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Abstract: The literature on cartel stability sidelines antitrust policy, whereas the literature
on antitrust policy tends to neglect issues of cartel stability. This paper attempts to
connect these two interrelated aspects in the context of an augmented quantity leadership
model. The cartel is the Stackelberg quantity leader and the fringe �rms are in Cournot
competition with respect to the residual demand. The antitrust authority decides on its
own investigative e¤ort and on the size of the �ne that cartel members have to pay when
they are detected. For testifying cartel members a leniency program is implemented. Our
framework takes into account that these antitrust policy instruments are not costless for
society. Our model demonstrates that the optimal antitrust policy exploits the inherent
instability of a cartel to reduce its size.
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1 Introduction

There is a long history of anti-competitive agreements in which �rms collude to raise
market prices above competitive levels. Such agreements in�ict short-term and long-term
costs on society. Therefore, the formation of cartels is considered to be illegal in most
developed economies. Competition law and antitrust authorities are important elements
in combating anti-competitive practices.
Economists have made considerable progress in better understanding the formation

of cartels and the e¤ectiveness of antitrust policies. The current literature is mostly con-
cerned with the sustainability of a cartel�s collusive agreement. A cartel is sustainable, if
all �rms comply with the collusive agreement. Following Friedman�s (1971) seminal paper,
this literature usually relies on repeated oligopoly games (supergames) with grim-trigger
strategies that form a symmetric subgame perfect Nash equilibrium. Motta and Polo
(2003) and Spagnolo (2005) combine this approach with an antitrust authority that has
limited resources. The authority endogenously determines its antitrust policy. Two basic
market outcomes can arise in these supergames. Either the antitrust policy successfully
deters the �rms from establishing a sustainable cartel, or the antitrust policy fails and an
all-inclusive cartel arises, that is, all �rms become members of the cartel.
Bos and Harrington (2015, p: 133) criticize the existing supergame literature because

it focuses on all-inclusive cartels, while in the real world cartels usually compete against
some fringe �rms.2 The existence of fringe �rms complicates the analysis considerably,
as it raises the issue of cartel stability. In the work of d�Aspremont et al. (1983, p:
21) a distinction is made between internal and external stability. Internal stability is
characterized by the condition that no cartel member wants to become a fringe �rm,
whereas external stability is conditioned by no fringe �rm wanting to become a cartel
member. The supergame approach avoids questions of stability by simply assuming that
only all-inclusive cartels can arise.3 Furthermore, supergame frameworks usually produce
equilibrium conditions rather than explicit equilibrium solutions. This may impede the
formulation of policy recommendations.
By contrast, questions of stability have been studied in the context of the so-called

leadership approach (e.g., d�Aspremont et al :, 1983; Sha¤er, 1995), which used to be
the standard approach for analysing the formation of cartels. It is embedded in a fully
�edged oligopoly framework and produces explicit equilibrium solutions. Leadership mod-
els are concerned with stability, but not with antitrust policy and they avoid questions of
sustainability by simply assuming that a collusive agreement is enforceable.
The preceding discussion suggests that a comprehensive and tractable model of collus-

2This point has been made also by Bos (2009, pp: 11-12) and by Bos and Harrington (2010, pp: 92-93).
Empirical studies such as Harrington (2006), Levenstein and Suslow (2006), and Pham (2019) con�rm
this position. Hellwig and Hüschelrath (2017) provide a dataset on 114 illegal cartels convicted by the
European Commission between 1999 and 2016. The data reveal frequent entries into the cartel and exits
from the cartel. Both instances con�rm the existence of a fringe.

3Bos and Harrington (2015, pp: 135-136) is the only exception that we are aware of. To address
both, sustainability and stability, they sacri�ce the endogeneity of the antitrust authority�s operations
and assume an exogenously given antitrust behavior.
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ive behavior ideally would have at least four properties. It addresses: (i) stability and (ii)
sustainability in the context of an (iii) endogenous antitrust policy and it is simple enough
to produce (iv) explicit equilibrium solutions. Existing models of collusive behavior have
one or two of these properties. We attempt to push that limit towards three. Since anti-
trust policy directly a¤ects the stability of cartels, our framework of collusion addresses
stability issues in the context of an endogenous antitrust policy and it derives an equilib-
rium solution, the core of which can be explicitly formulated. For this purpose, we revive
the leadership approach and enhance it by a welfare maximizing antitrust authority.
Of the four listed desirabe properties of a model of collusive behavior, only property

(ii), sustainability, is missing. The issue of sustainability features prominently in the
supergame approach. In our view, there are at least four good reasons to complement the
supergame approach by our leadership approach.
(1) As pointed out before, it is analytically di¢ cult to accommodate both, stability

issues and an endogenous antitrust policy in a supergame. By contrast, the simple basic
structure of leadership models allows for an extension that captures the endogenous activ-
ity of a welfare maximizing antitrust authority. Furthermore, as this paper demonstrates,
explicit solutions can be derived.
(2) Leadership models assume perfect enforceability. Supergames replace this assump-

tion with the opposite extreme, no enforceability whatsoever. Studies such as Levenstein
and Suslow (2006), Harrington (2006), and Pham (2019) provide elucidating descriptions
of actual cartel behavior. They show that perfect enforceability is unrealistic, but that the
other extreme, no enforceability, is unrealistic, too. Colluding �rms usually develop or-
ganizational structures that ensure some degree of enforceability. In other words, whereas
the leadership approach is likely to overstate the sustainability of cartels (by taking it
for granted), the supergame approach tends to underrate it (by ignoring that colluding
�rms usually develop some enforcement devices). To obtain a more balanced picture, it
is advisable to complement the policy implications derived from the supergame approach
by those derived from our leadership approach.
(3) Levenstein and Suslow (2006, p: 78) argue that in the real world the breakup of

cartels is pre-dominantly the result of changing economic conditions and not so much
the cartel�s response to the misbehavior of a cartel member. Misbehavior often results
in limited retaliation rather than in the dissolution of the cartel (see also Genesove and
Mullin, 2001, pp: 390-394). The grim-trigger strategies underlying most supergames are
not fully consistent with this empirical observation.4

(4) When �rms are su¢ ciently patient (that is, their discount factor is su¢ ciently
large), sustainability is always guaranteed. Therefore, the leadership model�s virtues
(addressing stability issues, being expandable by a welfare maximizing antitrust authority,
and producing explicit solutions) may outweigh its neglect of sustainability.
These four arguments should not be misinterpreted as an attempt to discredit the

supergame approach. They merely suggest that complementary approaches are useful.
We think that Sha¤er�s (1995) quantity leadership model extended by an active antitrust

4See also Eaton and Eswaran (1998) and Escrihuela-Villar and Guillén (2011).
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authority is such an approach.
In our model, several policy instruments are available to the antitrust authority. It

can decide on its investigative e¤ort and on the appropriate size of the �ne that detected
cartels have to pay. Furthermore, we assume that a leniency program can be implemented
that o¤ers testifying �rms a discount. The authority�s own investigative e¤ort is its most
direct option to increase the probability of detection. These e¤orts are also necessary to
turn �nes and leniency programs into e¤ective antitrust instruments. Nevertheless, the
authority�s e¤ort has rarely been addressed in the literature.5

In our framework, the probability of detection increases with the number of cartel
members, with the authority�s e¤ort, and with the size of the �ne. Since a leniency
program is implemented, the probability of detection also increases with the size of the
discount granted to cartel members that cooperate with the antitrust authority.
Antitrust policy, however, is not costless. This cost must be considered in the design

of an optimal antitrust policy. We demonstrate how the optimal policy can be derived.
This policy creates internal instability and external stability. Internal instability induces
cartel �rms to mutate into fringe �rms and external stability prevents fringe �rms from
entering the cartel. Although the optimal antitrust policy reduces the size of the cartel
compared to the size without an antitrust policy, it never completely eliminates it.
Though several results of our study are novel, several other results con�rm �ndings that

have been derived in the context of supergames. For example, Bos and Harrington (2015,
p: 139) point out that with a su¢ ciently strong antitrust policy, it is always possible
to prevent the formation of a cartel. We obtain the same result in the context of our
extended quantity leadership model. Also the positive e¤ect of leniency programs on the
prevention of large cartels is con�rmed.
This paper proceeds as follows. Section 2 surveys the related literature. Section 3

summarizes the original quantity leadership model. In Section 4 we extend this model by
including an antitrust authority that combats the formation of cartels. In Section 5 we
show how the antitrust authority can use its policy instruments to reduce the size of stable
cartels. The derivation of an optimal antitrust policy is outlined in Section 6. Section
7 discusses the underlying economics and the resulting policy implications. Concluding
remarks are contained in Section 8. We have placed most of our proofs in the Appendix.

2 Related Literature

This study is primarily concerned with the derivation of an e¤ective antitrust policy.
Endowed with vast resources, an antitrust authority might be able to stop any collusionary
behavior. At some point along this route, however, the marginal bene�t from resources
invested in antitrust enforcement falls below the marginal cost of expanding enforcement.

