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Financial econometrics has developed into a very fruitful and vibrant research area in the last
two decades. The availability of good data promotes research in this area, specially aided by online
data and high-frequency data. These two characteristics of financial data also create challenges for
researchers that are different from classical macro-econometric and micro-econometric problems.

This special issue is dedicated to research topics that are relevant for analyzing financial data.
We have gathered six articles under this theme. The paper by Eriksson et al. (2019) considers a
method to forecast realized volatility using a classical autoregressive model. Two modifications are
adopted to make this model suitable for nonnegative valued variables like volatility. First, they apply
Tukey’s power transformation to their data. Second, they allow the error distribution to be unspecified,
resulting in a semiparametric approach. While their model has forecasting volatility as the primary
motivation, it can be used for many nonnegative valued variables, thus extending the applicability of
their approach.

The empirical study of Eriksson et al. (2019) shows that their method compares very well against
some of the most commonly used forecasting models for volatility in terms of post-sample prediction.
As mentioned in their concluding remarks, it will be interesting to see how their approach works for
intra-day data and multivariate models.

Ahmed and Satchell (2019) consider a threshold autoregressive model with Markovian states.
These states may incorporate both explosive and stationary regimes. They investigate the characteristic
function of this process and derive analytic formula for their moments. Their approach can be applied
to processes for which the moment generating function does not exist. Thus, certain asset pricing
models with non-normal errors can be analyzed.

Xiao and Sun (2019) investigate the estimation of the tuning parameter for model selection and
averaging. Incorporating the shrinkage averaging estimator method and Mallow’s model averaging
method, they propose the shrinkage model averaging method, which can be used for averaging
high-dimensional sparse models. The method is applicable to a wide range of econometric models,
and extends beyond the financial econometrics arena. Their Monte Carlo study shows that their new
method performs well against other methods in averaging high-dimensional sparse models.

Men et al. (2019) propose a threshold stochastic conditional duration model that can be used to
analyze transaction financial data. They assume a latent AR(1) model, which may switch between
two regimes. The regimes are self-excited and are based on the observed duration. The model can be
estimated efficiently using a Markov-Chain Monte Carlo approach. Their empirical examples support
the desirable performance of their new model in forecasting transaction duration.

Hevia and Sola (2018) examine the effect of imposing over-identifying restrictions on affine term
structure models. In particular, they investigate the effects of inappropriate restrictions on some
risk measures. They argue that in certain cases, such restrictions may have a significant impact on
the estimated risk premium, and it is difficult to ascertain a priori the likely outcome. Due to this
uncertainty, they recommend using just-identified models when the purpose is to apply the affine
models to compute the risk premium.

JRFM 2019, 12, 153; d0i:10.3390/jrfm12030153 1 www.mdpi.com/journal/jrfm
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Grynkiv and Stentoft (2018) study the multivariate generalization of the threshold autoregressive
model. They assume the latent regime driver to follow a dichotomous structure, and one of the regimes
may be explosive. They derive conditions under which the overall distribution is stationary. They also
derive the unconditional distribution of the process for a special case of the threshold model and show
that it follows an infinite mixture-of-normal distribution.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: This paper introduces a parsimonious and yet flexible semiparametric model to forecast
financial volatility. The new model extends a related linear nonnegative autoregressive model
previously used in the volatility literature by way of a power transformation. It is semiparametric in
the sense that the distributional and functional form of its error component is partially unspecified.
The statistical properties of the model are discussed and a novel estimation method is proposed.
Simulation studies validate the new method and suggest that it works reasonably well in finite
samples. The out-of-sample forecasting performance of the proposed model is evaluated against a
number of standard models, using data on S&P 500 monthly realized volatilities. Some commonly
used loss functions are employed to evaluate the predictive accuracy of the alternative models. It is
found that the new model generally generates highly competitive forecasts.

