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1 Introduction

Diversification is a common strategy in risk management to reduce non-systematic risk by investing
in a variety of, as opposed to single, assets (Sullivan 2003). This variety of assets as a whole is
often called an investment portfolio. However, when carelessly selected, the assets in a portfolio
can have considerable correlations with each other, which can impair the very purpose of diversi-
fication. Through the deepening of integration and interactions between industries, the financial
performance of one company is increasingly dependent on the others. Global financial recessions
have attested to the interconnection of business on an international scale. To avoid the occurrence
of extreme losses, which are most likely caused by the synergy of correlated assets in their “down”
times, correlations between companies are to be minimized.

Investors’ goal is to maximize the return on their investments. Yet, stock prices are more fre-
quently observed to crash than to jump, and the crashes are often too destructive to be compensated
by jumps. Intuitively it implies that stock returns follow a heavy tailed distribution. To approximate
distributions with heavy tails, Student-t and mixture normal (Newcomb, 1980) estimations are his-
torically used as two classical univariate models. When we only concentrate on extreme losses,
extreme value theory (EVT) models can be more appropriate as they are suited to fit only the tail
part of a distribution. While such models are all reasonably suitable for individual assets, when
estimating portfolio losses, they however treat a portfolio as a synthetic single asset, through which
important information on assets’ correlations are lost.

Motivated to improve distribution estimation for extreme losses of portfolios, Dias (2014) pro-
vides a multivariate semiparametric estimation of portfolio tail risk. The estimation of model pa-
rameters relies on empirical time series data of each component asset of the portfolio. As such,
compared to the traditional EVT model, the model by Dias (2014) is more comprehensive and reli-
able in that it captures information on individual assets in a portfolio.

This paper aims to replicate the model by Dias (2014) and to test its legitimacy and executabil-
ity. To do this, we apply the model to the sample collected in strict accordance with the description
in Dias (2014). Through implementation of the model, we discover a potential deficiency in a cal-
culation step that might skew the results. We then propose a simple algebraic transformation to
eliminate the computational problem without altering the central idea of the model.

As Dias (2014) delivers an extensive theoretical background of the model, this paper can be
seen as an extension of her paper as it examines the feasibility of the model, proposes new ideas on
its execution and compares results using the same dataset.
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2 Research design and methodology

2.1 Semiparametric approximation of extreme losses

The methodology of multivariate semiparametric approximation is based on extreme value theory
(de Haan, 1977). A univariate extreme value distribution can take on different forms. When the
distribution is heavy tailed, its cumulative distribution function takes the form of:

G(x) = exp

[
−

(
1 + γ

x − b
a

)− 1
γ

]
, 1 + γ

x − b
a

> 0.

We name γ, a, b the shape, location and scale parameters. The model is improved by multivariate
semiparametric approximation in that it retains the dimensionality of a portfolio, which conse-
quently demands the separate estimation of γ, a, b for each asset therein. If we define function I
as:

IX (x) =

{
0, x < X
1, x ≥ X

(1)

we can write down the estimated survival function of extreme losses using the semiparametric
method as:

Ŝ(l) B
∑n

t=1Il(L̃t )

nc(l)
(2)

where

L̃t = â

[
c(l)γ̂

(
1 + γ̂Lt−b̂

â

)
− 1

]
γ̂

+ b̂

when the portfolio is average weighed, Lt = {Lit }, the vector of losses of firms included in the
portfolio at time t, γ̂ = {γ̂i} and likewise â = {âi}, b̂ = {b̂i}.
It is now apparent that Ŝ(l) necessitates information for individual assets. As a matter of fact, Ŝ(l)
can be seen as a derivation of the empirical survival function:

S(l) = P(L > l) =
∑n

t=1Il(Lt )

n
, where L = {Lt } is the time series of synthesized portfolio losses.

Extreme losses are by their very nature rather occasional, and their distribution is rather difficult
to model statistically. The “trick” to overcoming this obstacle using semiparametric approximation
is to first scale up the losses such that more observations would be considered in the model, and
then to scale down the probability that an observation exceeds the adjusted threshold value. That
is why we use L̃t to estimate the distribution, which can be seen as the adjusted loss value scaled
up from the original loss value Lt . c(l) is the so-called scaling constant which varies dependent on
l. Although this approach slightly deviates from the methodology in Dias (2014), the fundamental
ideas are in accord with each other. The remainder of this section explains how the relevant pa-
rameters are estimated and presents the estimated results using our sample data. In Section 3, we
highlight why an adaptation of the original method in Dias (2014) is necessary.
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2.2 Sample description

To have comparable results, we collected data of 100 firms from Datastream as described in Dias
(2014). As portfolio returns are studied here, these 100 firms will later be considered as an equally
weighted 100-asset portfolio. Selected firms from those 100 were also used to form a 10-asset
portfolio and a 50-asset portfolio. In order to control for variation in capital sizes, firms chosen
are evenly distributed in terms of market capitalization. In total, 34 firms are from the then S&P
LargeCap 500 list, 33 firms S&P MidCap 400 and 33 firms S&P SmallCap 600. In the 10-asset
portfolio, the allocation is 4, 3, 3 and in the 50-asset portfolio 17, 17, 16. The Appendix lists all the
firms whose price history is used in Dias (2014) and by design also in this paper. From Datastream,
daily price data with Datatype “Price (Adjusted-Default)” covering the period from December 31,
1999 to January 1, 2014 were extracted. For each firm 3,654 adjusted price values were available.
No filtering of price values was conducted.

2.3 Parameter estimation

If not otherwise specified in this paper, an asset (a firm) or a portfolio of assets is denoted by sub-
script i, and a specific day t. When i = 1,2, . . . ,100, a specific firm is referred to; when i=10,50,100
(bold), a portfolio of 10-asset, 50-asset or 100-asset is referred to. The daily log return Ri,t of firm
i on day t is calculated as:1

Ri,t = 100ln(pi,t/pi,t−1), i = 1,2, . . . ,100, t = 1,2, . . . ,3653,

where pi,t is the price of firm i on day t which can be obtained directly from Datastream without any
further manipulation. The daily log return of portfolio i is the arithmetic average of its component
assets’ daily log returns: Ri,t = Ri,t , i = 10,50,100, t = 1,2, . . . ,3653.