5A notable exception is the supergame proposed by Spagnolo (2005). It features an antitrust authority
that can decide on its own e¤ort, on the size of the �ne, and on the extent of leniency. However, only
all-inclusive cartels are considered. Therefore, the link between stability and antitrust policy cannot be
analysed.
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Therefore, governments endow their authorities with limited resources and expect that
these resources are e¢ ciently used to contain collusive behavior.
This institutional framework is re�ected in the supergame proposed by Motta and

Polo (2003, p: 353). They assume that the authorities have a given budget that they
must e¢ ciently allocate for the monitoring and prosecution of cartels. Spagnolo (2005,
p: 13) assumes that increasing the conviction probability is costly. These two studies
consider only all-inclusive cartels, that is, cartels without a competitive fringe. Therefore,
they cannot analyse the link between antitrust policy and cartel stability.6

Bos and Harrington (2010, pp: 92-93) list several empirical studies that emphasize
the relevance of fringe �rms. Therefore, they propose a supergame with heterogeneous
capacity-constrained �rms, some of which may stay outside the cartel. They show (Bos
and Harrington, 2010, p: 101) that a sustainable and stable cartel is made up of the
largest �rms. The smallest �rms prefer the status of a fringe competitor. The fringe �rms
produce at capacity, whereas the cartel members restrict their output below capacity. In a
supergame with quantity setting �rms, Escrihuela-Villar (2009, p. 139-140) demonstrates
that even homogeneous �rms can establish a sustainable and stable cartel. Eaton and
Eswaran (1998) and Escrihuela-Villar and Guillén (2011) propose supergames that do not
rely on grim-trigger strategies. Instead, the non-cheating members of a cartel continue to
operate the cartel without the cheating member.
All articles listed in the preceding paragraph neglect the issue of antitrust policy. In

a later study, however, Bos and Harrington (2015, p: 135) amend their former framework
by an exogenously given antitrust policy and investigate the impact of that policy on the
properties of the cartel and the fringe. They assume that the rate of success of the antitrust
authority�s investigations increases with the number of cartel members. The members of
a detected cartel must pay a �ne that is proportional to their pro�ts. The �ned cartel
members can apply for leniency which would reduce the �ne. The analysis con�rms that
antitrust policy a¤ects the stability of cartels. Even though the authors concede that
�the relationship between antitrust enforcement and cartel size is too complex for us to
provide speci�c guidance for enforcement policies (p: 148)�, their framework suggests that
an antitrust policy should be progressively more aggressive for more inclusive cartels.
Bos and Harrington (2015) investigate cartel stability in the context of the supergame

approach. Originally, price or quantity leadership models were the backbone of stability
analysis. In the price leadership model developed by d�Aspremont et al. (1983) the cartel
is the Stackelberg price leader. The fringe �rms take the leader�s price as given and
set their quantities such that price equals marginal cost. In the quantity leadership
model advocated by Sha¤er (1995), the cartel is the Stackelberg quantity leader and the
fringe �rms are in Cournot competition with respect to the residual demand. The price

6This is true also for studies by Souam (2001) and Mouraviev and Rey (2011). The latter consider a
cartel the members of which play sequentially instead of simultaneously. They show how this can facilitate
collusion. Souam (2001) proposes a framework in which the antitrust authority takes the market price
as a signal for the probability that a cartel exists. Since antitrust enforcement is costly, the antitrust
authority should increase its e¤ort with the observed market price. If the market price is su¢ ciently low,
however, collusion should be tolerated. Sustainability is not an issue in his framework.
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leadership model with its perfectly competitive fringe might �t industries with a large
number of competing �rms, whereas the quantity leadership model with its Cournot fringe
might be more suitable for markets with a more limited number of �rms. The leadership
models have inspired further work on the conditions for the successful formation and
stability of cartels. For example, Donsimoni (1985), Donsimoni et al. (1986), and Prokop
(1999) utilize the price leadership model, whereas studies by Konishi and Lin (1999) and
Zu et al. (2012) are based on the quantity leadership model.
Antitrust policy is not an issue in either type of leadership model. Instead, these stud-

ies focus on the formal conditions for the existence and uniqueness of a stable cartel. The
present study extends the quantity leadership model by a welfare maximizing antitrust
authority. Before we describe this extension in more detail, we provide a summary of the
original quantity leadership model advocated by Sha¤er (1995).

3 The Original Quantity Leadership Model

Daughety (1990, pp: 1232-33) introduces a model that combines Stackelberg and Cournot
competition. The inverse demand function is P = a � bQ, where P is the market price,
Q is the aggregate quantity produced, and a and b are positive constants. The industry
consists of a �nite number of n � 2 identical �rms. Some of the �rms are independent
Stackelberg leaders, while the other �rms are independent Stackelberg followers. Only
integer numbers of �rms are considered. All n �rms have a constant marginal cost equal
to c. Among each other, the Stackelberg leaders act like Cournot players. The same
is true for the Stackelberg followers. Daughety uses this model as a starting point for
analyzing the welfare e¤ects of horizontal mergers.
When only one Stackelberg leader exists, Daughety�s model simpli�es to the quantity

leadership model that Sha¤er (1995, p: 745) adopts for studying the stability of cartels.
In that model, the Stackelberg leader is a cartel comprised of a group of identical �rms
that coordinate their output decisions in a binding manner. In equilibrium, the cartel
always produces more than half of the complete output. Therefore, assigning the role
of the Stackelberg leader to the cartel is a reasonable feature of the quantity leadership
model.7

When nC 2 (1; : : : ; n) of the n �rms form a cartel, then the number of fringe �rms
is nF = n � nC . Since the nC cartel members act as one �rm, we prefer to present the
model in terms of nF instead of nC . This also simpli�es the algebraic derivations without
a¤ecting the results.
After the (n� nF ) �rms of the cartel have collectively determined their pro�t max-

imizing joint output QC , each fringe �rm determines its pro�t maximizing output qF . In
other words, the cartel acts as a Stackelberg leader, while the group of fringe �rms is the
Stackelberg follower. Each fringe �rm considers both, the cartel�s output, QC , and the

7Huck et al . (2007) provide some experimental evidence that �rms that cooperate in a binding manner
show leadership behavior, whereas the remaining �rms exhibit follower behavior. For additional references
that support the leadership role of perfectly colluding �rms see Brito and Catalão-Lopes (2011, pp: 3-4).
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aggregate output of the other fringe �rms, Q�F , as given. Therefore, the output of each
fringe �rm, qF , is determined by the Cournot-Nash equilibrium concept.
Sha¤er (1995, p: 745) shows that, with n 2 (1; : : : ; n) and nF 2 (0; : : : ; n � 1), the

equilibrium is given by the total output

Q = QC + nF qF =
a� c
b

2nF + 1

2nF + 2
(1)

and the market price

P = c+
a� c

2 (nF + 1)
: (2)

The pro�t of each cartel member is

�C (nF ) =
(a� c)2

4b(nF + 1)(n� nF )
(3)

and the pro�t of each fringe �rm is

�F (nF ) =
(a� c)2

4b(nF + 1)2
: (4)

Given the choice between being a cartel member or a fringe �rm, the �rm always
chooses the option with the larger pro�t. If both options generate exactly the same
pro�t, the �rm prefers the legal status of a fringe �rm to the illegal status of a cartel
member. In other words, a �rm will stay in a cartel, only if the pro�t gained by staying a
cartel member is strictly larger than the pro�t gained by becoming a fringe �rm. This is
the condition for internal stability.8 Formally, a cartel with (n�nF ) members is internally
stable, only if

�C (nF ) > �F (nF + 1) : (5)

External stability requires that no fringe �rm has an incentive to become a member of
the cartel. This is satis�ed, when the pro�t of the fringe �rm is at least as large as the
pro�t the �rm would earn after entering the cartel. Formally,the external stability of a
cartel with (n� nF ) members requires that

�C (nF � 1) � �F (nF ) : (6)

An all-inclusive cartel (nF = 0) is always externally stable, because no fringe �rm exists
that could enter the cartel. However, it is easy to show that for n > 4, all-inclusive cartels
are never internally stable.
A cartel is said to be stable, if it satis�es both, internal and external stability (d�Aspre-

mont et al., 1983, p: 21). When n is even (uneven), a stable cartel has exactly two (three)
more members than the fringe (Sha¤er, 1995, p: 746, Proposition 4) and the pro�t of each
cartel member is smaller than that of each fringe �rm (p: 747, Proposition 5). However,

8In the original de�nition of d�Aspremont et al. (1983, p: 21) and many subsequent papers a weakly
larger pro�t is su¢ cient for internal stability.
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both, the members of the stable cartel and the fringe �rms earn a higher pro�t than in
the standard Cournot oligopoly without a cartel (p: 748, Proposition 6). Note that in the
standard Cournot oligopoly the market price is

P = c+
a� c
n+ 1

(7)

and the pro�t of each �rm is

�(n) =
(a� c)2

b(n+ 1)2
: (8)

Due to the �rst-mover advantage, a single �rm cartel (nF = n � 1) always prefers
the cartel situation to the standard Cournot oligopoly. This can be easily checked by
comparing the pro�ts in (3) with those in (8). Also, the welfare arising from a market with
a single �rm cartel is larger than the welfare arising from a standard Cournot oligopoly.
This bene�cial �timing e¤ect� (Brito and Catalão-Lopes, 2011, p: 2) has already been
discussed in Daughety (1990, p: 1233).
Equation (2) reveals that the market price falls as the number of fringe �rms increases.