Keywords: volatility forecasting; realized volatility; linear programming estimator; Tukey’s power
transformation; nonlinear nonnegative autoregression; forecast comparisons

JEL Classification: C22; C51; C52; C53; C58

1. Introduction

Financial market volatility is an important input for asset allocation, investment, derivative pricing
and financial market regulation. Not surprisingly, how to model and forecast financial volatility has been
a subject of extensive research. Numerous survey papers are now available on the subject, with hundreds
of reviewed research articles. Excellent survey articles on the subject include Bollerslev et al. (1992);
Bollerslev et al. (1994); Ghysels et al. (1996); Poon and Granger (2003); and Shephard (2005).

In this vast literature, ARCH and stochastic volatility (SV) models are popular parametric
tools. These two classes of models are motivated by the fact that volatilities are time-varying.
Moreover, they offer ways to estimate past volatility and forecast future volatility from return
data. In recent years, however, many researchers have argued that one could measure latent
volatility by realized volatility (RV), see for example Andersen et al. (2001) (ABDL 2001 hereafter) and
Barndorff-Nielsen and Shephard (2002), and then build a time series model for volatility forecasting
using observed RV, see for example Andersen et al. (2003) (ABDL 2003 hereafter). An advantage of
this approach is that “models built for the realized volatility produce forecasts superior to those
obtained from less direct methods” (ABDL 2003). In an important study, ABDL (2003) introduced
a new Gaussian time series model for logarithmic RV (log-RV) and established its superiority for
RV forecasting over some standard methods based on squared returns. Their choice of modeling
log-RV rather than raw RV is motivated by the fact that the logarithm of RV, in contrast to RV itself,
is approximately normally distributed. Moreover, conditional heteroskedasticity is greatly reduced
in log-RV.

JRFM 2019, 12, 139; d0i:10.3390/jrfm12030139 3 www.mdpi.com/journal /jrfm
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Following this line of thought, in this paper we introduce a new time series model for RV.
For the S&P 500 monthly RV, we show that although the distribution of log-RV is closer to a normal
distribution than that of raw RV, normality is still rejected at all standard significance levels. Moreover,
although conditional heteroskedasticity is reduced in log-RV, there is still evidence of remaining
conditional heteroskedasticity. These two limitations associated with the logarithmic transformation
motivate us to consider a more flexible transformation, that is, the so-called Tukey’s power
transformation which is closely related to the well-known Box-Cox transformation. In contrast to the
logarithmic transformation, Tukey’s power transformation or the Box-Cox transformation is generally
not compatible with a normal error distribution as the support for the normal distribution covers
the entire real line.! This well-known truncation problem further motivates us to use nonnegative
error distributions. The new model, which we call a Tukey nonnegative type autoregression (TNTAR),
is flexible, parsimonious and has a simple forecast expression. Moreover, the numerical estimation of
the model is very fast and can easily be implemented using standard computational software.

The new model is closely related to the linear nonnegative models described in Barndorff-Nielsen
and Shephard (2001) and Nielsen and Shephard (2003). In particular, it generalizes the discrete time
version of the nonnegative Ornstein-Uhlenbeck process of Barndorff-Nielsen and Shephard (2001)
by (1) applying a power transformation to volatility; (2) leaving the dependency structure and the
distribution of the nonnegative error term unspecified. Our work is also related to Yu et al. (2006) and
Gongalves and Meddahi (2011) where the Box-Cox transformation is applied to stochastic volatility and
RV, respectively. The main difference between our model specification and theirs is that an unspecified
(marginal) distribution with nonnegative support, instead of the normal distribution, is induced by the
transformation. Moreover, our model is loosely related to Higgins and Bera (1992); Hentschel (1995)
and Duan (1997) where the Box-Cox transformation is applied to ARCH volatility, and to Fernandes
and Grammig (2006) and Chen and Deo (2004). Finally, our model is related to a recent study by
Cipollini et al. (2006) where an alternative model with nonnegative errors is used for RV. The main
difference here is that the dynamic structure for the transformed RV is linear in our model, whereas
the dynamic structure for the RV is nonlinear in theirs.