In the instance of a 100-asset portfolio, R100,t = R100,t =
∑100

1 Ri ,t

100 , R100,t = {R1,t,R2,t, ...,R100,t },
t = 1,2, . . . ,3653. Same goes for R10,t and R50,t .

The four fundamental statistics: mean, standard deviation, skewness and kurtosis of each firm’s
daily log return Ri = {Ri,1,Ri,2, ...,Ri,3653} are presented in the Appendix. For portfolios, the sum-
mary statistics are presented separately in Table 1, in correspondence with Dias (2014). In this
study, the distribution of losses is examined. Thus, from now on we employ daily loss2 Li,t for
parameter estimation. Li,t is simply the opposite of Ri,t , i.e.:
Li,t = −Ri,t , i ∈ {1,2, . . . ,100} ∪ {10,50,100}, t = 1,2, . . . ,3653.

For any firm/portfolio i, the elements in its daily loss vector {Li,1, Li,2, . . . , Li,3653} can be sorted
in a descending way such that: Li,(1) ≥ Li,(2) ≥ ... ≥ Li,(3653), i ∈ {1,2, . . . ,100} ∪ {10,50,100}.

1Although not clearly stated in Dias (2014), the daily log returns were scaled up 100 times according to the statistics
summary in the paper.

2In Dias (2014), both return and “loss return” are denoted by R. To avoid confusion, we use different denotations for
return and loss in this paper.
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2.3.1 The moment parameter

The first- and second-order moment parameters are calculated using our sample data as:

Mi B
1

548

∑548

j=1
ln Li,(j) − ln Li,549, (3)

Ni B
1

548

∑548

j=1
(ln Li,(j) − ln Li,549)

2, i ∈ {1,2, . . . ,100} ∪ {10,50,100}, (4)

where the number of upper order statistics 548 is determined by multiplying 3653 by 15%. This
number represents the number of observations large enough to be included in the tail distribution
and is denoted by k in Dias (2014). The 15% threshold is in line with Dias (2014). However, since
the sample size itself is not provided by Dias (2014), the absolute value of upper order statistics
k used in this paper might differ from those in Dias (2014). Those two moment estimators are
intrinsic characteristics of assets (as well as portfolios when they are treated as single assets and
their comprising assets’ properties are ignored). They were first proposed by Dekkers et al. (1989)
and widely used in ensuing literature (e.g. de Haan et al. (1993)) to estimate shape parameters,
which will be discussed below.

2.3.2 The shape parameter

With the two moment parameters in hand, we are ready to calculate the shape parameter for each
asset and portfolio, which according to Dekkers et al. (1989) is given by:

γ̂i B Mi + 1 −
1

2 × (1 − M2
i /Ni)

, i ∈ {1,2, . . . ,100} ∪ {10,50,100}. (5)

The shape parameters for our sample assets and portfolios are presented alongside other fun-
damental statistics in the Appendix and Table 1, respectively. In accordance with Dias (2014), the
shape parameter is calculated based on losses Li, while other statistics are calculated based on
returns Ri.

Table 1 shows great similarities between data from the replicated study and the original. In both
studies, firms with smaller capitalization tend to have higher returns on average. The price for that
is higher volatility, represented by standard deviation. The overall negative skewness evidences
that there are more often extreme losses than extreme positive returns. No substantial relationship
between shape index and capitalization can be observed, which indicates rather coherent tail risk
among portfolios with varying levels of market capitalization.

2.3.3 The scale parameter

From Table 1 and the Appendix we see that the shape parameters of our sample data are all pos-
itive. When γ>0, the distribution is termed “heavy-tailed” in Dias (2014). In this case, the scale
parameter of an asset is estimated as:

âi B Li,549

√
3M2

i − Ni, i = 1,2, . . . ,100. (6)
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Table 1: Descriptive statistics of portfolio (loss) returns

Replicated Original from Dias (2014)

Small Cap Mid Cap Large Cap Portfolio Small Cap Mid Cap Large Cap Portfolio
10-asset
Mean 0.0240 0.0164 0.0063 0.0147 0.0234 0.0152 0.0046 0.0134
Std. dev. 2.0943 1.9058 1.6340 1.5985 2.0948 1.9030 1.6337 1.5963
Skewness −0.1852 −0.7714 −0.3243 −0.4481 −0.1822 −0.7643 −0.3239 −0.4488
Kurtosis 5.7730 13.5858 7.7763 7.6819 5.7359 13.5499 7.7370 7.6811
Shape 0.1366 0.3847 0.2847 0.2725 0.1679 0.2760 0.2379 0.2632
Min −18.918 −23.136 −12.282 −13.317 −18.908 −23.109 −12.270 −13.320
Max 13.026 16.686 11.721 10.100 13.012 16.694 11.765 10.120

50-asset
Mean 0.0253 0.0324 0.0294 0.0290 0.0257 0.0321 0.0301 0.0293
Std. dev. 1.6520 1.3260 1.3753 1.3727 1.6491 1.3239 1.3730 1.3699
Skewness −0.2060 −0.3027 −0.3246 −0.3432 −0.2074 −0.3017 −0.3247 −0.3443
Kurtosis 4.9610 7.5096 9.8157 7.8821 4.9747 7.5197 9.8304 7.9114
Shape 0.2405 0.2741 0.2217 0.2421 0.1687 0.2296 0.2250 0.2114
Min −12.800 −11.050 −12.247 −11.601 −12.810 −11.048 −12.247 −11.603
Max 9.010 10.363 13.211 10.871 9.001 10.362 13.209 10.867

100-asset
Mean 0.0222 0.0217 0.0206 0.0215 0.0227 0.0214 0.0217 0.0219
Std. dev. 1.6470 1.4150 1.2923 1.3980 1.6435 1.4123 1.2798 1.3925
Skewness −0.2934 −0.4649 −0.3020 −0.4235 −0.2951 −0.4637 −0.2803 −0.4200
Kurtosis 5.6043 8.1197 9.0355 7.6181 5.6308 8.1416 9.0186 7.6130
Shape 0.2320 0.2696 0.2475 0.2587 0.1959 0.2455 0.2509 0.2473
Min −13.790 −12.353 −11.007 −11.846 −13.802 −12.359 −10.722 −11.854
Max 9.232 10.665 11.511 10.053 9.242 10.664 11.591 10.061
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2.3.4 The location parameter

