population size),

but also about the utility of consumption of each citizen; or alternatively viewed in

a less benevolent interpretation: a starving population is a threat to any ruler and

only o�ering panem et circenses will keep people quiet, so the more the safer for the

emperor. In short, we assume that the emperor maximizes the intertemporal utility

max

∫ ∞
0

e−rt U (c, S) dt, (8)

i.e., trades o� between per-capita consumption (given by c) and the size of the empire,

S = R2.

A crucial and robust feature of the model is the existence of multiple interior steady

states within the critical bounds (R1, R2), irrespective of the detailed speci�cation of the

preferences. However, this speci�cation matters for the comparison of (i) the limiting

case of R → 0, in which case the emperor must, or �nds it optimal, to surrender,

with (ii) the alternative of keeping a small country. For example, when considering an

additive utility in per-capita consumption and size,

U = ln(c) + σS, (9)

the boundary solution, R→ 0, will always dominate the alternative and feasible strat-

egy of defending a small country. The reason is that a small country yields only little

in terms of grandness but lowers the per-capita consumption in order to cover de-

7



fense and transport costs. Imposing Inada conditions for size, e.g., either separable

U = ln(c) + σ ln(S) or multiplicative/Cobb Douglas, U = cθS1−θ, has desirable limit

properties and allows for multiple steady states too. Therefore, the speci�cation of the

preferences is not crucial for the existence of interior steady states, but the limiting

property of U for R → 0 determines either whether an emperor �nds a small country

worth defending or prefers to surrender or whether there exists another threshold level

of R at which to choose between those two possibilities. For example, one may specify

the value at R = 0 exogenously, ranging from minus in�nity (if losing a war means

getting killed�Saddam Hussein and Muammar Gadda� being recent examples) to a

�nite number, presumably even positive, for an emperor who cares about his people

even when in exile. The speci�cation of this value determines then the region of at-

traction for R = 0.

As a consequence, the following discussion is restricted to interior steady states

with the understanding that the limiting steady state R = 0 is also a possible outcome.

However, this possibility is not further explored, because its existence, the range of its

attraction and the speed of convergence (in �nite or in�nite time) are fully determined

by the speci�cation of the preferences and their properties for R→ 0, while the study

of the interior steady states is robust across di�erent speci�cations.

3 An Emperor's Optimal Strategy

Small letters denote the relative magnitudes (per size and capita). Therefore k0 = K0/S

is the capital density per unit of land occupied by one person so that c = C/S is the

per-capita consumption and equal to,

c = Ak0 − w − βR, (10)

in which w = W/S is the defense density (also per unit of land and thus per capita),

which of course must be non-negative. This allows to eliminate c from the objec-

tive so that the emperor has to solve the following optimal control problem for the

8



speci�cation6 in (9):

max
w(t)≥0

∫ ∞
0

e−rt
[

ln
(
Ak0 − w(t)− βR(t)

)
+ σR(t)2

]
dt (11)

s.t.: Ṙ(t) =
α

2
w(t)R(t)− 2αP0 (12)

3.1 Necessary Optimality Conditions

De�ning the current-value Hamiltonian for the above model,

H
(
R(t), w(t), λ(t)

)
= ln

(
Ak0 − w(t)− βR(t)

)
+ σR(t)2+

+ λ(t)
(α

2
w(t)R(t)− 2αP0

)
,

and focusing on the interior solutions, i.e., w > 0 and R ∈ (R1, R2)
7, the �rst order

optimality conditions are: the Hamiltionian maximizing condition, ∂H/∂w = 0 since

∂2H/∂w2 < 0, implies for the control (omitting from now on the argument t),

w = Ak0 − βR−
2

λαR
, (13)

and the costate (λ) must satisfy the following di�erential equation,

λ̇ = rλ+
β

Ak0 − w − βR
− 2σR− α

2
wλ. (14)

Combining (12), (13) and (14) yields the following canonical equations system with the

corresponding limiting transversality condition,

Ṙ =
α

2
Ak0R− 2αP0 −

αβ

2
R2 − 1

λ
, R (0) = R0, (15)

λ̇ =
(
r − α

2
Ak0

)
λ+ αβλR− 2σR +

1

R
, lim

t→∞
e−rtλ (t)R (t) = 0. (16)

6The convex term in the objective function has been known since Skiba (1978) to be crucial (but
neither necessary nor su�cient, compare Hartl et al. (2004)) for thresholds and multiple long-run
outcomes. However, the precise speci�cation of the emperor's preference with respect to size is not
crucial (as argued in the previous section). Indeed, the same (and even quantitatively similar) results
hold, e.g., for a square root appreciation of the size that obeys the law of diminishing returns and
implies a term linear in R; details are reported in the Appendix.