Our proposed model is estimated using a two-stage estimation method. In the first stage,
a nonlinear least squares procedure is applied to a nonstandard objective function. In the second stage
a linear programming estimator is applied. The finite sample performance of the proposed estimation
method is studied via simulations.

The TNTAR model is used to model and forecast the S&P 500 monthly RV and its out-of-sample
performance is compared to a number of standard time series models previously used in the
literature, including the exponential smoothing method and two logarithmic long-memory ARFIMA
models. Under various loss functions, we find that our parsimonious nonnegative model generally
generates highly competitive forecasts. While this paper considers the application of forecasting
RV, there are a number of applications beyond financial data for which our model may be useful.
For example, modeling and forecasting climatological or telecommunication time series may be
interesting alternative applications for our nonnegative model.

While our model is related to several models in the literature, to the best of our knowledge,
our specification is new in two ways. First, it is based on Tukey’s power transformation. Second,
the distribution and functional form of its error component are partially unspecified. Moreover,
the estimation method that we propose is new.

The rest of the paper is organized as follows. Section 2 motivates and presents the new model.
In Section 3 a novel estimation method is proposed to estimate the parameters of the new model.
In Section 4 the finite sample performance of the new method is studied via simulations. Section 5

1 Generally, the distribution of a Box-Cox transformed random variable cannot be normal as its support is bounded either

above or below.
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describes the S&P 500 realized volatility data and the empirical results. In the same section we also
outline the alternative models for volatility forecasting and present the loss functions used to assess
their forecast performances. Finally, Section 6 concludes.

2. A Nonnegative Semiparametric Model

Before introducing the new TNTAR model, we first review two related time series models
previously used in the volatility literature, namely, a simple nonnegative autoregressive (AR) model
and the Box-Cox AR model.

2.1. Related Volatility Models

Barndorff-Nielsen and Shephard (2001) introduced the following continuous time model for
financial volatility, o2 (t),
do?(t) = —Ac?(£)dt +dz(At), A >0. 6

In the above z is a Lévy process with independent nonnegative increments, which ensures the
positivity of ¢?(t) (see Equation (2) in Barndorff-Nielsen and Shephard 2001). Applying the Euler
approximation to the continuous time model in (1) yields the following discrete time model

01 = Q07 +utppa, )

where ¢ =1 — A and upq = z(A(t + 1)) — z(At) is a sequence of independent identically distributed
(ii.d.) random variables whose distribution has a nonnegative support. A well known nonnegative
random variable is the generalized inverse Gaussian, whose tails can be quite fat. Barndorff-Nielsen
and Shephard (2001) discuss the analytical tractability of this model. In the case when u;,; is
exponentially distributed, Nielsen and Shephard (2003) derive the finite sample distribution of a
linear programming estimator for ¢ for the stationary, unit root and explosive cases.? Simulated paths
from model (2) typically match actual realized volatility data quite well. See, for example, Figure 1c in
Barndorff-Nielsen and Shephard (2001). Unfortunately, so far little empirical evidence establishing the
usefulness of this model has been reported.

Two restrictions seem to apply to model (2). First, since its errors are independent, conditional
heteroskedasticity is not allowed for. The second restriction concerns the ratio of two successive
volatilities. More specifically, from (2) it can be seen that o 1/ 07 is bounded from below by ¢, almost
surely, implying that (thﬂ cannot decrease by more than 100(1 — ¢)% compared to ¢7. Since the AR
parameter ¢ of the model typically is estimated using linear programming, in practice, this restriction
is automatically satisfied. For instance, the full sample estimate of ¢ in our empirical study is 0.262,
implying that 7 cannot decrease by more than 73.8% from one time period to the next. Indeed, 73.8%
is the maximum percentage drop in successive monthly volatilities in the sample, which took place on
November 1987.