Following Dias (2014), the location parameter of firm i is the (k + 1)th upper order statistic of Li,
i.e.:

b̂i B Li,549, i = 1,2, . . . ,100. (7)

2.3.5 The scaling constant

For each portfolio, we use vectors γ̂i, âi, b̂i to denote vectors of its component assets’ estimated
shape, scale and location parameters. The scaling parameter ci(l) of a portfolio is defined as the
root of the equation:

âi
[cl(l)1]γ̂i

γ̂i
+ b̂i = l, i = 10,50,100. (8)

The right-hand side of the equation is calculated componentwise. Again, in the case of 100-asset
portfolio:

γ̂100 = {γ̂1, γ̂2, ..., γ̂100}, â100 = {â1, â2, ..., â100}, b̂100 = {b̂1, b̂2, ..., b̂100},

∑100
i=1 âi

c100(l)
γ̂i

γ̂i
+ b̂i

100
= l .

3 An algorithmic improvement in transformation of losses

While we seek to stay as loyal as possible to the approach as described in Dias (2014), we were
unable to complete the replication study without modifying, albeit slightly, one of the calculation
steps. This section explains the necessity of the modification and how it is performed.

The adjustment concerns the transformation of losses. The function Il(L̃i,t ) used in our replica-
tion exercise is essentially the adapted form of the indicator function I(L̂i,t ∈ Âi(l)) in Dias (2014),
where

L̂i,t B

(
1 + γ̂i

Li,t − b̂i
âi

) 1
γ̂i

,

Âi(l) B
1

ci(l)

(
1 + γ̂i

Ci(l) − b̂i
âi

) 1
γ̂i

, Âi(l) ⊆ [0,∞]i\0,

Ci(l) B {L ∈ Ri |L ≥ l} i = 10,50,100, t = 1,2, ...,3653. (9)

In practice, however, the calculation can be problematic. For any Li′,t ∈ Li,t , as long as

1 + γ̂i′,t
Li′ ,t−b̂i′ ,t

âi′ ,t
< 0, then L̂i,t < R

i and it can instantly be concluded that L̂i,t < Âi(l). This
does not, however, make intuitive sense. As is often the case, at time t the portfolio i as a whole can
have a very large loss (enough to be considered in the tail distribution) but one particular asset i′

within is not doing that badly and has a loss Li′,t such that 1 + γ̂i′,t
Li′ ,t−b̂i′ ,t

âi′ ,t
< 0, and consequently

the observation Li,t would not be counted in the model. In other words, I(L̂i,t ∈ Âi(l)) would
return zero. To circumvent this problem, we simply take both L̂(i, t) and Âi(l) to the power of γ̂i,t
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(componentwise), i.e. we employ a new indicator I(L̂γ̂i ,t

i,t ∈ Âi(l)γ̂i ,t ). This can be further rearranged
through the steps below:

L̂
γ̂i ,t

i,t ∈ Âi(l)γ̂i ,t ⇔

(
1 + γ̂i

Li,t − b̂i
âi

)
∈

1

ci(l)γ̂i ,t

(
1 + γ̂i

Ci(l) − b̂i
âi

)
⇔ âi

[
ci(l)γ̂i

(
1 + γ̂i

Li ,t−b̂i
âi

)
− 1

]
γ̂i

+ b̂i ∈ Ci(l),

with the knowledge of Equation (9), this rearrangement leads us to:

I(L̂
γ̂i ,t

i,t ∈ Âi(l)γ̂i ,t ) ⇔ Il(L̃i,t ),

where in the equivalent function Il(L̃i,t ), L̃i,t as defined in Section 2.1 can be calculated as:

L̃i,t = âi

[
ci(l)γ̂i

(
1 + γ̂i

Li ,t−b̂i
âi

)
− 1

]
γ̂i

+ b̂i, i = 10,50,100, t = 1,2, . . . ,3653.

The rearrangement does not alter the core idea of the model. It is meant to simplify the implemen-
tation of the model because it involves fewer parameters.

4 Model evaluation

In accordance with Dias (2014), the Student-t and a mixture of four normal distributions are used
as benchmark models for the semiparametric approximation in this paper. The comparison between
the three models will be conducted in this section.

4.1 Survival probability plot

To plot the semiparametric approximation, we need an array of {l} (abscissa) and a corresponding
array of {Ŝi(l)} (ordinate) for which {ci(l)} is needed. To achieve this, we can either first determine
an array of {l} and then find out the corresponding array of {ci(l)} by solving Equation (8); or we
can first write down an array of {ci(l)} and then get the {l} by just calculating Equation (8) from
left to right. In the end we always get a one-to-one mapping between {l} and {Ŝi(l)}. As the second
alternative is easier to execute, we first determine:

c10(l) ∈ [0.83,108.43], c50(l) ∈ [0.70,94.80], c100(l) ∈ [0.71,89.77],

where the corresponding l of sup{ci(l)} and inf{ci(l)} roughly equal Li,(1) and Li,(366) (about 90%-
quantile of {Li,1, Li,2, ..., Li,3653}).

The plot of semiparametric approximation alongside the empirical data plot and the fitting of
benchmark distributions are conducted using MATLAB. Figures 1-3 present replicated graphs on the
left side, and the original ones on the right side. The overall resemblance of the two sets of graphs

8
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confirms the practicability of the modified approach described in Section 2.3.