7Therefore, the state constraint, R ≥ 0 corresponding to the non-negativity of the distance, can
be ignored.
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3.2 Steady States

Solving Ṙ = 0 for the costate,

λ =
2

αAk0R− αβR2 − 4αP0

,

and substituting this into (16) yields the following fourth-order polynomial

αβσR4 − ασAk0R3 +
(αβ

2
+ 4ασP0

)
R2 + rR− 2αP0

!
= 0. (17)

The roots from the interval (R1, R2) determine the steady states of R.

The Jacobian matrix of the above canonical system,

J =

∂Ṙ∂R ∂Ṙ
∂λ

∂λ̇
∂R

∂λ̇
∂λ

 =

 α
2Ak0 − αβR

1
λ2

αβλ− 2σ − 1
R2 r − α

2Ak0 + αβR

 , (18)

has the eigenvalues,

ζ1,2 =
r ±
√
r2 − 4∆

2
,

since tr(J ) = r and in which ∆ is the determinant. Therefore, one eigenvalue is for

sure positive and both will be positive (or have positive real parts) i� ∆ > 0, while

∆ < 0 implies (saddlepoint) stability.

Remark 1. Although our focus is on interior equilibria as argued in 2.6, i.e., the

roots of the 4th order polynomial in (17) from (R1, R2), there is another possible long-

run outcome, namely paths that converge asymptotically to the left-hand boundary,

R→ R1 with c→ 0 and λ→ −∞ as the λ̇ = 0 isocline has a pole for R→ R1, see (18).

In this case, R → R1, as well as in the ignored case R → 0, the interpretation is that

this empire is bound to vanish from the map because it must collapse for any small

push to R1−ε (e.g., due to a local revolt or some skirmish at the border) as the budget
constraints cannot be matched by non-negative components. This is nevertheless a

highly relevant outcome, because history is littered with examples of countries and

empires removed from the map by ending up in other empires (annexed or conquered).
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4 A Base Case

Our unit of time is one year, the unit of distance is R = 1 =1000 km and the (gross)

output per unit of territory (1 million km2) is normalized, Ãk0 = 1 and k0 = 1. Agri-

cultural production dominated before the industrial revolution and continued to do so

in vast areas on the globe until the 20th century. Geography determines crop variety

and a�ects productivity. Depreciation accounts for the share of the harvest that is

needed for seeds and the fraction of domestic animals (cows, sheep, pigs, etc.) that

cannot be consumed because they must be kept for reproduction. Knowing that this

parameter can vary across regions and technologies (e.g., higher for livestock, smaller

for producing grain), we assume δ = 0.2. Hence, A = 0.8.

Due to our normalization of per-capita GDP, w denotes the share of military ex-

penditures. Assuming that the external pressure must be balanced along the border,

then 4RP0 = wR2 implies w = 4P0 for R = 1, i.e., four times the external pressure on

the border. Choosing P0 = 0.03 implies that 12% of the GDP are needed to defend a

country with R = 1.

Starting again from the unit square, R = 1, then β = 0.2 implies that 20% of the

gross output must be spent on transport and this share grows with size up to the point

at which transport costs equal the net output, rendering such large empires unsus-

tainable (and in fact infeasible to reach, i.e., choosing an even higher initial condition,

R0 > R2, requires either more favorable parameters, e.g., the power and charisma of

leaders such as Alexander the Great, Genghis Khan, and Napoleon, or a temporary

lack of opposing pressure, or simply luck).

The parameter α determines the speed of expansion (in thousand kilometers per

annum) if P −P0 = 1. We set α = 0.1, which requires a military budget of 40% of the

GDP in order to defend a country of size R = 1. Such a country will expand at the

speed of 100 km per year if facing no defense from neighbors (P0 = 0), which is com-

patible with historical examples: between 1500 and 1550 the Spanish empire started

to conquer Mexico and Peru (an expansion by more than 2000 km on each of the two

fronts) and Russia expanded into Siberia by about 3000 km between 1590 and 1650, or

30 km per year at the price of high shares of public expenditure going to the military.

In summary, a (calibrated) parametrization of the base case can be found in Table

1.

11



A k0 P0 r α β σ
0.8 1 0.03 0.03 0.1 0.2 1

Table 1: Parameters of the base case.