Therefore, welfare increases as cartel members mutate into fringe �rms.
The latter two �ndings have important implications for the introduction of an anti-

trust policy. Any such policy should attempt to destabilize the existing stable cartel by
providing incentives for the cartel members to become fringe �rms. In other words, the
policy should change the condition for internal stability such that the size of the stable
cartel decreases. However, the policy should stop short of eliminating the cartel, because
the ensuing Cournot competition yields a larger market price than the price arising from
a single �rm cartel. If antitrust policy was costless, the largest welfare would arise from
a policy that leads to a stable single �rm cartel. In the real world, however, antitrust
authorities create social costs. In the following section we complement the quantity lead-
ership model by including an antitrust authority. The policies available to the antitrust
authority can increase the number of fringe �rms, but also create social costs.

4 Model Extension

Our game has two stages. In the �rst stage, the antitrust authority decides on its optimal
policy, taking into account the reactions of the n �rms. A policy speci�es the authorities
investigative e¤ort, e � 0, and the size of the �ne for detected cartels, f � 0. Furthermore,
a leniency program can be implemented, with r � 0 denoting the percentage by which
the �ne of an eligible and cooperating cartel member is reduced, and � � 0 denoting the
share of cartel members eligible for that reduction.9 Therefore, the variable d = r� can

9Suppose that the cartel is detected. If � = 0:1 and the number of cartel members is n � nF = 10,
then exactly one member is randomly drawn. This member is regarded as a cooperating �rm and receives
the reduction. If � = 0:1 and n� nF = 5, again one member is randomly drawn and that member has a
50% chance of being regarded as a cooperating �rm.
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be interpreted as the expected discount, that is, as the percentage by which the �ne of a
member of a detected cartel is reduced.
In the second stage, each of the n �rms decides on its cartel membership and on the

optimal output quantities, qF and QC , given the implemented antitrust policy (e; f; d).
We will solve this two stage game by backward induction, starting with the derivation of
a subgame perfect equilibrium for the n �rms (Section 5), given the authority�s antitrust
policy. We then derive the welfare maximizing antitrust policy (Section 6).

4.1 Probability of Detection and Antitrust Authority

When the cartel is detected, each member must pay the �ne f . Let p 2 [0; 1] denote the
probability of detection. To capture the interdependencies between the determinants of
this probability, we specify it in the following multiplicative way:

p(nF ; e; f; d) = g(n� nF ) � h (e; f; d) : (9)

The �rst factor, g(n� nF ) 2 [0; 1], takes care of the fact that larger cartels are more
likely to be detected than smaller ones.10 Therefore, g(n� nF ) has a positive �rst order
derivative with respect to (n� nF ) and a negative one with respect to nF . Furthermore,
we assume that g(n� nF ) is concave and, therefore, approaching 1 from below. When
no cartel exists (nF = n), the probability of detection, p, should be 0. This requires that
g(0) = 0.
The second factor of the probability of detection is h(e; f; d) 2 [0; 1] and captures the

impact of the authority�s antitrust policy on the probability of detection. It is through
this channel that the antitrust policy can a¤ect the market equilibrium and the associated
size of the cartel.
The antitrust authority is part of the government and invests its complete endowment

in the detection of cartels. The larger the endowment, the larger the e¤ort, e, and
therefore, the probability of detection: h0e > 0. As e rises, the marginal increase in the
probability of detection falls: h00ee < 0.
The authority can implement a leniency program that o¤ers a reduced �ne to some

or all cartel �rms that inform the authority about the cartel. There is ample evidence
that such programs increase the probability of detecting cartels (e.g., Aubert et al., 2006,
p: 1242; Brenner, 2009, pp: 642-644). In anticipation of being detected, cartel �rms may
apply for leniency by providing evidence of a cartel agreement. Furthermore, even if
cartel members consider it as unlikely that the antitrust authority will discover anything,
they may worry that some fellow member applies for leniency and, because of that worry,
applies itself. Harrington (2013, pp: 2-3) denotes these two e¤ects as �prosecution e¤ect�
and �preemption�e¤ect, respectively.
The policy variable d = r� in h(e; f; d) captures these e¤ects. An expansion of eligib-

ility, �, or an increase of the percentage r by which the �ne of an eligible cartel member
is reduced, strengthens the preemptive e¤ect of discounts. However, it lowers the average

10This is identical to Assumption A4 in Bos and Harrington (2015, p: 135).
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�ne of the members of a detected cartel, weakening the prosecution e¤ect. We assume that
the preemptive e¤ect of d is at least as strong as the prosecution e¤ect. In other words,
h0d > 0. Furthermore, we assume that h00dd < 0. Our speci�cation allows for discounts
r > 1, that is, for rewards. For plausibility reasons, however, we restrict the domain of d
to the interval [0; 1). Otherwise, the members of a detected cartel could expect to receive
a reward instead of a �ne: f (1� d) � 0. This cannot be a sensible antitrust policy.
The third policy instrument is the �ne f . A larger �ne, f , strengthens both, the pro-

secution e¤ect and the preemptive e¤ect of the leniency program, but this e¤ect weakens
as f rises. Therefore, h0f > 0 and h

00
ff < 0.

A positive e¤ort (e > 0) is necessary to turn the leniency program into an e¤ective
instrument. Without any e¤ort on the side of the antitrust authority (e = 0) the prosecu-
tion e¤ect and the preemptive e¤ect of discounts do not exist, regardless of the size of the
cartel and the size of the �ne. Therefore, the case e = 0 must give p = 0, which requires
that h(0; f; d) = 0. When a detected cartel never pays a �ne (f = 0), the investigative
sta¤ is likely to be demoralised and its e¤ort may become completely ine¤ective, that is,
h(e; 0; d) = 0. If the �ne for detected cartels is positive, the antitrust authority must be
able to detect an existing cartel through its own investigative e¤ort e. Therefore, lower-
ing the reduction for testifying cartel members to r = 0, or lowering the share of cartel
members eligible for the leniency program to � = 0 (both cases result in d = 0) should
not imply that the probability of detection falls to 0. Therefore, we need h(e; f; 0) > 0.
Summarizing, we assume that h(e; f; d) is a continuous concave function that is strictly

increasing and approaching 1 from below. Furthermore, h(0; f; d) = h(e; 0; d) = 0 and
h(e; f; 0) > 0.

4.2 Social Cost

If e¤ort, e, was costless, the authority could choose an in�nitely large e¤ort level such
that the factor h(e; f; d) approaches 1. Clearly, this is not what we observe in reality.
Authorities are limited in their investigative e¤orts by the size and competence of its sta¤
and the quality of its technical system. If society desires a larger e¤ort by its antitrust
authority, it must provide the resources necessary to hire more and better sta¤ and to
purchase more e¤ective system. Following the law enforcement literature initiated by
Becker (1968), we capture this cost by a continuous social cost function s (e; f; d) with
the �rst order partial derivative s0e > 0.
The antitrust authority can penalize a convicted cartel with a �ne f the size of which

must have been �xed before the cartel was detected. The size of the �ne is determined by
the antitrust authority. This is its second antitrust policy instrument. Again following
Becker (1968), we assume that the administration of the �ne is costless. The payment of
the �ne represents pure redistribution. No social cost arises from this payment. However,
there is a more hidden route by which �nes cause a social cost. The antitrust authority has
a strong incentive to choose very large �nes, because this reduces the expected pro�ts from
cartel membership. Excessive �nes, however, induce a social cost, because they violate
the principle of proportional justice and may increase the risk of convicting innocent �rms
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(e.g., Allain et al., 2015). Governments have reacted to these concerns by setting upper
bounds to legally admissible �nes. We formalize this cost in our social cost function
s (e; f; d) with s0f > 0.
Leniency programs cause similar social costs. The public may dislike the idea that

testifying �rms that have broken the law can get away with a discount or, even worse,
are rewarded. Lenient treatment of guilty �rms may undermine the general respect for
the law and may encourage unlawful behavior. The public incorporates into its dislike
for leniency programs not only the percentage of the reduction, r, but also the share of
cartel members eligible for this reduction, �. These costs, too, are captured by our social
cost function s (e; f; d) with s0d > 0 and d = r�.
The derivative s0e can be interpreted as an ine¢ ciency indicator of the antitrust au-

thority, while the derivatives s0f and s
0
d indicate the damage to the rule of law arising from

the �ne and the expected discount.
In sum, our model extends the quantity leadership model by including an antitrust

authority that imposes a rather stylized, but comprehensive antitrust policy. It chooses
its e¤ort, e, the �ne, f , and the expected discount, d. The probability of detection,
p(nF ; e; f; d), is carefully speci�ed, capturing the interdependencies between the relev-
ant forces. The probability of detection increases with the number of cartel members,
(n� nF ), with the authority�s e¤ort, e, with the expected reduction in the �ne for testify-
ing cartel members, d, and with the size of the �ne, f . Furthermore, our model introduces
a social cost function that is increasing in e, f , and d.

