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Abstract

Structural VAR models require two ingredients: (i) Informational suffi-

ciency, and (ii) a valid identification strategy. These conditions are unlikely

to be met by small-scale recursively identified VAR models. I propose a

Bayesian Proxy Factor-Augmented VAR (BP-FAVAR) to combine a large

information set with an identification scheme based on an external instru-

ment. In an application to monetary policy shocks I find that augmenting

a standard small-scale Proxy VAR by factors from a large set of financial

variables changes the model dynamics and delivers price responses which

are more in line with economic theory. A second application shows that

an exogenous increase in uncertainty affects disaggregated investment series

more negatively than consumption series.

JEL classification: C38, E60

Keywords: Dynamic factor models, external instruments, monetary policy, uncer-

tainty shocks
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1 Introduction

Structural vector-autoregressive models have become the workhorse model of modern

macroeconomics. They require two main ingredients: (i) informational sufficiency and

(ii) a credible identification scheme. An informationally insufficient model implies that

the reduced form innovations do not contain enough information to recover the structural

shocks of interest. An invalid identification scheme renders the mapping from reduced

form innovations to structural shocks hard to defend, precluding causal inference.

The issue of informational insufficiency has been addressed by augmenting small-

scale VAR models by latent factors (see Bernanke et al., 2005). These latent factors

are extracted from a large set of informational series and serve to alleviate informational

deficiency issues. The issue of identification has been addressed via the use of Proxy VAR

models (see Stock and Watson, 2012, Mertens and Ravn, 2013). These models have the

advantage that, contrary to the widely used recursively identified models, they do not

rely on short-run exclusion restrictions which tend to be hard to defend. Instead, Proxy

VAR models employ external instruments which, if they are appropriately chosen, lead

to a more credible identification scheme. However, until now the informational content

of Bayesian Proxy VAR models has received little attention.

The first contribution of this paper is to propose a Bayesian Proxy Factor-augmented

VAR (BP-FAVAR) model. This novel model offers a unified framework to combine a

large information set with an identification strategy based on external instruments. I

extend the framework proposed by Caldara and Herbst (2019) to allow for latent factors

and I account for their estimation uncertainty in a consistent Bayesian framework.

The second contribution of this paper is to apply the BP-FAVAR in two settings

which originally use small or medium scale VAR models and a recursive identification

scheme. First, I re-visit the classical three-variate monetary policy VAR model by Chris-

tiano et al. (1999). I employ the high-frequency proxy identification scheme by Gertler

and Karadi (2015) and, motivated by Caldara and Herbst (2019), I augment this small-

scale model by latent factors from financial market variables to account for the important

feedback effects between financial variables and the real economy. I confirm the findings

of Caldara and Herbst (2019) that corporate credit spreads play an important role in

the monetary transmission mechanism and help avoid the price puzzle. The use of latent

factors allows for a detailed investigation of the reaction of the yield curve and, in line

with economic theory, suggests that government bond spreads with a shorter maturity

react more strongly to an exogenous monetary contraction than spreads with a longer
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maturity. In a second application, I augment the by now classical 8-variate model by

Bloom (2009) with latent factors and identify the uncertainty shock using a proxy by

Stock and Watson (2012). I find that the latent factors do not strongly affect the dy-

namics of the system, confirming that the medium-sized Bloom (2009) model captures

the most important information in the economy. Second, investigating disaggregated

series, I find that unexpected exogenous increases in uncertainty affect investment more

severely than consumption.

This study relates firstly to Bayesian FAVAR models such as Bernanke et al. (2005)

who introduce the FAVAR model, Belviso and Milani (2006) who provide a structural

interpretation of the latent factors, and Amir-Ahmadi and Uhlig (2015) who employ

sign restrictions in FAVAR models. Secondly, this study relates to the Bayesian Proxy

VAR literature, most directly to the small-scale Bayesian Proxy VAR model by Caldara

and Herbst (2019) whose framework I extend to allow for latent factors. Other studies

employing external instruments in the Bayesian paradigm are Drautzburg (2016) who es-

timates a narrative DSGE-VAR model, Bahaj (forthcoming) who applies high-frequency

identification in a multi-country framework, and Arias et al. (2018) who propose a Proxy

VAR framework amenable to an importance sampler. Lastly, Kerssenfischer (2019) inves-

tigates the relation between informational insufficiency and identification in a frequentist

setting.

One challenge using factor-augmented VAR models is how to account for the esti-

mation uncertainty of latent factors. This is difficult using bootstrap techniques in the

popular approach of estimating factors via principal components (PC) (see for example

Yamamoto, 2019). In addition, there are no asymptotic results justifying the use of such

techniques, as pointed out by Kilian and Lütkepohl (2017). To address this issue, I

exploit the state-space representation of the model and employ the algorithm by Carter

and Kohn (1994), treating the latent factors as random variables and sample from their

posterior distribution. This procedure is included as an additional Gibbs step in the

Metropolis-within-Gibbs sampler of Caldara and Herbst (2019).

The remainder of this paper is organised as follows: Section 2 introduces the model,

section 3 discusses the algorithm, priors and starting values, section 4.1 shows the mon-

etary policy application and section 4.2 discusses the uncertainty application. The last

section concludes.
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2 The Bayesian Proxy FAVAR

In this section I introduce the Bayesian Proxy FAVAR model. I first describe the ob-

servation equation, the transition equation and the proxy equation. In a second step, I

show how identification is achieved.

First, consider the observation equation, which shows how latent and observable

factors map into informational series:

xt = Λff t + Λzzt + ξt (1)

ξt ∼ N(0,Ω) (2)

where xt is a N × 1 vector of observable series, f t is a R × 1 vector of latent factors,

and zt is a K × 1 vector of observable factors. Importantly, xt does not contain any of

the observable factors in zt. Λf is a N × R matrix of factor loadings for latent factors

and Λz is a N ×K matrix of coefficients for the observable factors. ξt is a N × 1 vector

of idiosyncratic errors. In general, ξt can be serially correlated, i.e. Cov(ξt, ξt−1) 6= 0,

but they are uncorrelated across series, i.e. V ar(ξt) = Ω is assumed to be diagonal.

The latent factors ft and the factor loadings λf and λz require additional normal-

isations. For the latent factors, I follow Stock and Watson (2016) in imposing the

normalisation that λf ′λf = I and V ar(ft) is diagonal with decreasing elements. For λz

I follow Bernanke et al. (2005) and impose that the upper R × R block is an identity

matrix. Note that these normalisations do not affect the space spanned jointly by the

latent factors which is the object of interest for this study.