5 Properties of Steady States and Bifurcation Analyses

5.1 Optimal Vector Field

In the remainder of the paper, the following notation is used: RL, R
H and R̃ denote the

low, high and unstable steady states, respectively, RS stands for the (Skiba) threshold,

R1 and R2 symbolize the left and right boundaries of sustainable empires given by

equation (7) and RL
S , R

H
S represent the low and high boundaries of the Skiba region.

In the following, we introduce the optimal vector �eld ; see Kiseleva and Wagener (2010,

2015) for a strict mathematical formulation.

Optimal solutions, i.e., (R∗(·), w∗(·)), can be found among the solutions of the

canonical system (15) and (16) satisfying the initial and the limiting transversality

conditions. The corresponding solution paths converge to the steady states RH , RL, R̃

and the boundary steady state at R1, or they stay put if initially starting at a steady

state. If multiple solution paths exist, the optimal path must be determined by com-

paring their objective values (11).

Figure 1 shows the solution for the base case. This solution exhibits a so-called

Skiba point RS, cf. Skiba (1978), following the seminal works of Skiba (1978), Dechert

and Nishimura (1983), Sethi (1977) and Sethi (1979), cf. Grass et al. (2008) and Grass

(2012), or mathematically more precise, an indi�erence threshold point, cf. Kiseleva

and Wagener (2010, 2015). Solutions starting at this point have the same objective

value for both paths converging to the low steady state RL and the high steady state

RH .

This example is used for the motivation of the optimal vector �eld. For each state

R 6= RS, there exists a unique optimal control value ω∗(R), called the optimal policy

rule. For RS the optimal policy rule is not unique, ω∗(RS) = {w1, w2} with the two

controls w1, w2 lying on the two solution paths. Plugging the optimal policy rule into

12



the state dynamics (12) de�nes an autonomous, but possibly multi-valued ordinary

di�erential equation (ODE),

Ṙ(t) =
α

2
ω∗(R(t))R(t)− 2αP0. (19)

This ODE is called the optimal vector �eld. An optimal saddle of the canonical system

corresponds to a (locally) stable equilibrium of ODE (19) and an optimal unstable

node corresponds to an unstable steady state. At a Skiba point, the optimal vector

�eld is multi-valued.

Distinguishing between the canonical system and the optimal vector �eld should

help to better understand possible di�erences in the bifurcations of both ODEs. For

example, a saddle-node bifurcation in the canonical system, with a new saddle and

node appearing, may have no in�uence on the optimal vector �eld, since the according

paths converging to this new saddle may be inferior to the solution converging to the

other saddle. Conversely, the appearance of a Skiba point in the optimal vector �eld

does not entail a bifurcation in the canonical system. Last but not least, for ODE (19)

the usual terminology of stability can be applied and there is no confusion about a

stable saddle.

Curves/lines that concern the optimal vector �eld are represented as solid lines,

whereas curves related only to the steady states of the canonical system, but not

appearing in the optimal vector �eld, are plotted as dashed lines.

5.2 Tipping Behavior

What are the policy implications? Consider a large empire RH and a small country

RL, both locally stable, i.e., starting with R(0) in the corresponding neighborhood, the

optimal policy is to converge to the nearby steady state. At the Skiba point, RS = 0.61

(for the base case), the emperor is indi�erent between choosing either the route to the

small country or the large empire. However, this choice requires very di�erent policies

in terms of military expenditures, zero for RL but around 35% for RH and more as the

empire grows. Since the threshold level is relatively close to the low stable steady state

(RL), the large empire has a much larger region of attraction.

It is interesting to compare the shares (= per capita/area since GDP per capita is
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independent of the size) of consumption, defense, and transport costs across the di�er-

ent steady-state levels: for the small country, RL = 0.19, c = 0.13, w = 0.65 and 0.02

for transport due to its small size; for the large empire, RH = 3.58, c = 0.05, w = 0.05,

and 0.39 for transport. In this example, consumption is much greater in the small

country (which, incidentally, applies even today for Luxembourg, Switzerland, and

also to Qatar, the United Arab Emirates, and Kuwait, in their case due to the avail-

ability of hydrocarbon resources), and although defense expenditures are substantial

(again Switzerland in the past comes to mind), the cost for transport is insigni�cant.

Large empires, on the other hand, have to spend higher shares on transport than on

defense, because T/Y grows with respect to size R, while W/Y declines. However, the

impression that small countries actually enjoy higher consumption is not true because

the share going to consumption is in many examples non-monotonic with respect to

size so that the population of larger empires can also enjoy higher consumption. E.g.,

setting β = 0.3 yields a qualitatively similar behavior (RH = 1.985 and RL = 0.185)

in which the people of the large empire enjoy a higher consumption.