The deviations between replicated graphs and original graphs can be explained by the differing
ways of manipulating the raw data. Comparing the scatter plot of empirical data (Portfolio returns)
between replicated and original graphs, we see that the ranges of the top 10% losses are identical,
i.e. they are both [1.63, 13.32], [1.42, 11.6], [1.44, 11.85] respectively for 10-asset, 50-asset and 10-
asset portfolio. The survival probabilities, however, are quite different, with Si

(
sup{Li,n}

)
≈ 0.0005

in the original graphs, and Si
(
sup{Li,n}

)
≈ 0.00027 in the replicated ones. While Si

(
Li,n

)
is empiri-

cally just the inverse percentile rank of Li,n as in {Li,n}, Si
(
sup{Li,n}

)
can be calculated as 1

n+1 . As
n = 3653 in our sample, Si

(
sup{Li,n}

)
is subsequently equal to 1

3653+1 . Likewise, we can deduce
that the sample size n in Dias (2014) is around 2000 ( 1

2000+1 ≈ 0.0005). Seemingly, the raw data
have been filtered intensively by Dias (2014). As no filtering criteria are mentioned in Dias (2014),
we do not eliminate any data points in our replication study3. As later shown in this paper, this
unknown filtering does not appear to yield biased results, and deviation in input data does not
cause material discrepancies between original and replicated results.

Despite differences in the raw data set, both the replicated and original graphs confirm that
the performance of semiparametric approximation does not vary much across portfolios. That is to
say, the semiparametric approach provides as good an approximation for the 10-asset portfolio as
for the 50- and 100-asset portfolios. Compared with Student-t and mixture normal distributions,
semiparametric approximation tends to overestimate losses more, which is consistent in both repli-
cated and original graphs. In the original graphs, the Student-t curves are almost entirely below the
empirical data scatter except for few observations. In the replicated graphs, the Student-t curves
are “catching up” at the very end of tails, but are in general underestimating. Mixture normal ap-
proximation, on the contrary, provides a fairly good estimation at the start of tail distributions, but
plummets at the end. This is the case in both replicated and original graphs.

In risk management, where conservativeness is encouraged, semiparametric estimation is more
suitable than the benchmark models due to its slight overestimation of extreme value probability.

3From the sample size it can be noted that the weekends are already eliminated from Datastream by default. Some
holidays are however not excluded from Datastream. Stock prices on those days are not filtered out because it is not
described in Dias (2014), and holidays alone cannot explain the deviation either way as they only amount to around 200
days.

9



J. Xu – Semiparametric Value-At-Risk Estimation of Portfolios – A Replication Exercise. IREE (2019-6)

Figure 1: Loss survival probability plot of 10-asset portfolio
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Figure 2: Loss survival probability plot of 50-asset portfolio
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Figure 3: Loss survival probability plot of 100-asset portfolio
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4.2 Value at risk estimation

In this section, value at risk of estimated semiparametric, Student-t and mixture normal distribu-
tions will be presented at four confidence levels α = 99%,97.5%,95%,90%. As defined in Artzner et
al. (1999), a VaR of losses at confidence level α is the minimum value such that the probability of
losses exceeding this value is no greater than (1 − α), i.e.:

VaRα = inf{l ∈ R : P(L > l) ≤ 1 − α}, α = 99%,97.5%,95%,90%,

which slightly deviate from the function provided in Dias (2014) because VaRα, or VaRαt as de-
noted in Dias (2014), is reevaluated at each period t based on the information available at t. In our
study however, we assume the estimated distributions as ex ante, hence only have one same VaRα

for one distribution throughout the sample period.

VaRα can also be interpreted as the (1 − α) quantile of a loss distribution. That is to say, VaRα

is the solution to equation:

S(�VaRα) = 1 − α,α = 99%,97.5%,95%,90%, (10)

The percentage of violation of VaRα is calculated as:

%Viol.α = 100

∑3653
t=1 IVaRα (Lt )

3653
, α = 99%,97.5%,95%,90%, (11)

where function I is defined in Equation (1). We call a VaRα underestimated when
%Viol.α > 100(1 − α) and overestimated when %Viol.α < 100(1 − α). The result is presented on the
left-hand side of Table 2, in comparison with the original data from Dias (2014) on the right-hand
side.
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In terms of violations, semiparametric estimation only underestimates at the beginning of the
tail when α = 90%. This is the case in both the replicated table and the original table. Neverthe-
less, the model only underestimates once in Dias (2014) when it comes to the 10-asset portfolio,
while in the replicated table, we note underestimation for all portfolios at the 90% level. In con-
trast, mixture normal in the replicated study underestimates 1, 2, 1, 0 time(s) respectively when
α = 99%,97.5%,95%,90%, among which are 2 times for the 10-asset portfolio, 1 for the 50-asset
portfolio, and 1 for the 100-asset portfolio. In the original study from Dias (2014), mixture normal
underestimates 9 out of 12 cases. As for Student-t, if only those selected key values are considered,
it constantly underestimates, which is the case in Dias (2014) as well.

Furthermore, to measure and compare the accuracy of VaR predictions produced by semipara-
metric estimation, mixture normal and Student-t, we apply three likelihood ratio (LR) tests: uncon-
ditional coverage test (LRuc), independence test (LRind) and conditional coverage test (LRcc) –
which is the combination of the former two (Christoffersen (1998)). LRuc tests the null hypothesis
of %Viol.α = 100(1−α) against the alternative %Viol.α , 100(1−α). LRind tests the null hypothesis
that elements in {IVaR(Lt )} are independently distributed.

Christoffersen (1998) is referred to for the proofs of the validity of these tests. In our study,
we use the following equations to compute the values of LRαuc,LR

α
ind
,LRαcc and their respective

p-values:

LRαuc = −2 ln
{[3652(1 − α)

nα0

]nα0 (3652α
nα1

)nα1 }
∼ χ2(1), (12)

LRαind = −2 ln
{[ nα0

3652(1 − πα01)

]nα00 [ nα0
3652(1 − πα11)

]nα10 ( nα1
3652πα01

)nα01 ( nα1
3652πα11

)nα11}
∼ χ2(1), (13)

LRαcc = −2 ln
[( 1 − α

1 − πα01

)nα00 ( 1 − α

1 − πα11

)nα10 ( α

πα01

)nα01 ( α

πα11

)nα11 ]
∼ χ2(2), (14)

where

nαx =
∑3653

t=2

[
1 − x − (−1)x IVaRα (Lt )

]
, x = 0,1,

nαxy =
∑3653

t=2

{[
1 − x − (−1)x IVaRα (Lt−1)

] [
1 − y − (−1)y IVaRα (Lt )

]}
, x = 0,1, y = 0,1,

nαxy =
nαxy

nαxx + nαxy
, x = 0,1, y = 0,1.