In a discrete time framework, a popular parametric time series model for volatility is the lognormal
SV model of Taylor (2007) given by

e = Oey, 3

logo7 = (1—g@)u+glogof | +e, 4)

where r; is the return, 0}2 is the latent volatility, and ¢; and €; are two independent Gaussian noises.
In this specification volatility clustering is modeled as an AR(1) for the log-volatility. The logarithmic
transformation in (4) serves three important purposes: First, it ensures the positivity of ¢7. Second,
it removes heteroskedasticity. Third, it induces normality.

2 See Section 3 for a detailed discussion on the linear programming estimator.
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Yu et al. (2006) introduced a closely related SV model by replacing the logarithmic transformation
in Taylor’s volatility Equation (4) with the more general Box-Cox transformation (Box and Cox 1964),

h(0F,A) = (1= @) + oh(07 1, A) + e, ®)
where N
=1
]’l(x,/\) — A7 A#O/ (6)
logx, A=0.

Compared to the logarithmic transformation, the Box-Cox transformation provides a more flexible way
to improve normality and reduce heteroskedasticity. A nice feature of the Box-Cox AR model given by
(5) and (6) is that it includes several standard specifications as special cases, including the logarithmic
transformation (A = 0) and a linear specification (A = 1). In the context of SV, Yu et al. (2006) find
empirical evidence against the logarithmic transformation. Chen and Deo (2004) and Gongalves and
Meddahi (2011) are interested in the optimal power transformation. In the context of RV, Goncalves
and Meddahi (2011) find evidence of non-optimality for the logarithmic transformation. They further
report evidence of negative values of A as the optimal choice for various data generating processes.
Our empirical results reinforce this important conclusion, although our approach is very different.

While the above discrete time models have proven useful for modeling volatility, there is little
documentation on their usefulness for forecasting volatility. Moreover, the Box-Cox transformation is
known to be incompatible with a normal error distribution. This is the well-known truncation problem
associated with the Box-Cox transformation in the context of Gaussianity.

2.2. Realized Volatility

In the ARCH or SV models, volatilities are estimated parametrically from returns observed at
the same frequency. In recent years, however, it has been argued that one can measure volatility in a
model-free framework using an empirical measure of the quadratic variation of the underlying efficient
price process, that is, RV. RV has several advantages over ARCH and SV models. First, by treating
volatility as directly observable, RV overcomes the well known curse-of-dimensionality problem in
the multivariate ARCH or SV models. Second, compared to the squared return, RV provides a more
reliable estimate of integrated volatility. This improvement in estimation naturally leads to gains in
volatility forecasting.

Let RV; denote the RV at a lower frequency (say daily or monthly) and p(t, k) denote the log-price
at a higher frequency (say intra-day or daily). Then RV} is defined by

N
RV = | Y Ip(t ) — p(tk = 1), @
k=2

where N is the number of higher frequency observations in a lower frequency period.3

The theoretical justification for RV as a volatility measure comes from standard stochastic process
theory, according to which the empirical quadratic variation converges to integrated variance as the
infill sampling frequency tends to zero (ABDL 2001; Barndorff-Nielsen and Shephard 2002; Jacod 2017).
The empirical method inspired by this consistency has recently become more popular with the availability
of high-frequency data.

3 In ABDL (2003) RV is referred to as the realized variance, Y, [p(t, k) — p(t,k — 1)]2. Although the authors build time series
models for the realized variance, they forecast the realized volatility. In contrast, the present paper builds time series models
for and forecasts, the realized volatility, which seems more appropriate. Consequently, the bias correction, as described in
ABDL (2003), is not required.
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In a recent important contribution, ABDL (2003) find that a Gaussian long-memory model
for the logarithmic daily realized variance provides more accurate forecasts than the GARCH(1,1)
model and the RiskMetrics method of ]J.P. Morgan (1996). The logarithmic transformation is used
since it is found that the distribution of logarithmic realized variance, but not raw realized variance,
is approximately normal. In Table 1 we report (to 3 decimals) some summary statistics for monthly RV,
log-RV and power-RV for the S&P 500 data in our empirical study over the period Jan 1946-Dec 2004,
including the skewness, kurtosis, and p-value of the Jarque-Bera test statistic for normality.* For RV,
the departure from normality is overwhelming. While the distribution of log-RV is much closer to a
normal distribution than that of RV, there is still strong evidence against normality.