Next, consider the transition equation which shows the dynamic evolution of the

factors. It writes as a VAR(P) of the following form:

yt = Πwt + ut (3)

ut ∼ N(0,Σ), (4)

where yt =

[
f t

zt

]
stacks latent and observable factors in a vector. The coefficient matrix

Π = [Π1, ...,ΠP ] of dimension (R + K) × (P (R + K) + 1) contains the autoregressive

parameters of the VAR. wt = [1R+K×1;yt−1, ...,yt−P ] stacks a constant and P lags of

yt. The (R + K) × 1 vector of reduced form errors, ut, is serially uncorrelated, i.e.

Cov(ut,ut−p) = 0 ∀t = 1, ..., T , ∀p = 1, ...,∞. ut are uncorrelated with all leads and

lags of the idiosyncratic errors, ξt, i.e. Cov(utξt−j) = 0 ∀j, ∀t = 1, ..., T .
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I impose structure on the on-impact effects of structural shocks by assuming that

the reduced form errors map into structural shocks as:

ut = Bεt (5)

εt ∼ N(0, IR+K), (6)

where B is a (R+K)×(R+K) matrix containing the on-impact effects of the structural

shocks. Their variance is normalised to one and they are contemporaneously uncorre-

lated. This implies the following relation between the reduced form covariance matrix

and the matrix of on-impact effects: Σ = BB′

As is well known, further restrictions beyond those implied by the covariance matrix

are needed to identify B. The reason is that the data cannot discriminate between

observationally equivalent representations: All B such that BB′ = Σ yield the same

likelihood.

In order to identify the first column of B, which I denote by b, I augment the model

by a “Proxy Equation”, as in Caldara and Herbst (2019).1 It spells out the relation

between structural shock and instrument and is given as:

mt = βε1,t + σννt (7)

νt ∼ N(0, 1), (8)

where mt is a scalar instrument correlated with the shock of interest, ε1,t. The shock

of interest is ordered first, without loss of generality. Furthermore, mt is orthogonal to

all other shocks, ε−1,t, i.e. E(mtε−1,t) = 0 ∀t, where ε−1,t stands for a vector contain-

ing all but the first shock. In other words, the instrument needs to be both relevant

and exogenous in order to be appropriate for identification. β captures the structural

relationship between instrument and shock, while νt captures any noise contained in the

instrument. The higher its variance, σ2
ν , the less information the instrument contains

about the shock of interest.

Since ε1 is obtained from reduced form errors, identification depends heavily on

1Unlike their case, however, identification focuses on the on-impact effects of the shocks rather
than on the contemporaneous relations of the variables included in the model. Put differently,
the model imposes structure on B, rather than on B−1. Caldara and Herbst (2019) estimate a
so-called A-model (see Kilian and Lütkepohl, 2017 for a discussion). The A-model specification
is appropriate given their aim of identifying a monetary policy equation. In the present context,
however, interest lies on the on-impact effects of structural shocks.
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the model specification. Therefore, one should pay close attention to which variables

are included in the model since an omitted variable bias translates into biases in the

identified structural shocks. Augmenting the model with latent factors can help alleviate

this problem without taking a stand on which of a potentially large set of observational

series need to be included.

3 Inference

The parameters of the BP-FAVAR model are estimated via a Metropolis-within-Gibbs

sampler while the latent factors are drawn using the algorithm by Carter and Kohn

(1994). In this section, I discuss the choice of priors and sketch an algorithm to generate

draws from the posterior distribution.

3.1 Priors and Starting Values

Block 1: Observation Equation For the parameters of the observation equation,

Λ = [Λf Λz] and Ω, I employ equation-by-equation normal-inverse Gamma priors of

the form

ωii ∼ IG(sc∗, sh∗) (9)

λi|ωii ∼ N(µ∗λ,i,ωiiM
∗−1
i ), (10)

where λi is the i-th row of Λ and ωii is the i-th diagonal element of Ω. The prior

parameters sc∗, sh∗,µ∗λ,i, and M∗−1
i are chosen to imply diffuse priors (see Appendix

A.2 for details). The algorithm starts from the Principal Components estimates for Λ

and F = [f1, ...,fT ] and OLS estimates for Ω.

Block 2: Transition Equation Given a draw of factors, yt follows a standard

V AR(P ) model. Therefore, one can employ a version of the Minnesota/ Litterman prior

and specify independent normal-inverse Wishart priors:

vec(Π) ∼ N(µ∗Π, V
∗

Π) (11)

Σ ∼ IW (S∗, τ∗), (12)

where vec(·) is the vectorisation operator that stacks the columns of a matrix one un-

derneath the other into a vector. I set the prior mean for the autoregressive coefficients,
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µ∗Π = 0, implying shrinkage towards white noise processes. This choice is motivated by

the stationarity transformations of both zt and xt. I set the prior variance of vec(Π),

V ∗Π, in line with the Minnesota/Litterman prior (see Litterman, 1986). Lastly, I set

the improper priors S∗ = 0.0001IK+R and τ∗ = K + R, implying a flat prior in the

dimension of Σ (see Appendix A.3).

Block 3: Proxy Equation The parameters of the proxy equation are sampled

conditional on the parameters of the transition equation and follow Caldara and Herbst

(2019) closely. For β I employ a normal distribution

β ∼ N(µ∗β, σ
∗2
β ) (13)

with µ∗β = 0 and σ∗β = 1.

For σν I consider two types of priors: First, I set an uninformative inverse Gamma

distribution using

σν ∼ IG(sc∗ν , sh
∗
ν) (14)

with sc∗ν = 2 and sh∗ν = 0.02. Second, to the extent that the econometrician is confident

in the relevance of the proxy, she can employ what Caldara and Herbst (2019) refer to

as the “high-relevance” prior and set

σν = 0.5std(mt), (15)

implying the dogmatic view that only half the variation of the proxy can be explained

by measurement error (see Appendix A.5).

The prior for b is implicit in the above priors given that b is computed as b =

chol(Σ)Q·,1 where Q·,1 is the first column of a draw from the uniform Haar distribution

(see Rubio-Ramirez et al., 2010 for a discussion).

3.2 Sketch of the Algorithm

The challenge is to generate draws from the joint posterior distribution of latent factors

and parameters given the informational series, the observable factors and the instrument:

p(Π,Σ,Λf ,Λz,Ω, β, σν , b, F |X,Z,m). (16)

Instead of attempting to draw directly from this potentially highly non-linear and irreg-

ularly shaped distribution, draws are generated from blocks of conditional distributions
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in the following steps:

Step 1 Draw from the conditional posterior of F

In order to generate draws from

p(F |Π,Σ,Λf ,Λz,Ω, β, σν , b;X,Z,m), (17)

I employ the Carter-Kohn algorithm described in Carter and Kohn (1994) and

Frühwirth-Schnatter (1994) (see Appendix A.1).