Figure 1: Optimal strategies (blue) and corresponding (Skiba) threshold in the phase space (of state and control)
separating the low (RL) from the high (RH) equilibrium for the base case parametrization from Table 1. The vertical
lines correspond to R = R1 and R = R2. The dashed vertical line is the Skiba threshold RS .

The qualitative behavior remains the same in the neighborhood of the parameter

values speci�ed in Table 1. Figures 6 and 4 numerically specify the neighborhood

for the parameter values r, σ, P0 and β. The Skiba regions are enclosed between the

two straight lines denoting a heteroclinic and saddle-node bifurcation for the canonical

system. Both bifurcations are explained below.
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5.3 From a Large (Small) Country to the Coexistence of an Empire and a

Small Country

Almost all applied papers following the route of Skiba (1978) are con�ned to qualitative

sketches of phase diagrams in order to show8: (i) that multiple steady states exist, (ii)

of which the interior is unstable (and implicitly assumed to be spiral, which need not

be the case), and (iii) that this combination must lead to a threshold. From there, all

policy conclusions are drawn highlighting the sensitivity with respect to initial condi-

tions and the associated jump in the control. This reasoning is insu�cient, because one

branch can be, and in many cases (also in our model) is, the only optimal one. Instead

of the local and geometric analysis, a global one is necessary, and Wagener (2003),

motivated by the shallow-lake example, seems to have been the �rst to check explicitly

for the optimality of di�erent paths. The purely geometric argument has at least two

additional shortcomings. First, it ignores that one must start with a system that leads

to a unique steady state (of the optimal vector �eld), because given the existence of

a (Skiba) threshold it is impossible to reach the high steady state when starting from

natural initial conditions, here those of a small country. Only a subsequent change

of model parameters can introduce a threshold and the corresponding sensitivity with

respect to initial conditions. Therefore, understanding the transition from a globally

stable large empire (or small country, see 5.3.3) to the coexistence of an empire and a

small country is very important.

5.3.1 Continuous Policy Function

The second fault of an analysis restricted to qualitative diagrams is that they ignore the

possibility of continuous policy functions that pass through the unstable steady states

serving simultaneously as thresholds (compare Hartl et al. (2004) in a convex-concave

dynamic optimization problem, and Wirl and Feichtinger (2005) in various concave

cases). Hence, the unstable steady states can be part of the optimal policy function

(and indeed are an, albeit unstable, steady state, e.g., for β = 0.14 and P0 = 0.11,

for further details see the online Appendix) with the consequence that the military

expenditures w are continuous and di�erentiable at the threshold level, i.e., in contrast

to Figure 1 no abrupt policy change exists between the two saddle point paths towards

either the high or low long-run outcome.

8e.g., Brock (1983), Brock and Dechert (1985), Dechert (1984) are early, and indeed the �rst,
representations of the shallow-lake model, e.g., Mäler (2000), Mäler et al. (2003), are later examples.
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In order to have a closer look at the transition from a globally stable steady state

to the existence of two locally stable steady states, we have to distinguish between the

two cases,

� a discontinuous policy and a Skiba point,

� a continuous policy and an unstable steady state (weak Skiba point),

that separate the regions of attraction.

5.3.2 Transition to the Skiba Case

Mathematically, this transition is characterized by the appearance of a heteroclinic

connection. For a better understanding, Figures 2a, 2b, 2c depict the situation before,

at, and after this bifurcation for a varying interest rate r. For r smaller than the

bifurcation value rh = 0.021 . . . (Figure 2a for r = 0.019) a unique globally stable

steady state RH (blue dot) results. Thus, for every initial country size the optimal

policy (blue curve) lets us end up in this empire. Figure 2a indicates a second saddle

point RL (gray dot) in the state-control space with a stable (solid gray) and unstable

path (dashed gray). However, the corresponding policy is inferior to the policy of the

empire and hence this solution does not appear in the optimal vector �eld (see equation

(19)).
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(a) Only RH is optimal.
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(b) Heteroclinic bifurcation.
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(c) Skiba phenomenon.

Figure 2: Phase portrait for increasing values of the discount rate r for base case parameter values as given in Table 1.