Table 1. Summary statistics for S&P 500 monthly RV, log-RV and power-RV over the period Jan
1946-Dec 2004. JB is the p-value of the Jarque-Bera test under the null hypothesis that the data are from
anormal distribution.

Mean Median Maximum Skewness Kurtosis JB

RV 0.004 0.003 0.026 3.307 28.791 0.000
log-RV —5.687 5726 —3.666 0.389 3.657 0.000
power-RV  4.894 4912 6.908 0.032 3.288 0.259

To compare the conditional heteroskedasticities, in Figure 1 we plot squared OLS residuals
(€2,i=1,2,3), obtained from AR(1) regressions for RV, log-RV and power-RV, respectively, against
each corresponding explanatory variable (lagged RV, log-RV and power-RV). For ease of comparison,
superimposed are smooth curves fitted using the LOESS method. It is clear that while the logarithmic
transformation reduces the conditional heteroskedasticity there is still evidence of it in the residuals.
The power transformation further reduces the conditional heteroskedasticity of RV. While the
logarithmic transformation reduces the impact of large observations (extreme deviations from the
mean), the second plot of Figure 1 suggests that it is not as effective as anticipated. In contrast,
the power transformation with a negative power parameter is able to reduce the impact of large
observations further. Thus, the results indicate that there is room for further improvements over the
logarithmic transformation. A more detailed analysis of the S&P 500 data is provided in Section 5.

4 The power parameter is —0.278 which is the estimate of A in our proposed TNTAR model obtained using the entire S&P 500

monthly RV sample. See Sections 3 and 5 for further details.
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Figure 1. Plots of squared ordinary least squares (OLS) residuals, obtained from AR(1) regressions
for RV, log-RV and power-RV, respectively, against each corresponding explanatory variable.
Superimposed are smooth curves fitted using the LOESS method.

2.3. The Model

In this paper, our focus is on modeling and forecasting RV. To this end, let us first consider the RV
version of model (5),
h(RVt, A) = &+ Bh(RV; 1, A) + €, ®)

where ¢; is a sequence of independent N(0,¢?2) distributed random variables and /(x, A) is given

by (6).
If A # 0, we may rewrite (8) as

RV} = (14 Aa) + B(RV} | — 1) + Aey, )

where RVt}L is a simple power transformation. A special case of (9) is a linear Gaussian AR(1) model,
obtained when A = 1:
RVi = (14+a—B)+ PRV, + ¢t (10)

If A = 01n (8), we have the log-linear Gaussian AR(1) model previously used in the literature:

log RV; = a + Blog RVi_1 + €. (11)
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While the specification in (8) is more general than the log-linear Gaussian AR(1) model (11), it has a
serious drawback. In general, solving for RV}, the right hand side of (9) has to be nonnegative with
probability one or almost surely (a.s.). This requirement is violated since a normal error distribution
has a support covering the entire real line.

This drawback motivates us to explore an alternative model specification for RV. Our proposed
nonnegative TNTAR model is of the form

RV} = RV} [+ uy, £=2,3,... (12)

with the power parameter A # 0, AR parameter ¢ > 0 and (a.s.) positive initial value RV;. The errors
u; driving the model are nonnegative, possibly non-i.i.d., random variables. In the simplest case, u;
is assumed to be a sequence of m-dependent, identically distributed, continuous random variables
with nonnegative support [1,0), for some unknown 7 > 0.5 It is assumed that m € N is finite
and potentially unknown. Hence, the distribution and functional form of u; is partially unspecified.
We expect RV | to be the dominating component in (12) and do not model u; parametrically.