5 Stability

In this section we derive a subgame perfect equilibrium for each given antitrust policy
(e; f; d). The equilibrium is characterized by the number of fringe �rms, nF , their output
quantities, qF , and the output quantity of the cartel, QC .
For a given antitrust policy (e; f; d) and given values of n and nF , the expected value

of the �ne can be interpreted as a �xed cost of each cartel member. Therefore, the
equilibrium quantity and price are still given by expressions (1) and (2). The pro�t of
each fringe �rm is still given by (4). Therefore,

�F (nF + 1) =
(a� c)2

4b(nF + 2)2
: (10)

However, a cartel member�s pro�t, de�ned by expression (3), must be modi�ed. In the
presence of the antitrust authority, the expected pro�t of each cartel member is

E [�C (nF )] = �C(nF )� p(nF ; e; f; d) f (1� d) (11)

=
(a� c)2

4b(nF + 1)(n� nF )
� g(n� nF )h(e; f; d) f (1� d) : (12)

Accordingly, the formal condition for internal stability becomes

E [�C (nF )] > �F (nF + 1) : (13)
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The condition�s interpretation is unaltered. As long as the expected pro�t from remaining
a cartel member is larger than the pro�t from becoming a fringe �rm, the cartel member-
ship is preferred. However, if the two pro�ts are identical, the �rm chooses the riskless
and law-abiding option, that is, fringe status.
Inserting the pro�t de�nitions (12) and (10), as well as the probability de�nition (9)

in inequality (13) yields
A < T (nF ) ; (14)

with

T (nF ) =
(a� c)2

4b

(nF + 2)
2 � (nF + 1)(n� nF )

(nF + 1)(n� nF )(nF + 2)2g(n� nF )
(15)

and
A = h(e; f; d) f (1� d) : (16)

The variable A characterizes the implemented antitrust policy. The value of A depends
on the punishment variables f and d, as well as on the e¤ort e, but not on n and nF .
Increases in the e¤ort, e, and the �ne, f , raise the value of A. The impact of the discount
d on the value of A is ambiguous, since it increases the probability of detection, but
lowers the average �ne of the members of a detected cartel, f (1� d). Recall that d was
restricted to values smaller than 1. Therefore, A cannot be negative.
T (nF ) can be interpreted as a threshold. It is the minimum value of the policy variable

A that is required to make a cartel with (n� nF ) members internally instable. The value
of T (nF ) depends on n and nF as well as on the market volume (a� c) =b. Furthermore,
we obtain the following result.

Lemma 1 The function T (nF ) de�ned by (15) increases in nF . For T (nF ) � 0, the
function T (nF ) decreases in n.

Proof: See Appendix A.

For a cartel with (n� nF + 1) members, the expected pro�t of each cartel member is

E [�C (nF � 1)] = �C (nF � 1)� p(nF � 1; e; f; d) f (1� d) (17)

=
(a� c)2

4b(nF )(n� nF + 1)
� g(n� nF + 1)h(e; f; d) f (1� d) : (18)

External stability requires that

E [�C (nF � 1)] � �F (nF ) : (19)

Inserting the pro�t de�nitions (4) and (18), as well as the probability de�nition (9) in
inequality (19) yields

T (nF ) � A (20)

with

T (nF ) =
(a� c)2
4b

nF (2nF + 1� n) + 1
nF (n� nF + 1)(nF + 1)2g(n� nF + 1)

: (21)
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The weak inequality in (20) re�ects the fact that with E [�C (nF � 1)] = �F (nF ) a �rm
always prefers the riskless and legal status of the fringe �rm.
When conditions (14) and (20) are simultaneously satis�ed, the cartel with (n � nF )

members is stable:
T (nF ) � A < T (nF ) : (22)

This says that an antitrust authority pursuing a market with nF fringe �rms and a stable
cartel with (n� nF ) members, must choose its policy (e; f; d) such that the resulting
A-value falls between the two thresholds T (nF ) and T (nF ).
Since

T (nF + 1) = T (nF ) ; (23)

the following result is obtained.

Lemma 2 The function T (nF ) de�ned by (21) increases in nF and decreases in n.

Proof: The proof in Appendix A is valid not only for T (nF ), but also for T (nF � 1) and,
therefore, for T (nF ). �

Using Equation (23), the condition for stability, (22), can be written in the form

T (nF ) �| {z }
ext. stability

A< T (nF + 1)| {z }
int. stability

: (24)

This has an important implication:

Theorem 1 If an antitrust policy (e; f; d) generates a stable cartel, then this cartel is
unique.

Proof: By Lemma 2, the sequence of intervals [T (0); T (1)); [T (1); T (2)); : : : ; [T (n �
1); T (n)) is connected, but mutually exclusive. Therefore, for each given A-value, only
one nF -value satisfying (24) can exist. �

By modifying the values of its policy instruments, the antitrust authority can modify
the A-value, and therefore, the size of the resulting stable cartels. For example, reducing
the e¤ort would lower the A-value and, therefore, the stable nF -value (enlarge the cartel),
whereas increasing the e¤ort would increase the A-value and the stable nF -value (shrink
the cartel).

6 Optimal Antitrust Policy

6.1 Welfare

Welfare does not depend on the budgetary e¤ects of the �nes and discounts, because these
are of a purely redistributional nature. Therefore, welfare is de�ned here as the sum of
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consumer and producer rent minus the social cost caused by the antitrust policy. Suppose
that an antitrust policy leads to a stable cartel with nF 2 (0; : : : ; n� 1) members. The
associated sum of consumer and producer rent is given by

(a� c)Q� 0:5(a� P )Q = (a� c)2 (2nF + 1) (2nF + 3)
8b (nF + 1)

2 ; (25)

where the values of Q and P are de�ned by (1) and (2).
When a cartel member becomes a fringe �rm, this sum increases by (see Appendix B)

(a� c)2

8b

2nF + 3

(n2F + 3nF + 2)
2 > 0 : (26)

This would suggest that the antitrust authority should implement a policy that results
in a very small stable cartel. However, we know that reducing the size of a stable car-
tel increases the social cost, s (e; f; d). This cost is the second component of welfare.
Combining both components, the welfare function is

W (n; e; f; d) =
(a� c)2 (2nF + 1) (2nF + 3)

8b (nF + 1)
2 � s (e; f; d) ; (27)

where nF is determined via de�nition (16) and condition (24). We want to �nd the
antitrust authority�s policy (e; f; d) that generates the maximum welfare. This policy is
denoted as the authority�s optimal antitrust policy, (e�; f�; d�).

6.2 Cartel Prevention and Passive Antitrust Policy

When nF = n, the cartel is �empty�. If a very aggressive antitrust policy is implemented
such thatA > T (n), no fringe �rm is willing to �enter�this empty cartel. The empty cartel
is externally stable. Therefore, a symmetric Cournot oligopoly would arise. However, this
is not the outcome the antitrust authority should pursue.

Theorem 2 The symmetric Cournot oligopoly with nF = n would generate a smaller
welfare than a Stackelberg market with a stable single �rm cartel.

Proof: See Appendix C.

Theorem 2 states that an antitrust policy leading to nF = n cannot be optimal.
Therefore, we can restrict our attention to policies consistent with stable cartels such
that nF 2 (0; : : : ; n� 1).
Any antitrust policy with e = 0 or f = 0 leads to h(e; f; d) = 0, yielding p = 0 for

Equation (9). Therefore, such a policy completely eliminates the chance to detect an
operating cartel. We denote such policies as passive antitrust policies. From Equation
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(16) we can see that passive antitrust policies are characterized by A = 0. Relationship
(24) implies that for such policies the condition for stability becomes

T (nF ) � 0 < T (nF + 1) : (28)

Only one nF -value exists that satis�es this condition. We denote this value by nminF ,
because an active antitrust policy would lead to nF -values that are at least as large as
nminF , and therefore, to cartels that are never larger than

�
n� nminF

�
. Therefore, we can

con�ne our search for the optimal antitrust policy to those policies (e; f; d) that lead to
nF 2

�
nminF ; : : : ; n� 1

�
.

To �nd the optimal antitrust policy (e�; f�; d�), we pursue the following three stage
procedure:

1. Find nminF .

2. Derive for each given nF 2
�
nminF ; : : : ; n� 1

�
the antitrust policy (e�nF ; f

�
nF
; d�nF ) that

minimizes the social cost, s (e; f; d), of ensuring that at least nF fringe �rms exist.

3. For each of these cost minimizing antitrust policies, compute the resulting wel-
fare. The policy that generates the largest welfare is the optimal antitrust policy
(e�; f�; d�).

In the following, we describe these three stages in more detail. An illustrating example
is provided in Section 7.2.

6.3 Stage 1: Finding nminF

We know that a passive antitrust policy leads to nminF . This is the only nF -value that
satis�es both inequalities in (28). The sign of T (nF ) depends on the sign of the term
nF (2nF + 1� n)+1 in expression (21). Therefore, the left inequality of (28) (the external
stability condition) gives

n� nF � nF + 1 +
1

nF
:

This expression implies that in the absence of an active antitrust policy the smallest
externally stable cartel and, therefore, the only stable cartel has at least nF +2 members.
Therefore, nminF is the largest integer for which the condition n�nminF � nminF +2 is satis�ed.
Rearranging this condition gives nminF � (n� 2) =2. Therefore,

nminF =

�
(n� 2) =2 for even n
(n� 3) =2 for uneven n :

(29)

This is just a reformulation of Sha¤er�s (1995, p: 746) Proposition 4. The antitrust
authority can restrict its search for the optimal antitrust policy (e�; f�; d�) to policies
that lead to nF 2

�
nminF ; : : : ; n� 1

�
, where nminF is de�ned by (29).
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6.4 Stage 2: Computing the Cost Minimizing Policies

We know that any passive antitrust policy leads to nF = nminF , that is, to a stable cartel
with

�
n� nminF

�
members.