Step 2 Draw from the conditional posterior of {Λf ,Λz,Ω}

To generate draws from

p(Λf ,Λz,Ω|F,Π,Σ, β, σν , b;X,Z,m), (18)

note that, given a draw of the latent factors, F , the observation equation (1)

is a system of independent linear equations. Therefore, the parameters can be

estimated using well-established results on single-equation models (see Appendix

A.2).

Step 3 Draw from the conditional posterior of Π,Σ

To generate draws from

p(Π,Σ|Λf ,Λz,Ω, F, β, σν , b, X, Z,m), (19)

note that, conditional on a draw of the factors, the model can be considered a

variant of Caldara and Herbst (2019). The conditional posterior in (19) differs

from standard reduced form Bayesian VAR models given that m is part of the

conditioning set. To address this challenge, I proceed in two steps: first, I generate

proposal draws from p(Π,Σ|Λf ,Λz,Ω, F, β, σν , b, X, Z) (note that m is not part of

the conditioning set) using well-established results on independent normal-inverse

Wishart distributions. In a second step, these proposal draws are mapped into

the target distribution (19) via a Metropolis-Hastings step (see Appendix A.4).

In practice, the proposal distribution is highly similar to the target, leading to

an acceptance rate close to 1. This indicates that the instrument does not con-

tain much information about the reduced form parameters, a result also found in

Caldara and Herbst (2019).
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Step 4 Draw from the conditional posterior of b

To generate draws from

p(b|Λf ,Λz,Ω, F,Π,Σ, β, σν ;X,Z,m), (20)

I adapt the procedure by Caldara and Herbst (2019) to my setting. First, I

generate proposal draws bcand as the first column of chol(Σ)Qcand, where Qcand is

an orthogonal matrix. I then map this candidate draw into a draw from the target

distribution (20) using a Metropolis-Hastings step (see Appendix A.4).

Step 4 Draw from the conditional posterior of β, σν

Lastly, to generate draws from

p(β, σν |b,Λf ,Λz,Ω, F,Π,Σ;X,Z,m) (21)

I employ well-established results on linear regression models for the proxy equation

(7). Note that the structural shock can be generated as ε1,t = chol(Σ)Qut.

Compared to the framework in Caldara and Herbst (2019), there are three main

differences: First, the above approach includes latent factors and accounts for their

estimation uncertainty in a consistent Bayesian setup, thereby allowing the factors to

affect the dynamics of Z. Second, the BP-FAVAR allows for inference on a large number

of potentially disaggregated series, X, through the mapping from factors to informational

series. Third, this approach employs the proxy in order to identify the on-impact effects

of structural shocks, b, rather than the contemporaneous relations among variables, as

in Caldara and Herbst (2019).

Compared to the common approach of replacing F by their Principal Components

estimates (see Stock and Watson, 2016 for a review), this approach has two advantages:

First, it captures the sampling uncertainty of factors within a coherent Bayesian frame-

work, rather than treating them as observed data. Bootstrap inference could be an

alternative. However, as shown by Yamamoto (2019), bootstrap inference in frequentist

factor models is far from trivial. A Bayesian approach, on the other hand, offers a unified

way of summarising the uncertainty of the model, as pointed out by Huber and Fischer

(2018). The joint posterior summarises estimation uncertainty in both the parameters

and the latent factors.

In addition, this approach allows for Bayesian shrinkage of the parameter space of
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the transition equation. This might seem unnecessary given that the factors already

reduce the dimensionality of the estimation problem. However, if, as is often the case

in empirical applications, the number of observable factors, K, or the lag length, P , is

large, dimensionality issues still arise and can be alleviated using Bayesian shrinkage.

The next section illustrates the use of this algorithm in two applications.

4 Two applications to real data

Having presented the model setup and the algorithm in a generic framework, this section

applies the BP-FAVAR to two classical questions: (i) What are the effects of monetary

policy shocks? (ii) What are the effects of uncertainty shocks? Both questions have orig-

inally been addressed using small/medium scale VAR models with a recursive identifica-

tion scheme (see Christiano et al., 1999 and Bloom, 2009). I show how a combination of

a large information set with recently introduced proxies can change the model dynamics

and allow inference on selected disaggregated series.

4.1 Monetary policy shocks

Uncovering the effects of monetary policy shocks within VAR models and their effects

on the real economy is by now a classical endeavour. Within this context, two chal-

lenges arise: Finding a valid identification scheme and avoiding biases stemming from

informational insufficiency (see e.g. Kerssenfischer, 2019 for a discussion).

With regards to the information set, Bernanke et al. (2005) uncover potential biases

stemming from a misalignment between the central bank’s and economic agent’s infor-

mation sets and recommend augmenting standard small scale VAR models by additional

information. More recently, Caldara and Herbst (2019) stress the importance of finan-

cial variables in the monetary transmission and augment a small-scale Proxy VAR by a

measure of corporate credit spread.

Concerning the identification scheme, the high-frequency identification approach by

Gertler and Karadi (2015) has become standard. It relies on variations in financial

spreads around Federal Open Market Committee meetings. Proxies based on these

variations have proven to be strong external instruments (see Ramey, 2016).

In this section, I re-visit the issue of informational deficiency in the classical small-

scale monetary VAR model by Christiano et al. (1999) using the high-frequency proxy

proposed by Gertler and Karadi (2015). Instead of adding a single credit spread measure
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Figure 1: Proxy for monetary policy shocks. Surprise in the current federal funds futures

rate. See Gertler and Karadi (2015) for details.

as in Caldara and Herbst (2019), I augment the small-scale VAR model by latent factors

from a number of financial series to account for the reaction of central banks to broad

financial conditions.

4.1.1 Data, specification and results

I estimate the BP-FAVAR using for zt the three variables employed by Christiano et al.

(1999): (i) The federal funds rate in levels as a policy variable, (ii) the consumer price

index in log-differences, and (iii) industrial production in log-differences. I extract la-

tent factors from xt. xt contains 16 interest rate and spread series from the monthly

FRED dataset by McCracken and Ng (2016) (see Table 6 in Appendix C for a detailed

description).2 As a proxy I use the surprises in the current federal funds future rate, as

computed by Gertler and Karadi (2015). Figure 1 plots the proxy. The sample length

is constrained by this proxy and runs from 1988M11 to 2012M6. I follow Gertler and

Karadi (2015) in setting a lag length of 12 months.

One concern is the measurement of the monetary policy stance. Traditionally, the

federal funds rate is considered to be the policy tool of the central bank. However, given

that it was constrained by the zero lower bound in the period 2009M1 to 2015M11, this

variable cannot serve as an indicator of the policy stance. This is why, starting from

2009M1, I replace the federal funds rate by the shadow rate as computed by Wu and Xia

(2016) which is based on a term structure model and often considered a better reflection

2Data set available at https://research.stlouisfed.org/econ/mccracken/fred-databases/
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of the policy stance during the zero lower bound period than the federal funds rate.