The power transformation RV} is closely related to John W. Tukey’s ladder of power
transformations for linearizing data (Tukey 1977), partially illustrated in (13) below:

= % P % logx Vx x  x* i (13)

The nonnegative restriction on the support of the error distribution ensures the positivity of RV}.
Hence, our model does not suffer from the truncation problem of the classical Box-Cox model (8).
As the distribution of u; is left unspecified, some very flexible tail behavior is allowed for. Consequently,
the drawback in the Box-Cox AR model (8) is addressed in the proposed TNTAR model (12).

In the classical Box-Cox model, the transformation parameter A is required to induce linearity
and normality and at the same time eliminate conditional heteroskedasticity. These are too many
requirements for a single parameter. In our model, the role of the Tukey-type power transformation is
to improve linearity and reduce conditional heteroskedasticity, not to induce normality. To illustrate
this, suppose that a square root transformation is applied with A = 1/2in (12), then RV; = (PZRVt—l +
2¢+/RV;_1us + u? and the conditional variance of raw RV is time-varying.® An intercept in the
model is superfluous because the support parameter # can be strictly positive. Our model echoes (8),
with the normal distribution replaced by a nonnegative distribution. If A = 1 and its errors are i.i.d.,
our model becomes the discrete time version of Equation (2) in Barndorff-Nielsen and Shephard (2001).
In general, the distributional and functional form is not assumed to be known for the error component.
Hence, the TNTAR model combines a parametric component for the persistence with a nonparametric
component for the error. On the one hand, the new model is highly parsimonious. In particular, there
are only two parameters that need to be estimated for the purpose of volatility forecasting, namely ¢
and A. On the other hand, the specification is sufficiently flexible for modeling the error.

As mentioned earlier, there exists a lower bound for the percentage change in volatility in
model (2). A similar bound applies to our model. It is easy to show that RV;/RV; 1 < ¢/ if A <0
(upper bound) and RV;/RV;_; > ¢'/* if A > 0 (lower bound). Typical estimated values of ¢ and A
in (12) for our empirical study are 0.639 and —0.278, respectively, suggesting that RV; cannot increase
by more than 500% from one time period to the next. As we will see later, our proposed estimator for
A depends on the ratios of successive RV’s and hence the bound is endogenously determined.

5 Some common m-dependent specifications include u; = €¢ + pe;_1 (m = 1) and 1y = €; + Pe;_1€;-o (m = 2), where ¢ is an
ii.d. sequence of random variables.
6 More generally, suppose that A = 1/n for some natural number n, then RV} = ((p YRV + uf)" =

T (D¢ RV Mk
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3. Robust Estimation and Forecasting

In this section we consider the estimation of the parameters ¢ and A and a one-step-ahead forecast
expression, for the TNTAR model. First, we consider the special case when A is assumed to be known.
Some common power transformations include A = 1/ (the nth root transformation) and its reciprocal,
A = —1/n. Second, we consider the more general case when both ¢ and A are unknown and need
to be estimated. We then examine the finite sample performance of the proposed estimation method
via simulations.

3.1. Robust Estimation of ¢

If the true value of the power transformation parameter is known, a natural estimator for ¢ in (12)
given the sample RV, ..., RVt of size T and the nonnegativity of the errors is

RV} RV}
¢r = min —2/\,..., AT = ¢ + min u—z/\,..., M/]\" . (14)
RV RV} RV} RV}

The estimator ¢r in (14) can be viewed as the solution to a linear programming problem.
Because of this, we will refer to it as a linear programming estimator (LPE). This estimator is also
the conditional (on RV;) maximum likelihood estimator (MLE) of ¢ when the errors in (12) are
iid. exponentially distributed random variables, cf. Nielsen and Shephard (2003). Interestingly,
the LPE is strongly consistent for more general error specifications, including heteroskedasticity
and m-dependence. It is robust in the sense that its consistency conditions allow for certain model
misspecifications in u;. For example, the order of m-dependence in the error sequence and the
conditional distribution of RV; may be incorrectly specified. Moreover, the LPE is strongly consistent
even under quite general forms of heteroskedasticity and structural breaks. For a more detailed
account of the properties of the LPE, see Preve (2015).