Theorem 3 Among all antitrust policies leading to a stable cartel with (n� nminF ) mem-
bers, the passive policy (e; f; d) = (0; 0; 0) is the cost minimizing policy (e�

nminF
; f�
nminF

; d�
nminF

).

Proof: The policy (e; f; d) = (0; 0; 0) leads to A = 0 and a stable cartel with
�
n� nminF

�
members. Any policy leading to 0 < A < T (nminF + 1) would generate the same stable
cartel and, therefore, the same sum of consumer and producer rent. However, it would
cause a larger social cost. �

Suppose that the antitrust authority wants to shrink the cartel to (n� nF ) members,
where nF 2

�
nminF + 1; : : : ; n� 1

�
. For e = 0 or f = 0 the probability of detection, p,

would be 0. Therefore, an active antitrust policy, that is, a policy with e > 0, f > 0, and
d � 0 is required. From (24) we know that an active antitrust policy (e; f; d) pursuing
a cartel with (n� nF ) members must be such that the resulting A-value de�ned by (16)
falls into the interval [T (nF ); T (nF + 1)). An in�nite number of active policies exist that
satisfy this condition. Since all of these policies lead to the same given nF -value, the
equilibrium quantity, Q, the equilibrium price, P , and therefore, the consumer rent and
the producer rent are the same for all of these policies. However, the social cost is not.
Lower A-values allow for lower values of e, f , and d, and therefore, for a lower social

cost. Therefore, the antitrust authority should choose a policy that generates the lowest
A-value consistent with a stable cartel with (n� nF ) members. In other words, for each
given nF -value the antitrust authority should opt for a policy such that A reaches the
lower bound of its admissible interval de�ned by (24):

A = T (nF ) : (30)

Choosing a policy with an A-value slightly below T (nF ) would make a cartel with (n� nF )
members externally instable and its size would increase to (n� nF + 1). Therefore, Equa-
tion (30) de�nes the smallest possible A-value that caps the cartel size at (n� nF ). We
denote this condition on the feasible set of policies as the e¢ cacy condition. This con-
dition states that the pro�t from staying a fringe �rm, �F (nF ), and the expected pro�t
from entering the cartel, �C(nF � 1)� p(nF ; e; f; d) f (1� d), are equal.
An in�nite number of policies (e; f; d) satisfy the e¢ cacy condition. Among these

policies, the authority should choose the one that causes the lowest social cost, s (e; f; d).
For given nF , this cost minimization problem can be written in the following form:

min
e;f;d

s (e; f; d) subject to (30) . (31)

The solution to this cost minimization problem is denoted by (e�nF ; f
�
nF
; d�nF ). We know

that this solution is characterized by e > 0 and f > 0. An interior solution also re-
quires that d > 0. In the following it is assumed that the functions s (e; f; d) and
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A = h(e; f; d) f (1� d) are such that a unique solution arises (though not necessarily
an interior solution).11

Consider some nF -value and some corresponding policy, (e; f; d)
0, that satis�es the

e¢ cacy condition speci�ed by Equation (30). This condition implies that a marginal
change of one of the three policy variables (e.g., increasing the e¤ort level) must be o¤set
by a change in another policy variable (e.g., reducing the �ne) such that the A-value
remains on the level that corresponds with the original policy (e; f; d)0. At the same
time, each policy change generates a change in social cost. If the original policy, (e; f; d)0,
represented an interior solution to the cost minimization problem (31), then the two
changes in social cost exactly o¤set each other, regardless of the pair of policy variables
involved.
It cannot be ruled out that the cost minimization problem does not have an interior

solution, but a solution with d = 0. Since A = h(e; f; d) f (1� d), an increase in d
raises the value of h(e; f; d), but lowers the value of (1� d). If the impact on h(e; f; d)
is too weak, the value of A may fall and e or f must be raised to compensate for this
reduction. Then, all three policy variables would have larger values than in the original
policy. Therefore, the new policy would generate a larger social cost. This policy change
cannot be optimal. Even if an increase in d increases A such that e or f can be lowered,
the increase in the social cost from the larger d-value may not be compensated by the
cost reductions that arise from the lower e- and f -value. Again, the policy change would
be cost increasing. Since h(e; f; d) is an increasing concave function, cost reducing e¤ects
of an increase in d are more likely at lower levels of d than at larger levels. However, if
even at d = 0 an increase in d and the accompanying change in e or f lead to an increase
in the social cost, the cost minimizing policy is a corner solution with d�nF = 0.

6.5 Stage 3: Selecting the Optimal Antitrust Policy

In the �nal stage of our three-stage procedure, we could insert the cost minimizing policies
(e�nF ; f

�
nF
; d�nF ) derived in Stage 2 in the welfare function (27) and then maximize welfare

with respect to nF . However, the solution is unlikely to be an integer number. Therefore,
the welfare levels associated with the two integer numbers closest to the solution must be
calculated. These two welfare levels must be compared to the welfare level arising from
nF = n

min
F (the boundary solution associated with the cost minimizing passive antitrust

policy). The largest of these three welfare levels determines the welfare maximizing fringe
size, n�F . The cost minimizing antitrust policy leading to this fringe size is the optimal
antitrust policy (e�; f�; d�).
We prefer, however, an alternative route to the optimal antitrust policy (e�; f�; d�).

First, we insert nF = nminF and the passive policy (e; f; d) = (0; 0; 0) in welfare function
(27) and compute the resulting welfare level. Then we consider the cost minimizing
active antitrust policies (e�nF ; f

�
nF
; d�nF ). The welfare levels corresponding to each integer

11Uniqueness merely requires that in e-f -d-space the plane corresponding to the e¢ cacy condition (30)
and a given nF -value is �more convex�than the isocost-planes de�ned by the social cost function (e.g.,
a social cost function that is linear in e, f , and d together with a convex e¢ cacy condition).
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nF 2
�
nminF + 1; : : : ; n� 1

�
are calculated. For this purpose we insert each of these nF -

values together with its corresponding cost minimizing policy (e�nF ; f
�
nF
; d�nF ) in the welfare

function (27). We get a set of welfare levels. From this set we select the maximum value.
If this welfare is smaller than the one generated by the passive policy, the optimal fringe
size is n�F = n

min
F . However, if the welfare from the best active antitrust policy is larger

than the one from the passive policy, then the optimal fringe size is n�F > n
min
F . The cost

minimizing antitrust policy leading to the stable cartel with (n � n�F ) members is the
optimal antitrust policy (e�; f�; d�).

7 An Illustrative Application

7.1 A Simple Model Speci�cation

The probability of detection, p(nF ; e; f; d), was de�ned by Equation (9). This probabil-
ity is the product of the functions g(n � nF ) and h(e; f; d). In Section 4.1 we described
the basic features that these functions should have. In Appendix D we sketch out a
rather general class of functions that captures all of these features and has some addi-
tional attractive properties. We use this class of functions for all factors determining the
probability of detection. More speci�cally, we assume that

g(n� nF ) =
n� nF�

(n� nF )2 + 1
�1=2

and that
h(e; f; d) = w(e) � k(d) �m(f) ; (32)

where

w(e) =
e

(e2 + 1)1=2
(33)

k(d) =
d+ ��

(d+ �)2 + 1
�1=2 (34)

m(f) =
f

(f 2 + 1)1=2
; (35)

with � > 0.12

From (16), (30), and (32) we obtain, for e > 0,

fm(f) =
T (nF )

w(e) k(d) (1� d) : (36)

This is another formulation of the e¢ cacy condition.

12The restriction � > 0 ensures that for positive e¤ort, e, and �ne, f , the probability of detection, p,
remains positive, even when d = 0.

18



To keep the model analytically tractable, we also assume that the continuous social
cost function is

s (e; f; d) = s(z) with z = �e+ �fm(f) + d :

The parameter � can be interpreted as the marginal e¤ect of e¤ort on the social cost
variable z. Since limf!1m(f) = 1, the function �fm(f) approximates the simple linear
function �f (see graph at the end of Appendix D) and the parameter � approximates the
�ne�s marginal e¤ect on the social cost variable z. The parameter  is an indicator of
the in�uence of the leniency program�s expected discount, d, on the social cost variable
z. If the parameter  is very large relative to the parameters � and �, the social cost of
the expected discount dominates the social cost associated with the e¤ort and the �ne.
As a result, solutions with d = 0 can become optimal. A large value of � in Equation
(34) can have the same e¤ect, because such a �-value implies that the positive e¤ect of
the expected discount on the probability of detection is very weak; see Equation (52) in
Appendix D.
Minimizing the monotonically increasing social cost function, s (�), is equivalent to

minimizing the sum
�e+ �fm(f) + d : (37)

Inserting the right hand side of (36) in (37), we can transform the constrained minimiza-
tion problem (31) into the unconstrained minimization problem

min
e

�
�e+ �

T (nF )

w(e) k(d) (1� d) + d
�
. (38)

It yields the cost minimizing e¤ort, e�nF ;d, for given nF and d. The result is stated in
Equation (39) of the following theorem:

Theorem 4 For each nF 2
�
nminF + 1; : : : ; n� 1

�
and expected discount, d 2 [0; 1), the

cost minimizing policy
�
e�nF ;d; f

�
nF ;d

; d
�
that leads to a stable cartel with (n� nF ) members,

is de�ned by

e�nF ;d =

"
�

�

�
(d+ �)2 + 1

�1=2
T (nF )

(d+ �) (1� d)

#1=2
(39)

f �nF ;d =

�
1

2
F
�
F +

�
F 2 + 4

�1=2��1=2
(40)

with

F :=
�

�
e�nF ;d

��
e�nF ;d

�2
+ 1
�1=2

: (41)

Proof: See Appendix E.