Figure 12 in Appendix C shows the shadow rate.

The choice of the number of factors is based on two criteria: The criterion proposed

by Bai and Ng (2002) and a scree plot. These two criteria suggest setting R = 2 (see

Appendix C). I extract factors using a Kalman filtering technique and compare these

to the Principal Components factors given the OLS estimates of {Λ,Ω,Π,Σ}. Table

1 shows that these two estimation strategies yield highly correlated results, suggesting

that the Kalman filter works well. Compared to the PC estimate, the Kalman filter,

however, has the advantage of accounting for the estimation uncertainty in the factors,

when the remaining parameters are drawn from their posterior distributions rather than

replaced by OLS estimates. Figure 2 shows the posterior median and 90% bands of

the latent factors estimated using a Kalman filter together with the PC estimate. The

posterior distribution of the latent factors follows the PC estimates closely.

K1 K1 PC1 PC2
K1 1.00
K2 -0.05 1.00
PC1 0.90 -0.26 1.00
PC2 0.20 0.93 0.00 1.00

Table 1: Correlation between factors estimated via Kalman filter (top) and Principal Compo-

nents (bottom) conditional on ordinary least squares estimates of {Λ,Ω,Π,Σ}.

Figure 3 shows the updating of the signal-to-noise ratio β/σν . It measures how much

information the instrument contains about the shock of interest compared to its noise, as

pointed out by Caldara and Herbst (2019). I employ their high-relevance prior, setting

σν = 0.5std(mt). Figure 3 suggests that the instrument is informative about the shock

of interest given that virtually all of the posterior probability mass of the signal-to-noise

ratio is to one side of 0.

Figure 4 shows the updating of b, the impact of effect of a one standard deviation

monetary policy shock. The prior distribution is not available in closed form but is

implicit in the prior distributions of Σ, β and σν . Prior draws are generated imposing

the prior mean for β, i.e. setting β = 0, so that all rotation vectors, Q·,1, are accepted

with equal probability. A draw from the prior of b is computed as follows:

• Draw Σprior from its prior inverse Wishart distribution

• Draw Qprior·,1 as the first column of a draw from the uniform Haar distribution

12
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Figure 2: Posterior of latent factors. Median posterior draw of latent factors estimated

via Kalman filter (solid line). 90% bands (dotted) and Principal Components estimate (dashed).
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Figure 4: Updating of b. Priors (solid line) and posterior (histogram) of b. Prior draws are

computed from the distribution implicit in the priors for Σ, β and σν .

• Compute bprior = chol(Σ)Q·,1.

As pointed out by Baumeister and Hamilton (2015), a uniform prior on Q·,1 does not

necessarily imply a uniform distribution over the structural parameters of interest, which

in this case are the elements of b. In the present case, the prior of b implicit in the

specification is flat in the relevant parameter space suggesting that the posterior is

driven primarily by information from the data. Both latent factors react on impact to

the monetary policy shock. A one standard deviation monetary policy shock moves the

federal funds rate by roughly 10 basis point, an amount slightly smaller than in models

excluding the zero lower bound period. For inflation and industrial production growth

the impact effect is ambiguous suggesting that these quantities do not react strongly

within the first month.

Figure 5 shows the impulse responses to a monetary policy shock which increases the

federal funds rate by 25 basis points. In the small-scale model excluding latent factors,

there is evidence for the price-puzzle, i.e. an increase in inflation following a monetary

contraction. This puzzle is often considered evidence for an omitted variable bias (see

e.g. Bernanke et al., 2005). Adding two latent factors from financial series resolves the

price puzzle.

Employing latent factors allows to make inference about a wide range of financial

14



0 10 20 30 40
-0.2

0
0.2

0 10 20 30 40
-0.4
-0.2

0

0 10 20 30 40
0

0.5

1

0 10 20 30 40
0

0.5

1

0 10 20 30 40
-0.1

0
0.1

0 10 20 30 40
-0.1

0
0.1

0 10 20 30 40

0
0.2
0.4

0 10 20 30 40

0
0.2
0.4

Figure 5: Impulse Response Functions of observables and latent factors. Point-wise

(non-cumulated) median impulse responses (solid line) with 68% bands. Small-scale VAR (left

column) excludes latent factors. BP-FAVAR (right column) includes two latent factors from

financial series.
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Figure 6: Impulse Response Functions of informational series. Point-wise (non-

cumulated) median impulse responses (solid line) with 68% bands. See Appendix C table 6 for a

detailed variable description.

series. Figure 6 shows the response of spreads with different maturities to a monetary

contraction which increases the federal funds rate by 25 basis points. Firstly, I confirm

Caldara and Herbst (2019)’s finding that the Baa spread increases after a monetary

contraction. This effect is even stronger for the Aaa spread. Secondly, the factor setup

allows me to analyse the reaction of the yield curve in more detail. I find that, in

line with economic intuition, government spreads with shorter maturities respond more

strongly to a monetary contraction than spreads with longer maturities.

4.2 Uncertainty shocks

A second popular example of the use of Proxy VAR models is the identification of

uncertainty shocks in the workhorse model by Bloom (2009). The aim is to trace out the

effects of unexpected exogenous variations in uncertainty, measured as realised volatility

of stock market futures (VXO), on the economy. Within this context, the main challenge

is the two-way causality between the business cycle and uncertainty, which precludes the

use of timing restrictions. To address this issue, a number of studies propose external

instruments. Examples are, among others, Stock and Watson (2012), Carriero et al.

(2015), and Piffer and Podstawski (2017).
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Figure 7: Proxy for uncertainty shocks. Residuals of an AR(2) process of the VXO, see

Stock and Watson (2012).

In this section, I re-visit the question of the effects of uncertainty shocks in a data-

rich environment. I employ a popular proxy by Stock and Watson (2012) based on the

residuals of the VXO and augment the workhorse model by Bloom (2009) by latent

factors. This allows me to trace out the effects of uncertainty shocks on disaggregated

consumption and investment series.

4.2.1 Data, specification and results

The data contained in zt are eight monthly US data series from Bloom (2009), using the

transformations as in Piffer and Podstawski (2017). The vector of observational series,

xt, contains 128 monthly series from the FRED dataset by McCracken and Ng (2016)

(see Appendix C for a detailed description). As an instrument mt I employ the residuals

of an AR(2) process of the VXO, as proposed by Stock and Watson (2012).3 The sample

runs from 1961M2 to 2015M6. I follow Piffer and Podstawski (2017) in setting the lag

length to P = 5.