The p-values are presented along with �VaRα and %Viol.α in Table 2. Overall, the test of un-
conditional coverage (LRuc) yields the highest p-value, followed by the test of conditional coverage
(LRcc) and lastly the test of independence (LRind). In the LRuc test results of the replicated study,
the number of p-values below 0.1 is 6 with semiparametric estimation, 0 with mixture normal and
5 with Student-t. In the LRind and LRcc tests, p-values lie generally at the 0.1 level, apart from the
three exceptions of LR99%

cc for the mixture normal estimation. It can also be observed that p-values
tend to decrease along with α. One interpretation is that high-percentile VaR estimates are more
prone to be affected by clustering than low-percentile ones (Dias (2014)). With the ability to retain
low p-values even at high percentile, semiparametric estimation is therefore more valuable when
the focus is on extreme losses.
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Table 2: Value at risk estimates and p-values of LR tests

Replicated Original from Dias (2014)

10-asset 50-asset 100-asset 10-asset 50-asset 100-asset
Semi param. est.�VaR99% 5.201 4.590 4.637 4.961 4.432 4.514
% Viol.99% 0.849 0.684 0.766 0.952 0.735 0.816
LR99%

uc 0.346 0.042 0.140 0.772 0.090 0.249
LR99%

ind
0.028 0.011 0.018 0.045 0.015 0.023

LR99%
cc 0.057 0.005 0.020 0.128 0.012 0.039

Mix. normal�VaR99% 4.893 4.122 4.288 4.857 4.314 4.247
% Viol.99% 1.013 0.958 0.931 1.061 0.762 0.952
LR99%

uc 0.937 0.799 0.672 0.709 0.130 0.772
LR99%

ind
0.058 0.046 0.041 0.070 0.017 0.045

LR99%
cc 0.165 0.133 0.113 0.180 0.019 0.128

Student-t�VaR99% 4.476 3.838 3.964 4.468 3.825 3.938
% Viol.99% 1.232 1.150 1.068 1.225 1.143 1.089
LR99%

uc 0.174 0.373 0.683 0.185 0.392 0.592
LR99%

ind
0.019 0.013 0.008 0.018 0.012 0.009

LR99%
cc 0.025 0.030 0.027 0.025 0.029 0.028

Semi param. est.�VaR97.5% 3.477 3.064 3.089 3.352 2.987 3.042
% Viol.97.5% 2.190 1.861 2.080 2.423 1.960 2.096
LR97.5%

uc 0.182 0.010 0.095 0.764 0.029 0.107
LR97.5%

ind
0.009 0.002 0.001 0.025 0.002 0.001

LR97.5%
cc 0.013 0.000 0.001 0.078 0.001 0.001

Mix. normal�VaR97.5% 3.313 2.761 2.868 3.219 2.719 2.849
% Viol.97.5% 2.573 2.354 2.518 2.777 2.504 2.514
LR97.5%

uc 0.857 0.571 0.941 0.290 0.985 0.984
LR97.5%

ind
0.012 0.005 0.002 0.008 0.002 0.002

LR97.5%
cc 0.042 0.015 0.010 0.018 0.009 0.009

Student-t�VaR97.5% 3.104 2.657 2.718 3.100 2.649 2.705
% Viol.97.5% 2.929 2.710 2.956 2.913 2.722 2.994
LR97.5%

uc 0.129 0.421 0.085 0.117 0.394 0.062
LR97.5%

ind
0.005 0.002 0.006 0.004 0.001 0.006

LR97.5%
cc 0.006 0.005 0.005 0.005 0.005 0.004

Table 2 continued on next page

13



J. Xu – Semiparametric Value-At-Risk Estimation of Portfolios – A Replication Exercise. IREE (2019-6)

Table 2 continued: Value at risk estimates and p-values of LR tests

Replicated Original from Dias (2014)

10-asset 50-asset 100-asset 10-asset 50-asset 100-asset
Semi param. est.�VaR95% 2.433 2.114 2.135 2.379 2.198 2.211
% Viol.95% 4.845 4.818 4.955 4.982 4.301 4.492
LR95%

uc 0.614 0.614 0.843 0.960 0.046 0.151
LR95%

ind
0.015 0.000 0.000 0.026 0.000 0.000

LR95%
cc 0.047 0.000 0.001 0.086 0.000 0.001

Mix. normal�VaR95% 2.420 2.056 2.121 2.345 1.977 2.101
% Viol.95% 4.845 5.201 4.982 5.145 5.581 4.982
LR95%

uc 0.614 0.577 0.903 0.686 0.112 0.960
LR95%

ind
0.015 0.000 0.000 0.047 0.000 0.000

LR95%
cc 0.047 0.000 0.001 0.128 0.000 0.001

Student-t�VaR95% 2.272 1.942 1.973 2.270 1.936 1.966
% Viol.95% 5.393 5.831 5.612 5.417 5.799 5.690
LR95%

uc 0.314 0.024 0.110 0.251 0.030 0.060
LR95%

ind
0.053 0.001 0.000 0.058 0.000 0.000

LR95%
cc 0.053 0.001 0.000 0.058 0.000 0.000

Semi param. est.�VaR90% 1.564 1.326 1.337 1.446 1.431 1.464
% Viol.90% 10.977 11.114 11.388 12.169 9.855 9.719
LR90%

uc 0.058 0.031 0.006 0.000 0.770 0.569
LR90%

ind
0.000 0.000 0.000 0.000 0.000 0.000

LR90%
cc 0.000 0.000 0.000 0.000 0.001 0.001

Mix. normal�VaR90% 1.642 1.438 1.467 1.626 1.397 1.440
% Viol.90% 9.992 9.828 9.800 10.127 10.400 10.046
LR90%

uc 0.947 0.690 0.650 0.796 0.421 0.925
LR90%

ind
0.000 0.000 0.000 0.000 0.000 0.000

LR90%
cc 0.000 0.001 0.001 0.000 0.001 0.000

Student-t�VaR90% 1.559 1.328 1.342 1.558 1.324 1.338
% Viol.90% 11.087 11.114 11.278 11.135 11.053 11.216
LR90%

uc 0.035 0.031 0.013 0.024 0.036 0.015
LR90%

ind
0.000 0.000 0.000 0.000 0.000 0.000

LR90%
cc 0.000 0.000 0.000 0.000 0.000 0.000
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5 Criticism and conclusion