For a given cartel size, (n� nF ), and a given expected discount, d, Equations (39) to
(41) of Theorem 4 specify the cost minimizing e¤ort, e�nF ;d, and �ne, f

�
nF ;d

, such that the
e¢ cacy condition (36) is satis�ed.
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Suppose that no leniency program exists: d = 0. From Equations (39) to (41) of
Theorem 4 we can calculate for each nF the corresponding cost minimizing e¤ort, e�nF ;0,
and �ne, f �nF ;0. Should the antitrust authority introduce a leniency program, that is,
should it increase d? To answer this question, we use Equations (4) and (17) to express
the e¢ cacy condition (30) �the external stability condition (20) with equality sign �in
the following form:

p(nF ; e; f; d) f (1� d) = �C(nF � 1)� �F (nF ) : (42)

This reveals that an increase in d must be accompanied by changes in e�nF ;d and f
�
nF ;d

such
that the expected �ne, p(nF ; e; f; d) f (1� d), remains constant. Increasing d can make
sense, only if the accompanying changes of e�nF ;d and f

�
nF ;d

are reductions. Otherwise,
all three policy instruments would increase, leading to a larger cost and, therefore, to a
smaller welfare.
An isolated increase of d reduces the factor (1� d) and it increases the value of the

function k(d) and, therefore, the probability of detection, p(nF ; e; f; d). To examine the
overall e¤ect of d on p(nF ; e; f; d) f (1� d), the following result is helpful.

Corollary 1 The �rst order derivative of the expected �ne, p(nF ; e; f; d) f (1� d), with
respect to the expected discount, d, is

@ [p(nF ; e; f; d) f (1� d)]
@d

= fp(nF ; e; f; d)

"
1� d

(d+ �)
�
(d+ �)2 + 1

� � 1# ? 0 : (43)

Furthermore, @2 [p(nF ; e; f; d) f (1� d)] = (@d)2 < 0.

Proof: See Appendix F.

A negative derivative (43) would imply that the expected �ne falls as d increases.
This would make cartel membership more attractive. Also, social cost increases when d
increases. Therefore, an increase in d cannot be welfare increasing. Can this situation
arise even for d = 0? Recall that the parameter � of the function k(d) indicates how
insensitively p reacts to changes in d. A large �-value says that the positive e¤ect of a
d-increase on p is small. If this positive e¤ect is smaller than the reduction in (1� d), the
expected �ne would fall. One can compute that for � � 0:68233 and d = 0 an increase
of d would reduce the expected �ne. Therefore, the cost minimizing expected discount
would be d�nF = 0.
For su¢ ciently small values of � and d, however, the derivative (43) is positive. Then

an increase in d allows for reductions of e�nF ;d and f
�
nF ;d

such that the former value of the
expected �ne is restored. Note, however, that this policy change is welfare increasing,
if and only if it reduces the social cost, s (z) with z = �e + �f 2= (f 2 + 1)1=2 + d. The
smaller is  relative to � and �, the greater the likelihood of an overall cost reduction.
To summarize, if for d = 0 the derivative (43) is negative, the cost minimizing expected

discount ensuring the existence of nF fringe �rms is d�nF = 0. Even for a positive derivative
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(43) we may obtain d�nF = 0. Only if (43) is positive and at the same time  is su¢ ciently
small relative to � and �, a positive cost minimizing expected discount arises: d�nF > 0.
Formally, we can �nd d�nF by the following procedure. In expression (38), we substitute

variable e by the right hand side of Equation (39). The new expression is di¤erentiated
with respect to d. Setting this derivative equal to 0 and solving for d would give the
cost minimizing expected discount d�nF . Unfortunately, the derivative is complex and we
have to utilize a numerical solution process. Usually, this process generates some cost
minimizing expected discount d�nF > 0. However, if � is too large and/or  is very large
relative to � and �, the derivative is positive for all d 2 [0; 1). Then, the corner solution
d�nF = 0 arises.
Finally, d�nF is inserted in (39) to obtain the cost minimizing e¤ort, e

�
nF
. Inserting this

e¤ort in (41) and the resulting F -value in (40) gives the cost minimizing �ne, f �nF . This
process of �nding the cost minimizing policy (e�nF ; f

�
nF
; d�nF ) is executed for each given nF .

To summarize, Theorem 3 de�nes the cost minimizing policy for nF = nminF . This
policy is (e�

nm inF
; f�
nm inF

; d�
nm inF

) = (0; 0; 0). For every nF 2
�
nminF + 1; : : : ; n� 1

�
, Theorem 4

and the associated computation of d�nF yield the cost minimizing policy (e
�
nF
; f�nF ; d

�
nF
).

We illustrate the compilations of (e�
nm inF

; f�
nm inF

; d�
nm inF

) and (e�nF ; f
�
nF
; d�nF ) in the numerical

example of Section 7.2.

7.2 Numerical Illustration

Here we present a numerical example that illustrates the three stages of compiling the
optimal antitrust policy. Suppose that n = 10 and that the social cost function is

s (�e+ �fm(f) + d) =

 
0:1e+ 0:1

f 2

(f 2 + 1)1=2
+ d

!3=2
: (44)

Let the market volume, (a� c) =b, be given by a = 100, b = 1, and c = 10. Furthermore,
we assume that � = 0:2.

Stage 1: The lowest relevant number of fringe �rms, nminF , is obtained from (29): nminF =
4. From Theorem 2 we know that nF = n = 10 generates a lower welfare than nF = 9.
Therefore, we can con�ne the analysis to nF 2 (4; : : : ; 9).

Stage 2: We know that the cost minimizing e¤ort and �ne for generating a stable cartel
with n�nminF = 10� 4 = 6 members, is the passive policy (e; f; d) = (0; 0; 0). This policy
is listed in the second, third, and fourth column of Table 1 in the line corresponding to
nF = 4.
Raising the number of fringe �rms above four requires an active antitrust policy that

makes the six �rm cartel internally instable and transforms it into a stable �ve �rm cartel
that competes against �ve fringe �rms (nF = 5). Inserting all parameter values in (21)
gives T (5) = 11:405. Therefore, the antitrust policy must be such that Equation (16) gives
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Table 1: Identifying the Optimal Anti-Trust Policy.

nF e�nF f �nF d�nF P rents s(z) W

4 0 0 0 19 4009:50 0 4009:50

5 3:09 10:11 0:20 17:5 4021:87 1:87 4020:00

6 4:66 22:22 0:25 16:43 4029:33 5:02 4024:31

7 5:81 34:31 0:27 15:62 4034:18 8:85 4025:33

8 7:09 50:71 0:28 15:00 4037:50 14:92 4022:58

9 9:08 82:91 0:30 14:50 4039:87 29:26 4010:61

A = 11:405. In view of (33) and (35), this requires a positive e¤ort, e, and a positive �ne,
f . Whether the antitrust authority should also introduce a positive expected discount,
d, depends on the numerical values of the parameters. Inserting all parameter values in
(43) and setting the result equal to 0 gives the value d = 0:32687. Increasing d up to
this level would allow for lower values of e and f without changing the expected �ne,
p(nF ; e; f; d) f (1� d). Whether the cost reductions from e and f overcompensate the
cost increase from d must be examined.
To compute the cost minimizing expected discount, d�nF , we follow the procedure de-

scribed in Section 6.4. Equation (39) of Theorem 4 de�nes for nF = 5 the cost minimizing
e¤ort, e�5;d, as a function of the expected discount, d. Together with T (5) = 11:405, we in-
sert this function in expression (38) and di¤erentiate the result with respect to d. Setting
this derivative equal to 0, gives the cost minimizing expected discount d�5 = 0:2. Inserting
this number back in Equation (39), yields the cost minimizing e¤ort e�5 = 3:09. We insert
this number in Equation (41) of Theorem 4 and the resulting F -value in Equation (40) to
obtain the cost minimizing �ne f �5 = 10:11. Putting everything together, we have derived
the cost minimizing policy, (e�5; f

�
5 ; d

�
5) = (3:09; 10:11; 0:2). In Table 1, this policy is listed

in the line corresponding to nF = 5.
The cost minimizing policies for nF = 6 to nF = 9 are compiled in an analogous

manner. The results are also listed in Table 1.