Increasing r, the unstable path (dashed gray) of the small country and the stable

path (blue) of the empire come closer until they coincide in a heteroclinic connection,

see Figure 2b. This means that starting on this connecting line we approach the empire

or, if we reverse time, we approach the small country. This is the �rst occurrence of
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a small country as a long-run solution. Thus, starting left from and even at RL it

is optimal to move to, and stay at, the small country. For any initial state larger

than RL, the optimal policy leads to the empire. Increasing r further, the heteroclinic

connection breaks up, cf. Figure 2c, and a Skiba point appears which separates the

regions of attraction between the empire and the small country.

5.3.3 Transition to the Weak Skiba case

What happens in Figure 4b in the neighborhood of β0 = 0.33 . . .? For parameter values

larger than β0 a unique small country exists, RL. Thus, for every initial size of a coun-

try the optimal policy leads to the small steady state. If β is reduced, the bifurcation

diagram displayed in Figure 4b shows the appearance of a saddle and an unstable node

(in the canonical system). A numerical analysis shows that the unstable node is an

unstable steady state (weak Skiba) of the optimal vector �eld for β slightly lower than

β0 and that the high and low saddles are locally stable steady states of the optimal

vector �eld.

What happens exactly at β0? This is the point where node and saddle coincide,

hence this bifurcation is called a saddle-node bifurcation. Concerning the optimal

policy at β0: for countries that are initially larger than (or equal to) the newly emerged

empire, the optimal policy is to converge to the empire; when starting with a smaller

country, it is optimal to converge to the small country.

5.4 Bifurcation analysis in the (P0, β) space

Figure 3 shows a complex pattern of outcomes in the (P0, β) space:

Region 1: There are two locally stable steady states, an empire and a small country,

separated by a (weak) Skiba point:

a: The small country is feasible.

b: The small country becomes infeasible and has to be replaced by the boundary

steady state (i.e., the country vanishes from the map).

Region 2: There is a unique globally stable small country.

a: The small country is feasible.

b: The boundary steady state, so that a small country becomes infeasible.
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Region 3: There is a unique globally stable empire.

Region 4: There is no solution.

Of course, high costs rule out the existence of any country or empire (Region 4).

With P0 = const and a low value of β, there can only be empires , while for a large value

(β > 0.37 and a very low P0) only small countries can exist. Increasing the pressure

along β = const (the case β = 0.2 is considered in Figure 4a) leads to a transition from

Region 1a (RH and RL) to Region 1b (RH and R1), and then to Region 2b (R1).
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Figure 3: Two-dimensional bifurcation diagram with respect to the base case parametrization from Table 1. 1: multiple
optimal solutions; a: (weak) Skiba; b: weak Skiba (R1); 2: unique low equilibrium; a: RL only; b: R1 only; 3: unique
high equilibrium; 4: no solution; red: heteroclinic bifurcation; orange: saddle-node bifurcation (RL/R

H (dis)appears);
green: R1 becomes optimal; gray: saddle-node bifurcation that does not play a role for the optimal vector �eld; blue:
(Ak0)2 − 16βP0 = 0 (see the discriminant from equation (7)).
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(a) External pressure P0. (b) Transport costs β.

Figure 4: P0 bifurcation for β = 0.2 (a) and β bifurcation for P0 = 0.03 (b), the other parameters as seen in Table
1. Blue: high equilibrium RH ; cyan: low equilibrium RL; dashed green: boundary R1; solid green: optimal boundary
equilibrium R1; dashed gray: non-optimal steady states; red: heteroclinic bifurcation; orange: saddle-node bifurcation.
(a) 1a: Skiba area where RH and RL exist. 1b: weak Skiba and coexistence of RH and R1. 2: only R1 exists. (b) 1:
only RH . 2: Skiba between RH and RL. 3: only RL. 4: only R1.

5.4.1 Bifurcation Diagram in the External Pressure P0

Figure 4a shows the one-dimensional P0 bifurcation diagram along β = 0.2 that allows

to distinguish between two main regions, where region 1 is subdivided to facilitate

interpretation.

Region 1: There are two locally stable steady states, an empire and a small country,

separated by a (weak) Skiba point:

a: The small country is feasible.

b: The small country becomes infeasible and has to be replaced by the boundary

steady state (vanishing country).

RH
S : A saddle-node bifurcation separating Regions 1 and 2.

Region 2: There is only the vanishing country.