This paper reviews the estimation method to approximate multi-asset tail distribution provided by
Dias (2014), namely semiparametric estimation. The paper attempts to rebuild the model follow-
ing instructions in Dias (2014), and to generate comparable results by using the same sample as
described in Dias (2014). The study reveals an instance of infeasibility in this model where the
indicator function I(L̂i,t ∈ Âi(l)) is estimated. Nevertheless, this can be readily sidestepped through
a small transformation provided in the paper, without altering the core idea of the model. Due to
lack of description on data filtering, the results in this replicated study slightly deviate from the
ones in Dias (2014). Despite that, they are sufficiently close to confirm the superiority of semipara-
metric estimation over classical methods such as mixture normal and Student-t approximations in
estimating tail distribution of portfolios. This is due to its uniqueness in combining the strengths
of both EVT models and other multivariate models. As it only focuses on approximating the tail
part of a distribution, and is comprehensive in terms of keeping the traits of individual portfolio
components, the model performs very well.
The accuracy of the model is proven in both this paper and Dias (2014). However, the results
should be taken with a pinch of salt. The ultimate goal of distribution estimation is to guide in-
vestors in portfolio selection. The performance of the estimation cannot be determined until the
future performance of the corresponding portfolio is observed. In this sense, it is at best indicative
of how well various models fit historical data when only in-sample estimation is performed. To
attain a more convincing result, empirically estimated models should be compared also with regard
to out-of-sample prediction.
The principal assumption underpinning the semiparametric estimation model is that the portfolio
losses over the sample period of 14 years follow one single distribution and that the parameters
remain the same. As for individual firms, intrinsic values such as γ, a, and b are highly likely to
change over time, especially after company reforms. As a result, it is advisable to re-estimate those
variables on a regular basis. As for portfolios, their losses probably follow a different distribution in
economic boom years than in doom years. Within our sample period, stock performance between
2007 and 2009, during the time of the global financial crisis, is not representative. Therefore, we
would recommend estimating the distribution on a more regular basis. This also applies to other
estimation models.
In summary, Dias (2014) provides a fresh perspective on distribution estimation for large portfolio
losses by innovatively developing the multivariate semiparametric estimation model. The model
performs well in approximating historical data. There is, however, room for development, and it is
left to be seen if the model is able to perform as well in forecasting.
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Appendix: Descriptive statistics of asset (loss) returns

Tables 3-5 present the descriptive statistics of asset loss returns from large cap, mid cap and small
cap firms, respectively. All the firms listed are treated as components of the 100-asset portfolio.
Those chosen to be included in the 10-asset portfolio and 50-asset portfolio are labeled in column
“Portfolio”. The left part of the tables is based on the data from this duplicated study and the right
part is directly extracted from Dias (2014). Refer to Section 2.2 for detailed sample description.
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Table 3: Descriptive statistics of asset (loss) returns of large cap firms

Replicated Original from Dias (2014)

Firma Portfolio Mean Std. dev. Skewness Kurtosis Shape Mean Std. dev. Skewness Kurtosis Shape

ABT 0.0235 1.5337 −0.4244 9.3727 0.2227 0.0227 1.5437 −0.3569 9.3655 0.2443
AXP 50-asset 0.0171 2.4436 −0.0102 8.8774 0.2432 0.0192 2.4414 −0.0129 8.8581 0.1827
ADM 50-asset 0.0376 2.0822 −0.3255 9.9945 0.3166 0.0364 2.0844 −0.3138 9.9251 0.3119
BK 10-asset −0.0053 2.5894 −0.1020 16.5778 0.2754 −0.0052 2.5959 −0.0930 16.3652 0.2697
BA 50-asset 0.0326 1.9806 −0.2574 5.6649 0.1683 0.0333 1.9815 −0.2573 5.6232 0.0993
CNP 0.0056 2.5060 −2.1810 123.5542 0.4462 0.0034 2.5007 −2.1758 124.0428 0.4746
CLX 50-asset 0.0167 1.5353 −0.3085 10.9304 0.3490 0.0198 1.5437 −0.2944 10.6538 0.2952
CSC −0.0144 2.4743 −2.5501 53.7502 0.3209 −0.0047 2.4781 −2.5214 53.1690 0.3578
CVS 50-asset 0.0350 1.9911 −1.2400 19.5697 0.3381 0.0361 2.0050 −1.2025 19.0172 0.3049
DUK 0.0125 1.6536 −0.2221 11.2879 0.2548 0.0127 1.6528 −0.2182 11.2702 0.2086
EMR 50-asset 0.0245 1.8694 −0.0809 6.9553 0.2353 0.0245 1.8701 −0.0747 6.9138 0.1693
FDO 0.0378 2.2461 0.2481 7.3499 0.1821 0.0356 2.2509 0.2322 7.2681 0.2442
FTR 50-asset −0.0305 2.1890 0.0029 10.7994 0.2600 −0.0266 2.1875 0.0012 10.7645 0.2900
GT 10-asset −0.0045 3.3071 −0.3560 4.7396 0.2856 −0.0084 3.3057 −0.3493 4.7085 0.2691
HP 50-asset 0.0645 2.7446 −0.3810 5.8945 0.1581 0.0609 2.7504 −0.3638 5.8388 0.2374
IPG −0.0323 2.8322 −0.3286 18.9865 0.3256 −0.0274 2.8322 −0.3301 18.8821 0.3198
IP† −0.0039 2.4304 0.0167 8.0799 0.2523 0.0482 2.1650 −0.0074 4.8295 0.3217
JCI† 50-asset 0.0462 2.1638 0.0037 4.8323 0.1768 −0.0019 2.4318 0.0119 8.0199 0.1925
KR 0.0202 1.7863 −0.4587 6.4233 0.2541 0.0173 1.8605 −1.2994 19.8008 0.3186
LOW 50-asset 0.0328 2.1870 0.3407 4.4850 0.1555 0.0359 2.1865 0.3381 4.4605 0.1468
MCD 0.0240 1.5507 −0.1966 6.2088 0.1720 0.0208 1.5504 −0.1949 6.1721 0.2416
MUR 50-asset 0.0453 2.2281 −0.2673 6.8197 0.1314 0.0456 2.2258 −0.2650 6.8103 0.1745
JWN 0.0423 2.6835 0.1579 6.6596 0.1538 0.0419 2.6821 0.1587 6.6384 0.1715
OMC 50-asset 0.0109 1.9197 −0.3596 9.9608 0.2930 0.0137 1.9246 −0.3443 9.8132 0.3079
POM 10-asset −0.0050 1.4977 −0.3603 10.4442 0.2721 −0.0067 1.5004 −0.3624 10.3311 0.2734
PBI 50-asset −0.0194 1.9206 −1.9023 35.9885 0.3487 −0.0191 1.9245 −1.8795 35.4871 0.3480
RHI 0.0295 2.5213 0.7568 10.4213 0.2118 0.0303 2.5179 0.7535 10.4213 0.1908
SWN 50-asset 0.1059 3.0300 −0.5270 17.4886 0.2016 0.1034 3.0349 −0.5165 17.2872 0.2813
TE −0.0020 1.8414 −1.0441 25.7491 0.3435 −0.0034 1.8381 −1.0450 25.8555 0.3468
TMO 50-asset 0.0590 1.9364 0.3214 6.5285 0.1942 0.0578 1.9369 0.3232 6.4942 0.2352
UTX 0.0343 1.8170 −1.6140 34.3436 0.1890 0.0372 1.8215 −1.5880 33.8222 0.1930
WBA 50-asset 0.0185 1.7445 −0.0254 7.1108 0.2790 0.0183 1.7550 −0.0197 6.9326 0.1778
WEC 10-asset 0.0399 1.2003 −0.0416 4.7243 0.1545 0.0387 1.1986 −0.0403 4.7297 0.2352
NBR 50-asset 0.0026 2.9343 −0.3810 4.0355 0.2309 0.0048 2.9403 −0.3758 3.9721 0.1571