Figure 7 shows the proxy. It is continuous and peaks in well-known periods of

heightened uncertainty such as the 2008 collapse of Lehman brothers or the 1989 fall

of the Berlin wall. As a number of factors I set R = 2 (see Appendix C for details). I

estimate the latent factors using Principal Components due to the higher dimensionality

3An important requirement for mt in this setup is that it is continuous. This precludes, for
example, the use of the proxy in Piffer and Podstawski (2017) which is non-zero for only 37
months.
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of the system which renders the Kalman filter computationally demanding. As suggested

in the previous section, the PC estimates capture the dynamics of the Kalman filter well

but could potentially lead to an underestimation of the estimation uncertainty. Figure

8 plots the resulting estimate.

Figure 9 shows the impulse responses of the model containing the Bloom (2009)

variables together with the impulse responses from the factor-augmented model. The

BP-FAVAR model replicates the main dynamics of the model using only the Bloom

(2009) variables. This is also in line with Piffer and Podstawski (2017)’s Proxy VAR

suggesting that their instrument and Stock and Watson (2012)’s instrument have similar

properties. The similarity of the two models suggests that the 8-variate workhorse model

captures the relevant information in the economy well and is unlikely to be affected by

omitted variable biases. In particular, both models show a short-lived drop in stock

market returns following an exogenous increase in uncertainty. Price inflation drops and

rebounds together with the three measures of real activity (hours worked, employment

growth and industrial production growth) suggesting a dominance of demand-side be-

haviour. This confirms findings by Leduc and Liu (2016) that uncertainty shocks have

similar effects as aggregate demand shocks.

Figure 10 shows the response of selected informational series. It suggests that

consumption-related quantities such as real personal consumption expenditure (top left)

and industrial production of consumer goods (top right), react less strongly to an uncer-

tainty shock than investment-related quantities such as industrial production of business

equipment (bottom left) or industrial production of durable materials (bottom right).

18



0 5 10 15 20
-0.06
-0.04
-0.02

0

0 5 10 15 20

-0.02
0

0.02
0.04
0.06

0 5 10 15 20

-1.5
-1

-0.5
0

0 5 10 15 20

-1.5
-1

-0.5
0

0 5 10 15 20
0.5

1
1.5

2
2.5

0 5 10 15 20
0.5

1
1.5

2
2.5

0 5 10 15 20
-15
-10

-5
0

0 5 10 15 20
-15
-10

-5
0

0 5 10 15 20

0
0.02
0.04

0 5 10 15 20

0
0.02
0.04

0 5 10 15 20
-0.06
-0.04
-0.02

0

0 5 10 15 20
-0.06
-0.04
-0.02

0

0 5 10 15 20
-0.06
-0.04
-0.02

0
0.02

0 5 10 15 20
-0.06
-0.04
-0.02

0
0.02

0 5 10 15 20
-0.06
-0.04
-0.02

0
0.02

0 5 10 15 20
-0.06
-0.04
-0.02

0
0.02

0 5 10 15 20
-0.1

-0.05
0

0.05

0 5 10 15 20
-0.1

-0.05
0

0.05

Figure 9: Impulse Response Functions of observables and latent factors. Point-wise

(non-cumulated) median impulse responses (solid line) with 68% bands. Small-scale VAR (left

column) excludes latent factors. BP-FAVAR (right column) includes two latent factors from

financial series.
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Figure 10: Impulse Response Functions of informational series. Point-wise (non-

cumulated) median impulse responses (solid line) with 68% bands. See Appendix C table 6 for a

detailed variable description.

These findings lend support to the ”wait-and-see” channel of uncertainty shocks (Bloom,

2009) stating that firms postpone their investment decision in light of increased uncer-

tainty while not ruling out demand-related channels, notably the “precautionary sav-

ings” motive discussed in Fernández-Villaverde et al. (2015) and Born and Pfeifer (2014)

which states that consumers prefer to increase savings and reduce consumption when

they perceive it harder to predict the future.

5 Conclusion

This paper proposes a Bayesian Proxy FAVAR to jointly address informational insuf-

ficiency and identification issues in structural VAR models. I combine a recent strand

of the Bayesian VAR literature that uses external instruments for identification (Cal-

dara and Herbst, 2019) with the Bayesian factor model literature (Belviso and Milani,

2006, Amir-Ahmadi and Uhlig, 2015). I show how a state-space model can be set up

to jointly exploit the advantages of both approaches. The resulting Bayesian Proxy

factor-augmented VAR model avoids two shortcomings of commonly employed small-

scale recursively identified VAR models, namely a non-credible identification scheme and

informational insufficiency. In two applications I find that an augmented information

set changes the dynamics of small-scale VAR models and that interesting conclusions

can be drawn about disaggregated series.
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Future empirical research can use the BP-FAVAR to avoid omitted variable problems

and investigate a large number of informational series in settings where identification

via proxies is appropriate.
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A Posterior Inference

A.1 Conditional posterior of F

The procedure to generate posterior draws of latent factors, F , differs from generating

draws of parameters, in that one has to generate the whole dynamic evolution of factors

for each t = 1, ..., T . For this to be feasible I exploit the Markov property of the system

described in equation (3) as follows:

p(Y |X, θ) = p(yt|X, θ)
T−1∏
t=1

p(yt|yt+1, X, θ). (22)

First note that (22) describes the posterior of Y , which contains both latent and observ-

able factors. The reason for including the observable factors is the dynamic interdepen-

dence between latent and observable factors, which needs to be accounted for. Given

that the observable factors are non-random, their distribution has a zero variance.4 Sec-

ond, note that this is a product of R +K-dimensional conditional distributions. Given

the assumption of Gaussianity of ξt and ut, this representation can be combined with

the observation equation (1) and is amenable to the Carter-Kohn algorithm described

in Carter and Kohn (1994) and Frühwirth-Schnatter (1994).

A.1.1 State-space form

Start by rewriting observation equation (1) and transition equation (3) as[
xt

zt

]
= HBt +Wt (23)

Bt = FBt−1 + Vt (24)

V ar(Wt) = R (25)

V ar(Vt) = Q (26)

where

H =

[
Λf Λz 0 ... 0

0 I 0 ... 0

]
; Bt =

[
b′t b′t−1 ... b′t−p

]′
; bt =

[
f t

zt

]
4Here, I refer to the variance across draws. The variance across time is, of course, non-zero.
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Wt =

[
ξt

0

]
; F =

[
Π

I 0 0

]
; Vt =

[
ut

0

]

R =

[
Ω 0

0 0

]
; Q =

[
Σ 0

0 0

]
Then consider the following factorisation:

p(B1:T |X,θ) = p(BT |x1:T ,θ)
T−1∏
t=1

p(Bt|Bt+1, X, θ) (27)

Given the linear Gaussian form of the state space model we have that

BT |x1:T , θ ∼ N(BT |T ,PT |T ) (28)

Bt|T |Bt+1|T ,x1:T , θ ∼ N(Bt|t,Bt+1|T ,Pt|t,Bt+1|T ) (29)

with

BT |T = E(BT |x1:T ,θ) (30)

PT |T = Cov(BT |x1:T ,θ) (31)

Bt|t,Bt+1|T = E(Bt|Bt|t,Bt+1|t,θ) (32)

Pt|t,Bt+1|T = Cov(Bt|Bt|t,Bt+1|t,θ) (33)

A.1.2 Carter-Kohn algorithm

In a first step, we can run a Kalman filter to obtain a series of Kalman-filtered draws

of the state variable Bt Bt|t for t = 1, ...T . To initialise, we set B1|0 = 0 and P1|0 = I.