RH (empire) exists in a wider range, 0 < P0 < 0.16, but a small country also

has a substantial ecological niche surviving pressure up to P0 < 0.08. Hence, small

countries and large empires can coexist in a wide range of pressures. At larger pressures,

0.08 < P0 < 0.16, small countries RL transform into unstable (in a political-historical

sense) boundary steady states. This is intuitive because small countries cannot resist

strong pressure and will be annexed or conquered.
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5.4.2 Bifurcation Diagram in the Transport Costs β

Figure 4b varies the transport cost parameter β, which is useful for tracking techno-

logical evolution both in transport as well as in ruling and governing a country. This

allows to distinguish between three main regions of which Region 3 is subdivided due

to interpretational reasons

Region 1: A unique globally stable empire.

RL
S: A heteroclinic bifurcation separating Regions 1 and 2.

Region 2: There are two locally stable steady states, an empire and a small country,

separated by a (weak) Skiba point.

RH
S : A saddle-node bifurcation separating Regions 2 and 3.

Region 3: There is a unique small country.

a: The small country is feasible.

b: The small country becomes infeasible and has to be replaced by the boundary

steady state (vanishing country).

One explanation for the lacking existence of empires of a size R > 1 (see the

discussion in the next section) before three to four thousand years ago is that transport

costs (including the costs of governing, establishment of a bureaucracy, etc.) were

simply prohibitive. Given a high value, 0.08 < β < 0.58, the ecological niche for small

countries, is wider than for large empires, 0 < β < 0.33 and there is a large overlap in

which both coexist, which is consistent with historical observations.

5.5 Bifurcation Analysis in the (r, σ) Space

The (r, σ) space consists of di�erent regions, which are separated by three curves,

cf. Figure 5: the red curve corresponds to the parameter values in which a heteroclinic

connection exists; a saddle-node bifurcation takes place at the black curve; the green

line separates the regions in which either a small country or only the boundary steady

state exists that corresponds to a country that cannot be sustained.

Therefore, we �nd the following regions of globally stable outcomes:

Region 1: There is a unique globally stable empire.
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Region 2: There are two locally stable steady states, an empire and a small country,

separated by a (weak) Skiba point.

a: The small country is feasible (Skiba).

b: The small country becomes infeasible and has to be replaced by the boundary

steady state (vanishing country) (weak Skiba).

Region 3: There is a unique small country.

a: The small country is feasible.

b: There is only the country at the boundary R1 which will vanish from the map

(for the reason given in Remark 1).

Regions 1 and 3 are not strictly separated. For small values of σ and r the size of

empires reduces to that of countries and vice versa. The case of both small r and σ is

indeed interesting, because a low r only allows for large empires, while a low value of

σ does so only for small countries (see Figures 6a and 6b).
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Figure 5: Comparing the di�erent outcomes using a two-dimensional bifurcation diagram with respect to the emperor's
preference parameters (r, σ) for the base case parametrization from Table 1. 1: only RH , 2a: Skiba between RH and
RL, 2b: Skiba between RH and R1, 3a: only RL, 3b: only R1. Red: heteroclinic connection; orange: limit point
bifurcation, part of the optimal vector �eld (RH vanishes/appears); gray: limit point bifurcation, not a part of the
optimal vector �eld (RL vanishes/appears); green: RL, R2 may exist.

5.5.1 Bifurcation Diagram in the Discount Rate r

Figure 6a provides a cut along r of the bifurcation diagram in Figure 5. It shows how

the steady state values of R depend on r. Three steady states (in the canonical system)
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exist over a broad range. The dashed lines correspond to non-optimal steady states.

There are three main regions, of which Region 2 is subdivided:

Region 1: There is a unique globally stable empire.

RL
S: A heteroclinic bifurcation separating regions 1 and 2.

Region 2: There are two locally stable steady states, an empire and a small country,

separated by a (weak) Skiba point:

a: The small country is feasible.

b: The small country becomes infeasible and has to be replaced by the boundary

steady state (vanishing country).

RH
S : A saddle-node bifurcation separating region 2 and 3.

Region 3: There is only the vanishing country.

In the base case, small countries and large empires coexist only in a relatively small

range, 0.02 < r < 0.035. The small country turns unstable (i.e., converges to the

boundary steady state) for larger discounting while empires are more robust in this

respect.

(a) Discount rate r.
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(b) Bene�t σ.

Figure 6: Bifurcation diagram with respect to the interest rate r (a) and the bene�t σ for the base case parametrization
from Table 1. Blue: high equilibrium RH ; cyan: low equilibrium RL; dashed green: boundary R1; solid green: optimal
boundary equilibrium R1; dashed gray: non-optimal steady states; red: heteroclinic bifurcation RL

S ; orange: saddle-node

bifurcation RH
S .
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5.5.2 Bifurcation Diagram in the Preferences σ

Varying the preference parameter σ for holding territory (versus consumption per

capita) along the base case leads to the bifurcation diagram in Figure 6b with three

di�erent domains:

Region 1: There is a unique globally stable small country.