†We believe the data from firm IP (INTERNATIONAL PAPER) and JCI (JOHNSON CONTROLS) are mistakenly switched in Dias (2014). This would
explain the big statistical mismatching of those two firms between the replicated and original study. It might also contribute to the difference of
results between the two studies, especially when a 50-asset portfolio is involved.
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Table 4: Descriptive statistics of asset (loss) returns of large cap firms

Replicated Original from Dias (2014)

Firma Portfolio Mean Std. dev. Skewness Kurtosis Shape Mean Std. dev. Skewness Kurtosis Shape

AMD −0.0361 4.0313 −0.4186 7.4068 0.2277 −0.0362 4.0280 −0.4161 7.3926 0.2305
WTR 50-asset 0.0359 1.6766 0.2157 5.7452 0.1063 0.0337 1.6804 0.2085 5.6556 0.0958
ATW 10-asset 0.0468 2.7880 −0.2494 6.9537 0.2061 0.0472 2.7851 −0.2462 6.9482 0.2359
BOH 50-asset 0.0315 1.9852 −0.7720 16.7466 0.3259 0.0297 1.9856 −0.7735 16.6601 0.2547
BRE? 0.0247 2.1463 0.0169 16.2520 0.3815 0.0251 2.1435 0.0174 16.2649 0.3670
CBT 50-asset 0.0397 2.3889 −0.4038 9.2036 0.2660 0.0410 2.3848 −0.4048 9.2235 0.3030
CYN 0.0240 2.2005 0.1115 10.4264 0.2904 0.0214 2.2019 0.1140 10.3376 0.2806
CBSH 50-asset 0.0264 1.6639 0.1327 11.8035 0.2478 0.0236 1.6649 0.1289 11.7220 0.2503
CNW 0.0039 2.5908 −0.2350 6.0463 0.2911 0.0061 2.5978 −0.2120 6.0404 0.2856
CR 50-asset 0.0334 2.1059 −0.3387 8.5960 0.2958 0.0367 2.1086 −0.3319 8.5065 0.2958
UFS −0.0110 2.9222 −0.1654 9.9598 0.3129 −0.0111 2.9189 −0.1485 9.8629 0.3033
ESL 50-asset 0.0596 2.6566 −0.2831 8.9103 0.2904 0.0581 2.6547 −0.2817 8.8841 0.2230
FHN 10-asset −0.0195 2.9089 −1.0517 29.5440 0.3548 −0.0223 2.9039 −1.0492 29.5786 0.3475
GGG 50-asset 0.0546 1.9462 0.0108 5.3723 0.2032 0.0560 1.9464 0.0123 5.3409 0.0717
HE 0.0162 1.2888 −0.3031 6.1455 0.1444 0.0150 1.2879 −0.3005 6.1186 0.2488
HSH? 50-asset 0.0070 1.6532 −0.0875 9.8952 0.3045 0.0051 1.6558 −0.0852 9.7576 0.3222
HUBB 0.0379 1.8206 0.1341 6.5452 0.1622 0.0374 1.8192 0.1353 6.5296 0.1775
ITT 50-asset 0.0563 1.8208 0.7003 11.9236 0.1638 0.0548 1.8188 0.7006 11.9182 0.1605
LPX 0.0075 3.5775 −0.4024 7.9196 0.2653 0.0071 3.5747 −0.3982 7.8902 0.2473
MDP 50-asset 0.0059 1.8828 0.0356 8.6251 0.2824 0.0080 1.8793 0.0333 8.6521 0.2258
NYT −0.0309 2.5209 0.1227 9.6237 0.2451 −0.0258 2.5236 0.1344 9.5628 0.2325
OMI 50-asset 0.0497 1.9661 −0.4430 9.8327 0.2658 0.0492 1.9668 −0.4405 9.7646 0.2880
PNM 10-asset 0.0219 2.0472 −1.2679 22.2234 0.3182 0.0208 2.0465 −1.2548 22.1534 0.4000
STR 50-asset 0.0617 2.0690 −0.0673 13.7760 0.3437 0.0579 2.0700 −0.0684 13.6832 0.3147
RPM 0.0385 2.0492 −0.6451 8.8384 0.2800 0.0351 2.0467 −0.6402 8.8315 0.2107
SCI 50-asset 0.0263 3.0318 0.3748 11.5870 0.2968 0.0247 3.0312 0.3761 11.5410 0.2411
SPW 0.0247 2.6742 −1.3092 13.0814 0.3852 0.0266 2.6701 −1.3070 13.1028 0.3514
TER 50-asset −0.0362 3.4810 −0.0805 4.6232 0.1058 −0.0278 3.5010 −0.0523 4.5457 0.1505
TR 0.0110 1.5615 0.3102 10.5322 0.0901 0.0123 1.5602 0.3096 10.5072 0.1960
UGI 50-asset 0.0494 1.4292 0.1563 6.2494 0.1917 0.0496 1.4289 0.1567 6.2257 0.1412
VMI 0.0610 2.6178 0.0920 6.8225 0.1643 0.0584 2.6408 0.1560 7.1372 0.1887
WR 50-asset 0.0176 1.6471 −1.1147 20.8651 0.3000 0.0149 1.6495 −1.1005 20.6945 0.3048
TDS −0.0231 2.1813 −0.3313 10.1382 0.2416 −0.0248 2.1820 −0.3304 10.0671 0.2214
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Table 5: Descriptive statistics of asset (loss) returns of large cap firms