Stage 3: Finally, we compute for all cost minimizing policies the resulting welfare and
select the policy that leads to the largest welfare. Welfare is de�ned by the welfare function
(27), that is, by subtracting the social cost from the sum of consumer and producer rent.
The passive policy (e; f; d) = (0; 0; 0) leads nF = 0. The resulting market price can be

computed from Equation (2). The result is listed in the �fth column of Table 1. Equation
(25) yields the associated sum of consumer and producer rent (see sixth column). With
a passive policy, no social cost arises (see seventh column). Therefore, the associated
welfare is identical to the sum of consumer and producer rent. The resulting welfare is
W4 = 4009:5 (see last column). This welfare level is the reference for any active antitrust
policy. A policy that generates a welfare level below 4009:5 cannot be an optimal antitrust
policy.
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To increase the number of fringe �rms from nF = 4 to nF = 5, the antitrust authority
increases its e¤ort, e, its �ne, f , and its expected discount, d. These measures increase the
expected �ne, p(nF ; e; f; d) f (1� d), such that internal instability is created, inducing one
cartel member to mutate into a fringe �rm. The additional fringe �rm intensi�es compet-
ition, leading to a lower equilibrium price and to a larger sum of consumer and producer
rent. In the numerical example the equilibrium price falls from P = 19 to P = 17:5,
while the sum of the rents increases from 4009:5 to 4021:87, that is by 12:37. We denote
this bene�cial welfare e¤ect as the positive �competition e¤ect�of the additional fringe
�rm. Note, however, that the additional fringe �rm also causes a negative welfare e¤ect,
because the larger values of e, f , and d raise the social cost from 0 to 1:87. We denote
this second welfare e¤ect as the negative �cost e¤ect�. In our numerical example, the
positive competition e¤ect outweighs the negative cost e¤ect, such that welfare increases
from W4 = 4009:5 to W5 = 4020.
More formally, the positive competition e¤ect of increasing nF by one is given by

Equation (26). For all positive values of nF , this expression is positive and falling in
nF 2 (0; 1; : : : ; N). In other words, the positive competition e¤ect falls as nF rises. Also,
the negative cost e¤ect is a function in nF . However, this function is more complex than
the competition e¤ect (26). The negative cost e¤ect usually increases in nF . Only for
very small values of nF can the cost e¤ect stay roughly constant. Since for small values of
nF the competition e¤ect is quickly decreasing in nF , also for small nF -values the welfare
change (di¤erence between the competition e¤ect and the cost e¤ect) falls as nF increases.
Imagine that already at nminF the negative cost e¤ect outweighs the positive competition
e¤ect. Then we get n�F = n

min
F and the passive policy (e; f; d) = (0; 0; 0) would be optimal.

However, in our numerical example the positive competition e¤ect outweighs the negative
cost e¤ect, such that the expansion of the fringe above nminF leads to an overall welfare
gain.
The maximum welfare is obtained from a policy that leads to nF = 7: (e�; f�; d�) =

(5:81; 34:31; 0:27). The corresponding welfare is W � = W7 = 4025:33 . This solution
corresponds to a three �rm cartel. Reducing the size of the cartel even further would
require a larger e¤ort, �ne, and discount. However, the associated cost e¤ect outweighs
the competition e¤ect.

7.3 Further Discussion

In the numerical example of Section 7.2 the parameter values were given. How does
a change in the parameter values a¤ect the optimal antitrust policy (e�; f�; d�)? We
distinguish between the social cost parameters (�; �; ; �), the market volume parameters
(a; b; c), and the number of �rms n.
We know that the optimal policy, (e�; f�; d�), must be such that the pro�t from remain-

ing a fringe �rm, �F (nF ), and the expected pro�t from entering the cartel, �C(nF � 1)�
p(nF ; e; f; d) f (1� d), are identical. The e¢ cacy condition (42) rearranges this relation-
ship. The expected �ne, p(nF ; e; f; d) f (1� d), of a member of a cartel with (n� nF + 1)
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members must be equal to the di¤erence �C(nF � 1)� �F (nF ), where

�C(nF � 1)� �F (nF ) =
(a� c)2
4b

�
1

nF (n� nF + 1)
� 1

(nF + 1)2

�
: (45)

Social cost parameters (�; �; ; �): A small increase of �, �, or  does not a¤ect
the optimal number of fringe �rms n�F and, therefore, the consumer and producer rent.
However, such parameter changes increase the social cost and, therefore, reduce welfare.
The changes in e�, f �, and d� must be such that the expected �ne, p(nF ; e; f; d) f (1� d),
remains constant. An increase in  leads to a lower d�-value, but to larger values of e� and
f �. For given d, an increase in � leads to a lower e¤ort and a larger �ne. The derivative
(43) shows that a larger �ne increases the e¤ect of an increase of d on the expected �ne.
This leads to an increase in d, to an additional reduction of e¤ort, and to a secondary
negative e¤ect on f that partly o¤sets the primary increasing e¤ect on f . Overall, we
get a smaller e¤ort e�, a larger �ne f �, and a larger discount d�. An increase of � results
in a larger e¤ort e� and a smaller �ne f �. The discount d� is also reduced, because the
derivative (43) reveals that a smaller �ne reduces the e¤ect of an increase of d on the
expected �ne. An increase in � reduces the positive e¤ect of d on the expected �ne. This
results in a smaller discount d�, a larger e¤ort e�, and a larger �ne f �.
When the parameter changes are su¢ ciently large, they change the optimal number

of fringe �rms n�F . A su¢ ciently strong reduction in the social cost parameters �, �, ,
and � lowers the social cost of an antitrust policy. This allows the antitrust authority to
expand its policy, inducing one cartel member to leave the cartel and to become a fringe
�rm. The resulting positive competition e¤ect outweighs the negative social cost e¤ect.
Market volume (a; b; c): A small increase in a or a small reduction in c or b increases

the market volume without changing the optimal number of fringe �rms n�F . Equation
(25) reveals that the sum of consumer and producer rent increases. This is the welfare
increasing e¤ect. We know from Equation (45) that a larger market volume leads to an
increased di¤erence �C(nF � 1) � �F (nF ). To balance this increase, the expected �ne
must increase, too. This is accomplished by a larger e¤ort e� and a larger �ne f �. The
latter increases the partial derivative @ [p(nF ; e; f; d) f (1� d)] = (@d). As a consequence,
the discount d� increases, too. In other words, keeping the number of fringe �rms constant
requires a larger social cost o¤setting some of the welfare gain related to the increased
producer and consumer rent.
When a su¢ ciently strong change in market volume occurs, the optimal number of

fringe �rms, n�F , can change. The direction of the change depends on the social cost
function. In our numerical example we have chosen the exponential cost function (44).
With this cost function, an increase of the market volume leads to a reduction of n�F . If
the exponent of the cost function were not 3=2, but 1=2, the optimal number of fringe
�rms would increase with market volume.
Number of �rms n: For given nF , the increase in n is an enlargement of the cartel.

The pro�ts of the fringe �rms are not a¤ected by the additional cartel member. This is
also true for the aggregate pro�t of the cartel. However, the pro�t per cartel member
falls and, therefore, the attractiveness of the cartel status. Equation (45) con�rms this
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consideration. The di¤erence �C(nF � 1) � �F (nF ) decreases. Furthermore, we know
from Equation (9) that larger cartels increase the probability of detection, p(nF ; e; f; d).
Therefore, the expected �ne, p(nF ; e; f; d) f (1� d), increases. Both e¤ects lower the
values of the optimal policy variables e�, f �, and d�. This saves social cost and increases
welfare.
If the reduction in the di¤erence �C(nF �1)��F (nF ) and the increase in the expected

�ne, p(nF ; e; f; d) f (1� d), are su¢ ciently strong, an increase of the number of fringe �rms
could be welfare increasing. In fact, in our numerical illustration, raising the number of
�rms from n = 10 to n = 11 increases the optimal number of fringe �rms from n�F = 7 to
n�F = 8. For n = 12, the optimal number of fringe �rms stays at n

�
F = 8.

8 Concluding Remarks

Studies of antitrust policy are typically embedded in repeated oligopoly games (super-
games) with two market outcomes: �no cartel� or �all-inclusive cartel�. However, real
world cartels are rarely all-inclusive. They are usually �imperfect�, that is, they compete
against some fringe �rms. An e¤ective antitrust policy must adjust to this situation.
The existing literature on imperfect cartels is not concerned with the derivation of an

optimal antitrust policy. This paper makes a �rst step in that direction. We demonstrated
how a deliberate antitrust policy can exploit the potential instability of cartels to reduce
their size. The formal analysis was conducted in the context of a quantity leadership
model that was extended by including an antitrust authority. We introduced a carefully
speci�ed endogenous probability of detection. To increase this probability, the antitrust
authority has three policy instruments at its disposal: its own e¤ort, a �ne for detected
cartels, and a leniency program for cartel members that cooperate with the authority.
Each of these instruments creates a social cost. Taking this cost into consideration, we
derived an optimal antitrust policy that makes cartels internally instable (some member
wants to leave the cartel) and externally stable (no fringe �rm wants to enter the cartel).
We showed that a policy that completely blocks the formation of cartels would be too
costly. Instead, the antitrust authority should merely reduce the size of the cartel until
the resulting gains in the sum of consumer and producer rent (the positive competition
e¤ect) no longer overcompensate the resulting increase in social cost (the negative cost
e¤ect).
Furthermore, we examined how changes in the market environment a¤ect the optimal

antitrust policy. We distinguish between social cost parameters (e.g., the e¢ ciency of
the antitrust authority�s operations), market volume parameters, and the total number of
�rms. Small parameter changes a¤ect the optimal mix of the antitrust policy instruments
and the resulting welfare, but not the optimal number of fringe �rms. However, larger
parameter variations can change the optimal number of fringe �rms. For example, a
strong reduction in the social cost parameters leads to an increase in the optimal number
of fringe �rms, that is, to a reduction of the number of cartel members. Also an increase in
the total number of �rms (fringe �rms plus cartel members) is welfare increasing, because
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the increase in the social cost of the optimal antitrust policy is overcompensated by the
increase in the sum of consumer and producer rent.
Our extended quantity leadership model allows for the derivation of explicit solutions.