RL
S: A saddle-node bifurcation separating Regions 1 and 2.

Region 2: There are two locally stable steady states, an empire and a small country

are separated by a (weak) Skiba point.

RH
S : A heteroclinic bifurcation separating Regions 2 and 3.

Region 3: There is a unique globally stable empire.

The economic interpretation is quite intuitive. For σ → 0 an emperor (asymptot-

ically) does not care about the size of his empire, but only about consumption per

capita, which is optimal only for a small country where costs for transport are low. For

σ → +∞ a king (asymptotically) neglects consumption of his people and cares only

about the size of his empire, which renders only a large empire optimal9.

Further bifurcation analyses with respect to the other model parameters con�rm

that this outcome (small countries and large empires separated by a threshold) is a

generic outcome of our model and not con�ned to just a few constructed examples.

Furthermore, they con�rm economic intuition: low discount rates, little external pres-

sure and a high preference for size foster large empires, which explains why Germany

with its powerful neighbors never became an empire, while Russia and the United

States had the possibility to expand at the expense of weak neighbors. Low produc-

tivity A, low values of α (i.e. a low speed for conquering), and high transport costs β

can render a large empire unattractive.

6 Connecting the Model Results to History

The pattern observed in the base case example, i.e., a coexistence of large empires and

small countries, proved to be robust including the di�erent bifurcation analyses. Not

9The same outcome is observed in the model of Yegorov (2018), where there is no concern about
consumption. That dynamic model assumes spending of all surplus on defense and transport, and
gives convergence to R2 as the only stable solution of the dynamic equation (it is not a dynamic
optimization problem!).
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only that, it complies with most maps at most points in time in known human history

with the dynamic process of growing empires and disappearing countries (including em-

pires). Of course, the following discussion must be con�ned (except for some remarks)

to the times before the Industrial Revolution due to our assumption of a non-growing

economy. We are all familiar with most of the large empires in history10. Although

the �rst civilizations emerged around 8000 BC, empires did not start before 3000 BC

(in Egypt, Old Kingdom). Restricting ourselves to empires larger than one million

square kilometers, i.e., R > 1, the New Kingdom in Egypt was the �rst such empire,

established around 1500 BC, and both its economic e�ciency and the low external

pressure (the Nile area is surrounded by deserts) explain its long sustainability. Later

(1500�1000 BC), empires developed in China and India, but they were not larger in

size. In 700�600 BC, the Neo-Assyrian empire reached a size of around R = 2, while

the Achaemenid empire reached a size of around R = 3 about 500 BC. Around 333 BC

(battle of Issus), Alexander the Great conquered territories and formed an empire of

a size that ultimately proved to be unsustainable. Later empires became larger: the

Umayyad Caliphate (661-750) had about 15 million km2, corresponding to R = 3.87,

while the Mongol empire (1206�1368) has reached 33 million km2, or R = 5.74). By

contrast, the Roman empire proved sustainable for some time but its territory did not

exceed 10 million km2, R ≈ 3.

What is interesting is that small countries coexisted with large empires, e.g. ancient

Greece (together with its small city states) existed along with the Persian empire. Sim-

ilarly, during the Middle Ages and in particular in Europe, many small city states (e.g.,

Venice, Florence etc.) can be found on historical maps together with regional empires.

At the same time (intermediately sized) national states were formed in Britain, France,

and Spain, while Russia and Sweden were ruling over Scandinavia. The small cities

and regional empires presumably exist due to the demands of the local population for

consumption and the external pressure from the neighboring region. The establishment

of the European empires may be explained (aside from language and other cultural ties,

but then why neither in Italy nor in Germany?) by emperors' preferences, low trans-

port costs and little external pressure (Britain as an island and Spain after defeating

the Moors).