Then, iterate forward as:

Bt|t = Bt|t−1 + κt|t−1ηt|t−1 (34)

where ηt|t−1 = Bt−FBt|t−1 denotes the forecast error, ft|t−1 = HPt|t−1H′+R its variance

and κt|t−1 = Pt|t−1Hf−1
t|t−1 the ”Kalman-gain”

Pt|t−1 = FPt−1|t−1F ′ +Q (35)
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Then, conditioning on the last of these Kalman-filtered draws, BT |T and PT |T , we can

run the filter backwards to obtain a series Bt|t+1 for t = 1, ..., T − 1 as follows:

B∗t|t,Bt+1|T = Bt|t + Pt|tF∗
′
J−1
t+1|tψt+1|t (36)

P∗t|t,Bt+1|T = Pt|t − Pt|tF∗
′
J−1
t+1|tF

∗Pt|t (37)

where ψt+1|t = B∗t+1−F∗Bt|t and Jt+1|t = F∗Pt|tF∗
′
+Q∗. Note that Q∗ refers to the top

R×R block of Q and that F∗ and B∗ denote the first R rows of F and B, respectively.

This is required because Q is singular given the presence of observable factors.

Plugging these draws into (27) results in an unconditional posterior draw of the state

variable, B1, ...,BT . Its top R + K block represents an unconditional posterior draw of

factors, yt.

A.2 Conditional posterior of Λ,Ω

This section discusses conditional posterior inference on Λ,Ω. It draws partially on

Bernanke et al. (2004). Restate the observation equation for convenience

xt = Λff t + Λzzt + ξt (38)

ξt ∼ N(0,Ω) (39)

with Λ = [λf λz]. Given a draw of the latent and observable factors, yt = [f ′t z′t]
′,

and under the assumption that Ω is diagonal, (38) amounts to N independent linear

regressions.

Assuming (conjugate) normal-inverse Gamma priors of the form

ωii ∼ IG(sc∗, sh∗) (40)

λi|ωii ∼ N(µ∗λ,i,ωiiM
∗−1
i ), (41)

delivers posterior distributions of the form

ωii ∼ IG(sc, sh) (42)

λi|ωii ∼ N(µλ,i,ωiiM
−1
i ), (43)
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with

sh = sc∗ + T

sc = sc∗ + ξ̂iξ̂i
′
+ (λ̂i − µ∗λ,i)′(M∗−1

i + (YiY
′
i )−1)(λ̂i − µ∗λ,i)

Mi = M∗i + YiY
′
i

µλ,i = M−1
i (M∗i µ

∗
λ,i + YiY

′
i )λ̂i,

where ξ̂i are the fitted errors from the i-th regression and λ̂i is the OLS estimate of λi,

and Yi are the regressors of the i-th equation. Note that employing uninformative priors

centred atound zero, i.e. setting sc∗ = 0, sh∗ = 0, µ∗λ,i = 0, and M∗−1
i = 0 collapses the

posterior towards the OLS estimate:

sh = T

sc = ξ̂iξ̂i
′

Mi = YiY
′
i

µλ,i = λ̂i,

A.3 Conditional posterior of Σ,Π

This section discusses conditional posterior inference on Σ,Π. It proceeds in two steps:

First, generate draws from

p(Π,Σ|Λf ,Λz,Ω, F, β, σν , b, X, Z)

(note that m is not part of the conditioning set). Second, map these into draws from

p(Π,Σ|Λf ,Λz,Ω, F, β, σν , b, X, Z,m)

(note that m is now part of the conditioning set).

For the first step, the derivations can be found, for example, in Kilian and Lütkepohl

(2017). Restate the transition equation for convenience

yt = Πwt + ut (44)

ut ∼ N(0,Σ), (45)

Given a draw of latent and observable factors, yt, equation (44) is a standard VAR(P)
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model. Therefore, employing independent normal-inverse Wishart priors of the form

vec(Π) ∼ N(µ∗Π, V
∗

Π) (46)

Σ ∼ IW (S∗, τ∗), (47)

delivers posterior distributions of the form

vec(Π)|Σ ∼ N(µΠ, VΠ) (48)

Σ|Π ∼ IW (S, τ), (49)

where

VΠ = (V ∗−1
Π + (WW ′ ⊗ Σ−1))−1 (50)

µΠ = VΠ(V ∗−1
Π + (W ⊗ Σ−1)vec(Y )) (51)

S = S∗ + (Y −ΠW )(Y −ΠW )′ (52)

τ = τ∗ + T (53)

In a second step, draws from the above distribution are mapped into draws from

the full conditional distribution using a Metropolis-Hastings step (see below for the

acceptance probability).

A.4 Conditional posterior of b

This section re-parametrises Caldara and Herbst (2019) to allow for identification of im-

pact effects. For the posterior sampler, we will need to be able to evaluate the conditional

likelihood of mt given yt.

Write transition and proxy equation in stacked form for convenience and compute

the unconditional variance: [
yt

mt

]
=

[
Π 0

0 0

][
wt

mt−1

]
+

[
B β

β′ σν

][
εt

νt

]
(54)

V ar(

[
yt −Πwt

mt

]
) =

[
Σ Bβ′

βB′ β′β + σ2
ν

]
, (55)

where β = [β 0]′
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The likelihood is invariant to observationally equivalent rotations of B. Therefore

we can replace B = BcQ, where Bc is, for example, the lower-triangular Cholesky

decomposition of Σ.

V ar(

[
yt −Πwt

mt

]
) =

[
Σ BcQβ′

βQ′Bc′ β′β + σ2
ν

]
(56)

Then, using the rules for the conditional mean of multivariate normal distributions, we

obtain the conditional likelihood

mt|yt,Π,Σ, b, β, σν ∼ N(µm|Y , Vm|Y ), (57)

µm|Y = βQ′Bc′Σ−1ut (58)

= βε1,t (59)

Vm|Y = bb′ + σ2
ν − bQ′Bc′Σ−1BcQb′ (60)

= σ2
ν (61)

Note that the conditional likelihood of mt does not depend on the full matrix B, but

only on its first column, b because the model is partially identified. Therefore, we can

rewrite (57) as

mt|yt,Π,Σ, b, β, σν ∼ N(µm|Y , Vm|Y ), (62)

Next, we can use the above result in a Metropolis step to generate a draw of b: given

a draw of Π,Σ, draw Qcand·,1 as the first column of an orthogonal matrix form a uniform

Haar distribution using the algorithm by Rubio-Ramirez et al. (2010). Set Q·,1 = Qcand·,1

with probability α and Q·,1 equal to the previous draw, Qj−1
·,1 , otherwise.