Replicated Original from Dias (2014)

Firma Portfolio Mean Std. dev. Skewness Kurtosis Shape Mean Std. dev. Skewness Kurtosis Shape

NPBC 50-asset −0.0032 2.7280 0.1137 10.5479 0.2988 −0.0039 2.7234 0.1128 10.5744 0.2912
AGYS −0.0010 3.8853 −0.4877 16.9314 0.3166 0.0027 3.8834 −0.4842 16.8752 0.3774
AWR 50-asset 0.0239 1.8850 −0.1926 3.6551 0.1864 0.0216 1.8853 −0.1808 3.6511 0.1615
AIT 0.0518 2.3825 0.1660 5.3638 0.0448 0.0512 2.3772 0.1668 5.3939 0.1368
AZZ 50-asset 0.0758 2.7150 0.0629 7.6687 0.2647 0.0823 2.7201 0.0784 7.6082 0.2340
GBB 10-asset −0.0057 2.2296 −0.2527 4.8021 0.1735 −0.0053 2.2265 −0.2511 4.8100 0.2361
CAS 50-asset 0.0063 3.6753 0.0469 11.0617 0.1532 0.0062 3.6689 0.0473 11.0821 0.2265
CBB −0.0640 3.7307 −0.4100 14.1021 0.3488 −0.0582 3.7306 −0.4088 14.0249 0.3715
CMTL 50-asset 0.0430 3.1864 −0.7749 23.0896 0.2615 0.0362 3.2085 −0.7485 22.4287 0.2608
CUB 0.0541 2.6077 0.2973 5.4076 0.1975 0.0556 2.6070 0.2984 5.3877 0.2032
DY 50-asset −0.0015 3.4834 −0.8884 13.8301 0.3219 0.0017 3.4838 −0.8851 13.7465 0.3219
SOGC −0.0345 3.1195 −0.5828 8.7520 0.2900 −0.0301 3.1399 −0.4906 8.2967 0.2744
GK 50-asset 0.0179 2.4161 −0.8862 16.1963 0.1981 0.0169 2.4119 −0.8852 16.2248 0.2477
GTY 0.0136 2.3772 −3.9126 93.2781 0.3525 0.0103 2.3746 −3.9037 93.1506 0.3846
KAMN 50-asset 0.0308 2.8392 −0.5510 6.6255 0.2152 0.0327 2.8467 −0.5481 6.5598 0.1921
LZB 10-asset 0.0167 3.5916 −0.2515 16.2657 0.3692 0.0139 3.6007 −0.2298 16.0837 0.3517
MMI 50-asset 0.0000 2.9525 −0.0787 8.7069 0.1516 0.0003 2.9534 −0.0790 8.6487 0.2121
MYE 0.0220 3.1039 −0.4471 12.0394 0.2934 0.0233 3.1000 −0.4440 12.0395 0.2777
NEWP 50-asset 0.0046 4.1130 0.0982 6.3873 0.2990 0.0176 4.1282 0.1102 6.2831 0.1781
PKE 0.0132 2.8802 −1.3504 38.6522 0.2518 0.0073 2.9142 −1.5431 39.0104 0.3074
PEI 50-asset 0.0073 3.1404 −0.2223 19.7602 0.4716 0.0030 3.1374 −0.2195 19.7457 0.4097
PNK 0.0040 3.4428 0.4641 17.4193 0.1711 0.0059 3.4385 0.4701 17.5174 0.2057
RLI 50-asset 0.0478 1.6039 0.0289 7.5292 0.2039 0.0480 1.6001 0.0287 7.5701 0.2143
RYL 0.0553 3.2041 −0.0288 2.6393 0.1089 0.0570 3.2025 −0.0268 2.6307 0.1201
SWX 50-asset 0.0243 1.5778 −0.0421 5.9674 0.2205 0.0243 1.5849 −0.0092 5.9871 0.2090
SCL 0.0472 2.1701 0.2578 6.4786 0.1984 0.0473 2.1648 0.2587 6.5180 0.1280
RGR 50-asset 0.0577 2.8972 −1.5854 28.0865 0.2813 0.0572 2.8946 −1.5787 28.0398 0.3006
TXI? 0.0210 2.9650 −0.1413 8.5779 0.2559 0.0236 2.9616 −0.1442 8.5723 0.3095
UIL 50-asset 0.0063 1.5311 −0.6729 9.4401 0.2297 0.0054 1.5305 −0.6714 9.4320 0.2907
UNS? 0.0459 1.6342 1.6929 30.1949 0.1983 0.0454 1.6387 1.6822 30.0080 0.2701
WGO 50-asset 0.0276 3.3042 −0.0669 5.9011 0.1933 0.0285 3.2986 −0.0683 5.9392 0.1831
WWW 10-asset 0.0611 2.4018 −0.2798 14.0196 0.2056 0.0617 2.4130 −0.2417 13.8351 0.2266
POWL 50-asset 0.0623 3.0627 0.1013 6.6127 0.2052 0.0601 3.1043 −0.0270 7.3452 0.2543
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