10Taylor (2008) is a compilation of the major empires in history, of which the British one was the
largest with S = 33.7 =⇒ R = 5.80, but it does not �t our assumption of pre-industrial economies.
See also the related YouTube videos, https://www.youtube.com/watch?v=ymI5Uv5cGU4 .
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Continuing with Europe and moving through the Renaissance until the end of the

17th century, some empires had a short lifetime (e.g., Sweden during the Thirty Years'

War, France under Napoleon's regime), but some continued to expand like the Ot-

toman empire and Russia. One explanation of this expansion is that the `transport'

costs in terms of government were reduced by the economies of scale of a relatively loyal

and well-organized bureaucracy (Austria-Hungary). This may also explain the colonial

empires of Britain, Spain, Portugal, and the Netherlands who as seafaring nations had

lower transport costs and faced little local pressure. Bifurcations can and did take place

from small to large, and vice versa. In the language of the model, the switch from a

small country to a large empire (and vice versa) can come about because of changing

pressures (e.g., by invasions), economic development, and changing preferences of the

emperor. As the roving bandit settled as an emperor, his preference for size and maybe

also for local consumption changed according to Olson (1965). Many empires turned

out to be unstable and collapsed, presumably due to 'transport costs' if unavoidable

tensions between di�erent ethnicities and religions within any large empire are also

accounted for, the recent dissolution of the Soviet Union being an example. However,

neither these two events nor the uni�cation of Italy and Germany in the 19th century,

nor the collapse of the Ottoman empire after World War I �t our story but were driven

by the advent of nationalism. The nationalistic stories �t better, as the pressure at

borders with hostile neighbors limits the size of the new national entities in a way that

the creation of the `empires' of Yugoslavia and to a lesser extent of Czechoslovakia

turned out to be unsustainable.

Considering the dynamics of an empire, it takes about t = 150 (years) to reach a

10% neighborhood of the steady state RH in the base case. After t = 70, which is

probably the longest reign of a ruler, only about half of achieving the empire is ac-

complished. Therefore, only dynasties with similar preferences across generations are

capable of building and maintaining an empire. A collapse can occur faster and for

various reasons such as di�erent preferences shown by a successor, or the rising power

of a neighbor (shock in P0), and of course reasons like growth in ethnic tensions, which

are not addressed in our framework (only indirectly, e.g., a shock in the transport cost

parameter β might re�ect growing nationalism in multi-national empires).
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7 Concluding Remarks

The objective of this paper is to o�er an economic explanation of the formation (and

the collapse) of empires. Based on Yegorov's (2018) model of a stagnant economy

and accounting for space, the (optimal) intertemporal decisions of rulers to fund the

military for defending or expanding a country were derived. The model uses a homo-

geneous space, a single production factor, and accounts for increasing and decreasing

returns to geographical scale, economic constraints on military expenditures, and the

preferences of an emperor for a large country and the consumption of his people.

The crucial implication is that there are two viable long-run outcomes: a small

country and a large empire. Both outcomes are separated by a threshold. They have

di�erent ecological niches in the parameter space, both may collapse due to changing

environments, and depend on initial circumstances, fortunate ones for empires. For

example (and presumably most likely), small countries collapse due to increased pres-

sure from their neighbor(s). Many (but by far not all) empires need a long time to

grow, e.g., promoted by similar preferences of a dynasty but they may collapse after

a change in these preferences (expressed by a new ruler). And even large empires are

endangered, e.g., because of increased military force at their borders and high trans-

port costs.

This result on the multiplicity of equilibria (they are due to scale economies (in de-

fense); see also Arthur (1994)) can explain why historical maps almost always include

many small countries (such as Switzerland for centuries) coexisting with large empires.

The expansion of empires can be attributed to weak neighbors and very di�erent pref-

erences of a new King like Alexander the Great (or Napoleon compared with the �rst

French Republic following the French Revolution).

Favorable factors for building up an empire are: low discounting, e.g., caring about

one's dynasty and striving more for grandness than for the wellbeing of the popula-

tion. On the other hand, low productivity, high transport costs, military weakness,

and strong pressure from neighboring countries limit the size of empires. The growth

of an empire is constrained although output grows in terms of its size (i.e., of the order

R2) and defense requirements depend only on border length (and are thus linear in R),

because transport costs increase in the order R3, which limits the size of an empire and

will necessarily lead to collapse for any empire that is too large.
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Since we o�er just a �rst try at what we think is an interesting and interdisciplinary

topic, there are many areas for extension and elaboration and we will mention just a few

here: including elements of economic growth instead of assuming a stagnant economy,

which would allow to address how economic growth can contribute to the establishment

of an empire (such as the British one); accounting for higher heterogeneity of the pop-

ulation as the empire expands (indeed many empires fell prey to nationalism, e.g., the

Habsburg and the Ottoman empires, and recently the Soviet Union, Yugoslavia, and

even Czechoslovakia); adding uncertainty because it is a crucial characteristic of any

war; strategic considerations, i.e., to endogenize the pressure exerted by a neighboring

ruler.
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