α = min(
p(m|Y,Π,Σ, Qcand·,1 )

p(m|Y,Π,Σ, Qj−1
·,1 )

, 1)

Compute structural errors ε1,t = (chol(Σ)Q·,1)−1U .

A.5 Conditional posterior of β, σν

Given a draw of structural shocks, ε1,t, the proxy equation is a linear equation. I consider

two types of priors: a flat and a “high-relevance” prior. Restate the proxy equation for
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convenience

mt = βε1,t + σννt (63)

νt ∼ N(0, 1), (64)

First, for the flat prior, results from appendix A.2 apply and the normal-inverse

Gamma priors of the form

β ∼ N(µ∗β, σ
∗2
β ) (65)

σν ∼ IG(sc∗ν , sh
∗
ν) (66)

map into posteriors of the form

β|σν ∼ N(µβ, σ
2
β) (67)

σν |β ∼ IG(scν , shν) (68)

with (assuming zero-centred un-informative priors)

µβ = β̂ (69)

σ2
β = (ε1ε

′
1)−1 (70)

scν = sc∗ν + T (71)

shν = ν̂ν̂ ′, (72)

where ν̂ are the fitted errors from equation (63) and β̂ is the OLS estimate of β.

Second, for the “high-relevance” prior, the posterior of β is unaffected. σν , however,

is not updated and stays at σν = 0.5std(mt) throughout the sampler.

A.6 Convergence of the Posterior Sampling Algorithm

The convergence properties of the reduced form parameters of a Bayesian FAVAR model

are discussed in detail in Amir-Ahmadi and Uhlig (2015). They show that a Gibbs

sampling procedure, similar to the one employed for the reduced form parameters here,

converges for appropriate lengths of the sampler. The convergence properties of the

structural parameters, however, need to be assessed. In particular the first column of B

containing the on-impact effects of the shock of interest are of importance. In order to

do so, I follow Amir-Ahmadi and Uhlig (2015) and employ the convergence diagnostic
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proposed by Geweke (1992). A detailed discussion of this convergence diagnostic can be

found, for example, in Cowles and Carlin (1996).

This diagnostic assesses the convergence of each element ηi of parameter vector, η.

The assessment is based on a comparison of means across different parts of this chain.

If the means are close to each other, the procedure detects convergence.

In a first step, extract from each (univariate) posterior draw {ηi}Di=1 the following

subseries: η1i, ..., η0.1D,i, i.e. the first 10 % of draws for parameter i, and η0.6D+1,i, ..., ηD,i,

i.e. the last 40% of draws, where D is the length of the MCMC chain. Compute µ̂first

and µ̂last, the mean, as well as σ̂first and σ̂last, the standard deviation, of these subseries.

Then the test statistic is

CD =
µ̂first − µ̂last
σ̂first√

0.1D
+ σ̂last√

0.4D

(73)

Under the conditions mentioned in Geweke (1992), CD has an asymptotic standard

normal distribution

The final output is a p-value indicating whether or not we can reject the Null hy-

pothesis of convergence, i.e. equality of mean across the chain, at a given significance

level.

B Criteria to determine the number of factors R

This section describes two criteria to determine the number of factors: The Bai and Ng

(2002) criterion and the scree plot.

Bai and Ng (2002) suggest the following criterion to determine the number of factors:

BN(R) =log
1

NT

T∑
t=1

(Xt − ΛPCfPCt )′(Xt − ΛPCfPCt )

+R
N + T

NT
log(min(N,T )) (74)

where ΛPC and fPCt are the principal components estimators of the factor loadings

and the factors, respectively. Bai and Ng (2002) suggest to set R∗ such that (74) is

minimised.

A scree plot summarizes the marginal contribution of the r-th factor to the average

explanatory power of N regressions of xt against the first r factors as computed via

Principal Components (see Stock and Watson, 2016 for details).
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C Additional Figures and Tables

C.1 Monetary Policy Application
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Figure 11: Scree Plot (Monetary Policy Application). Explained share of variance in xt

as a function of the number of latent factors (R) included in f t
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R Criterion
1 -2.0439
2 -2.2853
3 -2.2226
4 -2.1295
5 -1.9393
6 -1.7756
7 -1.5723
8 -1.3702
9 -1.1378

10 -0.8515

Table 2: Bai and Ng (2002) criterion (Monetary Policy Application). See Appendix

B for a description.

Variable Criterion
1 0.1465
2 0.2257
3 0.1428
4 0.1555
5 0.7312

Table 3: Geweke (1992) convergence diagnostic (Monetary Policy Application).

Null hypothesis: convergence. See Appendix A.6 for a description.
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Figure 12: Shadow Rate: Wu and Xia (2016) shadow rate available from 1960M1
to 2015M11.

C.2 Uncertainty Application
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R Criterion
1 1.1692
2 1.0286
3 1.0317
4 1.0583
5 1.1060
6 1.1558
7 1.2062
8 1.2570
9 1.3079

10 1.3589

Table 4: Bai and Ng (2002) criterion (Uncertainty Application).See Appendix B for

a description.

Variable Criterion
1 0.7888
2 0.4595
3 0.9055
4 0.0434
5 0.8398
6 0.6726
7 0.4275
8 0.4834
9 0.4275

10 0.4432

Table 5: Geweke (1992) convergence diagnostic (Uncertainty Application). Null

hypothesis: convergence. See Appendix A.6 for a description.
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Figure 13: Scree Plot (Uncertainty Application). Explained share of variance in xt as a

function of the number of latent factors (R) included in f t
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Figure 14: Signal-to-noise ratio (Uncertainty Application). Posterior distribution of

β/σν (histogram) together with the prior median (star).
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Figure 15: Updating of b (Uncertainty Application). Priors (solid line) and posterior

(histogram) of b. Prior draws are computed from the distribution implicit in the priors for Σ,

Q·,1, β and σν .
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Table 6: Data