One disadvantage of the quantity leadership model is its implicit assumption that cartel
members cooperate e¢ ciently. Enforceability of the cartel agreement is not an issue. By
contrast, in supergames the cartel members do not cooperate at all. Enforceability of any
cartel agreement is completely ruled out. The empirical evidence shows that the truth is
somewhere in the middle. Cartels are impressively creative in designing cartel agreements
that allow for some form of monitoring and dispute settlement. Therefore, a promising
area of future research are oligopoly models that analyse the e¤ects of antitrust policy
directed at cartels with limited means of cooperation.

Appendix A

Proof of Lemma 1: (15) can be written as

T (nF ) =
(a� c)2
4b

I(nF )

g(n� nF )
with

I(nF ) =
2n2F + (5� n)nF + 4� n
(nF + 1)(n� nF )(nF + 2)2

: (46)

Using the quotient rule for the di¤erentiation of (46) with respect to nF , gives the positive
denominator

(nF + 1)
2(n� nF )2(nF + 2)4 > 0

and the numerator

(4nF + 5� n)(nF + 1)(n� nF )(nF + 2)2 (47)

� [2n2F + (5� n)nF + 4� n](nF + 2)2(n� nF ) (48)

� [2n2F + (5� n)nF + 4� n]2(nF + 2)(nF + 1)(n� nF ) (49)

+ [2n2F + (5� n)nF + 4� n](nF + 1)(nF + 2)2 : (50)

The expression in line (47) is equal to

(2nF + 5� n)(nF + 1)(n� nF )(nF + 2)2 + 2nF (nF + 1)(n� nF )(nF + 2)2 : (51)

We add to the �rst summand of (51) the expression in line (48) and obtain

(2nF + 1)(n� nF )(nF + 2)2 > 0 :
Next we add to the second summand of (51) the expressions in lines (49) and (50), factor
out (nF + 2)(nF + 1), simplify the remaining term to get

nF
�
4n2F + 5 (3� n)nF + 2n2 � 11n+ 22

�
+ 2n2 � 10n+ 8

= nF

"�
2nF +

5

4
(3� n)

�2
+
7

16
(3� n)2 + n+ 4

#
+ 2n2 � 10n+ 8 :
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For nF � 1, this expression and, therefore, the expression in lines (47) to (50) are positive
and so is the derivative of I(nF ) with respect to nF :

I(nF + 1) > I(nF ) :

In addition, g(n� nF ) is increasing in (n� nF ), and therefore, decreasing in nF :

g (n� (nF + 1)) < g(n� nF ):

Therefore, we get
I(nF + 1)

g (n� (nF + 1))
>

I(nF )

g (n� nF )
which is identical to T (nF + 1) > T (nF ).
Let N denote the numerator and D the denominator of (15). We know that @g(n �

nF )=@n > 0 and D > 0. The derivative of (15) with respect to n is

(�nF � 1)D � (nF + 1)(nF + 2)2 [[@g(n� nF )=@n] (n� nF ) + g(n� nF )]N
D2

=
�(nF + 1)� (nF + 1)(nF + 2)2 [[@g(n� nF )=@n] (n� nF ) + g(n� nF )]T (nF )

D
:

For T (nF ) � 0, this derivative is negative. �

Appendix B

Equation (25) shows the sum of consumer and producer rent. When the number of fringe
�rms increases from nF to nF + 1, this sum changes by

(a� c)2

8b

�
(2 (nF + 1) + 1) (2 (nF + 1) + 3)

((nF + 1) + 1)
2 � (2nF + 1) (2nF + 3)

(nF + 1)
2

�
=
(a� c)2

8b

 
(2nF + 3) (2nF + 5) (nF + 1)

2

(nF + 2)
2 (nF + 1)

2 � (2nF + 1) (2nF + 3) (nF + 2)
2

(nF + 1)
2 (nF + 2)

2

!

=
(a� c)2

8b

 
(2nF + 3) (2nF + 5) (nF + 1)

2 � (2nF + 1) (2nF + 3) (nF + 2)2

(n2F + 3nF + 2)
2

!

=
(a� c)2

8b

 
(2nF + 3)

�
(2nF + 5) (nF + 1)

2 � (2nF + 1) (nF + 2)2
�

(n2F + 3nF + 2)
2

!

=
(a� c)2

8b

 
2nF + 3

(n2F + 3nF + 2)
2

!
:
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Appendix C

Proof of Theorem 2: We know that the price (2) associated with nF = n � 1 is smaller
than the price (7) associated with nF = n. As a consequence, the sum of consumer and
producer rent is larger for nF = n � 1 than for nF = n. From Lemma 1 we know that
T (nF ) is increasing in nF . Therefore, a policy that eliminates the single �rm cartel must
increase the value of A from T (n�1) � A < T (n�1) to A � T (n�1). From (16) and the
de�nition of h(e) we know that @A= @e > 0 and @A= @f > 0. Therefore, the increase in
A required to eliminate the single �rm cartel necessitates larger values of e and f . These
larger values translate into a higher social cost. The increase in social cost and the fall in
the sum of consumer and producer rent result in a lower welfare. �

Appendix D

The probability of detection speci�ed by (9) is the product of three functions that all
belong to the same general class of functions. This class is de�ned by

y (x) =
x+ ��

(x+ �)� + 1
�1=� ;

with � > 0 and � � 0. The �rst order derivative is

y0(x) = y (x)
1

(x+ �)
h
(x+ �)� + 1

i = 1h
(x+ �)� + 1

i(1+�)=� : (52)

Note that 0 < y0(x) < 1 for all x � 0. The second order derivative is

y00 (x) = �y (x)

0B@ (x+ �)� + �

(x+ �)2
h
(x+ �)� + 1

i2
1CA < 0 :

Furthermore
lim
x!1

y(e) = 1

and
y(0) =

�

(�� + 1)1=�
:

Therefore, the parameter � determines the minimum value that the function y (x) can
take. For � = 0 we get y(0) = 0.
Equation (52) implies that

y0(x)

[y (x)]2
=

h
(x+ �)� + 1

i1=�
(x+ �)2

h
(x+ �)� + 1

i :
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For � = 1 and � = 0, this expression simpli�es to

y0(x)

[y (x)]2
=
1

x2
: (53)

As depicted in Figure 1, the function g(x) = x�y(x) with y(x) = (x+ 1)
.�
(x+ 1)2 + 1

�0:5
approximates the function v(x) = x.

Figure 1: Graph of the Function g(x) = x � y(x).

Appendix E

Proof of Theorem 4: Di¤erentiating the expression in (38) with respect to e, and setting
the result equal to 0 yields

[w(e)]2

w0(e)
=
�

�

T (nF )

k(d) (1� d) : (54)

Exploiting relationship (53) for the left hand side of (54), inserting expression (34) in the
right hand side of (54), and taking the square root, gives the optimal e¤ort (39).
Expression (33) gives

w
�
e�nF
�
=

e�nFh�
e�nF
�2
+ 1
i1=2 : (55)

We know from Equation (39) that

T (nF )

k(d) (1� d) =
�
e�nF
�2 �
�
: (56)
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Inserting (55) and (56) in (36) gives

f �nFm(f
�
nF
) =

�

�
e�nF

��
e�nF
�2
+ 1
�1=2

:

Substituting m(f �nF ) by the function de�ned in (35) and solving for f
�
nF
yields the optimal

�ne de�ned by (40). �

Appendix F

Proof of Corollary 1: The �rst order derivative is

@ [pf (1� d)]
@d

= f

�
@p

@d
(1� d)� p

�
= f

�
@p

@k (d)

@k (d)

@d
(1� d)� p

�
= pf

�
1

k (d)

@k (d)

@d
(1� d)� 1

�
= pf

"
1

k (d)

k (d)

(d+ �)
�
(d+ �)2 + 1

� (1� d)� 1#

= pf

"
1� d

(d+ �)
�
(d+ �)2 + 1

� � 1#
which is (43). The second order derivative is

@2 [pf (1� d)]
(@d)2

= pf

"
�d (d+ �)

�
(d+ �)2 + 1

�
� (1� d)

�
3 (d+ �)2 + 1

�
(d+ �)2

�
(d+ �)2 + 1

�2
#
< 0 :

�
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