Output and Income

id tcode fred description

1 5 RPI Real Personal Income
2 5 W875RX1 Real personal income ex transfer receipts
6 5 INDPRO IP Index
7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies
8 5 IPFINAL IP: Final Products (Market Group)
9 5 IPCONGD IP: Consumer Goods
10 5 IPDCONGD IP: Durable Consumer Goods
11 5 IPNCONGD IP: Nondurable Consumer Goods
12 5 IPBUSEQ IP: Business Equipment
13 5 IPMAT IP: Materials
14 5 IPDMAT IP: Durable Materials
15 5 IPNMAT IP: Nondurable Materials
16 5 IPMANSICS IP: Manufacturing (SIC)
17 5 IPB51222s IP: Residential Utilities
18 5 IPFUELS IP: Fuels
19 1 NAPMPI ISM Manufacturing: Production Index
20 2 CUMFNS Capacity Utilization: Manufacturing
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Labor Market

id tcode fred description

21* 2 HWI Help-Wanted Index for United States
22* 2 HWIURATIO Ratio of Help Wanted/No. Unemployed
23 5 CLF16OV Civilian Labor Force
24 5 CE16OV Civilian Employment
25 2 UNRATE Civilian Unemployment Rate
26 2 UEMPMEAN Average Duration of Unemployment (Weeks)
27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks
28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks
29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over
30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks
31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over
32* 5 CLAIMSx Initial Claims
33 5 PAYEMS All Employees: Total nonfarm
34 5 USGOOD All Employees: Goods-Producing Industries
35 5 CES1021000001 All Employees: Mining and Logging: Mining
36 5 USCONS All Employees: Construction
37 5 MANEMP All Employees: Manufacturing
38 5 DMANEMP All Employees: Durable goods
39 5 NDMANEMP All Employees: Nondurable goods
40 5 SRVPRD All Employees: Service-Providing Industries
41 5 USTPU All Employees: Trade, Transportation & Utilities
42 5 USWTRADE All Employees: Wholesale Trade
43 5 USTRADE All Employees: Retail Trade
44 5 USFIRE All Employees: Financial Activities
45 5 USGOVT All Employees: Government
46 1 CES0600000007 Avg Weekly Hours : Goods-Producing
47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing
48 1 AWHMAN Avg Weekly Hours : Manufacturing
49 1 NAPMEI ISM Manufacturing: Employment Index
127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing
128 6 CES2000000008 Avg Hourly Earnings : Construction
129 6 CES3000000008 Avg Hourly Earnings : Manufacturing
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Housing

id tcode fred description

50 4 HOUST Housing Starts: Total New Privately Owned
51 4 HOUSTNE Housing Starts, Northeast
52 4 HOUSTMW Housing Starts, Midwest
53 4 HOUSTS Housing Starts, South
54 4 HOUSTW Housing Starts, West
55 4 PERMIT New Private Housing Permits (SAAR)
56 4 PERMITNE New Private Housing Permits, Northeast (SAAR)
57 4 PERMITMW New Private Housing Permits, Midwest (SAAR)
58 4 PERMITS New Private Housing Permits, South (SAAR)
59 4 PERMITW New Private Housing Permits, West (SAAR)

Consumption, Orders and inventories

3 5 DPCERA3M086SBEA Real personal consumption expenditures
4* 5 CMRMTSPLx Real Manu. and Trade Industries Sales
5* 5 RETAILx Retail and Food Services Sales
60 1 NAPM ISM : PMI Composite Index
61 1 NAPMNOI ISM : New Orders Index
62 1 NAPMSDI ISM : Supplier Deliveries Index
63 1 NAPMII ISM : Inventories Index
64 5 ACOGNO New Orders for Consumer Goods
65* 5 AMDMNOx New Orders for Durable Goods
66* 5 ANDENOx New Orders for Nondefense Capital Goods
67* 5 AMDMUOx Unfilled Orders for Durable Goods
68* 5 BUSINVx Total Business Inventories
69* 2 ISRATIOx Total Business: Inventories to Sales Ratio
130* 2 UMCSENTx Consumer Sentiment Index

41



Money and Credit

id tcode fred description

70 6 M1SL M1 Money Stock
71 6 M2SL M2 Money Stock
72 5 M2REAL Real M2 Money Stock
73 6 AMBSL St. Louis Adjusted Monetary Base
74 6 TOTRESNS Total Reserves of Depository Institutions
75 7 NONBORRES Reserves Of Depository Institutions
76 6 BUSLOANS Commercial and Industrial Loans
77 6 REALLN Real Estate Loans at All Commercial Banks
78 6 NONREVSL Total Nonrevolving Credit
79* 2 CONSPI Nonrevolving consumer credit to Personal Income
131 6 MZMSL MZM Money Stock
132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding
133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding
134 6 INVEST Securities in Bank Credit at All Commercial Banks

Interest Rates and Exchange Rates

84 2 FEDFUNDS Effective Federal Funds Rate
85* 2 CP3Mx 3-Month AA Financial Commercial Paper Rate
86 2 TB3MS 3-Month Treasury Bill:
87 2 TB6MS 6-Month Treasury Bill:
88 2 GS1 1-Year Treasury Rate
89 2 GS5 5-Year Treasury Rate
90 2 GS10 10-Year Treasury Rate
91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield
92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield
93* 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS
94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS
95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS
96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS
97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS
98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS
99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS
100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS
101 5 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies
102* 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate
103* 5 EXJPUSx Japan / U.S. Foreign Exchange Rate
104* 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate
105* 5 EXCAUSx Canada / U.S. Foreign Exchange Rate
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Prices

id tcode fred description

106 6 WPSFD49207 PPI: Finished Goods
107 6 WPSFD49502 PPI: Finished Consumer Goods
108 6 WPSID61 PPI: Intermediate Materials
109 6 WPSID62 PPI: Crude Materials
110* 6 OILPRICEx Crude Oil, spliced WTI and Cushing
111 6 PPICMM PPI: Metals and metal products:
112 1 NAPMPRI ISM Manufacturing: Prices Index
113 6 CPIAUCSL CPI : All Items
114 6 CPIAPPSL CPI : Apparel
115 6 CPITRNSL CPI : Transportation
116 6 CPIMEDSL CPI : Medical Care
117 6 CUSR0000SAC CPI : Commodities
118 6 CUUR0000SAD CPI : Durables
119 6 CUSR0000SAS CPI : Services
120 6 CPIULFSL CPI : All Items Less Food
121 6 CUUR0000SA0L2 CPI : All items less shelter
122 6 CUSR0000SA0L5 CPI : All items less medical care
123 6 PCEPI Personal Cons. Expend.: Chain Index
124 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods
125 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods
126 6 DSERRG3M086SBEA Personal Cons. Exp: Services

Stock Market

80* 5 S&P 500 S&P’s Common Stock Price Index: Composite
81* 5 S&P: indust S&P’s Common Stock Price Index: Industrials
82* 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield
83* 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio
135* 1 VXOCLSx VXO
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