Like the ordinary least squares (OLS) estimator for ¢, the LPE is distribution-free in the sense
that its consistency does not rely on a particular distributional assumption for the error component.
However, the LPE is in many ways superior to the OLS estimator. For example, its rate of convergence
can be faster than O, (T~1/2) even for ¢ < 1, whereas the rate of covergence for the OLS estimator is
faster than O, (T~1/2) only for ¢ > 1, see Phillips (1987). Furthermore, unlike the OLS estimator the
consistency conditions for the LPE do not involve the existence of any higher order moments.

Under additional technical conditions, Davis and McCormick (1989) and Feigin and Resnick (1992)
obtain the limiting distribution of a LPE for which (14) appear as a special case when A = 1 and the errors
are ii.d.. The authors show that the accuracy of the LPE depends on the index of regular variation at zero
(or infinity) of the error distribution function. For example, for standard exponential errors, the index of
regular variation at zero is 1 and the LPE converges to ¢ at the rate of O, (T~!). In general, a difficulty in
the application of the limiting distribution is that the index of regular variation at zero appears both in a
normalizing constant and in the limit. Datta and McCormick (1995) avoid this difficulty by establishing the
asymptotic validity of a bootstrap scheme based on the LPE.

It is readily verified that the LPE in (14) is positively biased and stochastically decreasing in T,
thatis, ¢ < ¢r, < (ﬁTl a.s. forany T7 < T».7 Hence, the accuracy of the LPE either remains the same or
improves as the sample size increases (cf. Figure 2).

To illustrate the robustness of the LPE, consider a covariance stationary AR(1) model

RV; = @RV;_1 +uy, t=0,41,42,...,

7 Whenever necessary we use the subscript T to emphasize on the sample size.

10
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under the possible misspecification
m
up =€+ pier
i=1

where ¢; is a sequence of non-zero mean i.i.d. random variables. For m > 0 the (identically distributed)
errors u; are serially correlated. In this setting the OLS estimator for ¢ is inconsistent while the
LPE remains consistent. In the first panel of Figure 2 we plot 100 observations simulated from the
nonnegative ARMA(1,1) model, RV; = @RV;_; + €; + ¢pe;_1 with ¢ = 0.5, p = 0.75 and standard
exponential noise. In the second panel of Figure 2 we plot the sample paths of the recursive LPEs
and OLS estimates for ¢ obtained from the simulated data. In each iteration, a new observation is
added to the sample used for estimation. It can be seen that the LPEs quickly approach the true value
¢, whereas the OLS estimates do not. Moreover, the OLS estimates fluctuate much more than the LPEs
when the sample size is small, suggesting that the LPE is less sensitive to extreme deviations from the
mean than the OLS estimator in small samples.

10
5
0 I I | |
1 25 50 75 100
t
1
0743 e Sttt e NV
0.5 e s
o~ | I | )
13 25 5'0|' 75 100

Figure 2. The top panel displays a time series plot of data simulated from the nonnegative ARMA(1, 1)
process RV; = @RV, 1 + €; + pe;_q with ¢ = 0.5, = 0.75 and i.i.d. standard exponential noise €;.
The bottom panel displays the sample paths of the recursive LPEs and OLS estimates for ¢ in the
misspecified AR(1) model RV; = @RV;_q + u, obtained from the sample RVj, ..., RVr for T = 3,...,100.
The solid line represents the LPEs and the dash-dotted line the OLS estimates.

We now list simple assumptions under which the consistency of the LPE in (14) holds. More
general assumptions, allowing for an unknown number of unknown breaks in the error mean and
variance, under which the LPE converges to ¢ for a known A are given in Preve (2015).

Assumption 1. The power transformation parameter A # 0 in (12) is known. The AR parameter ¢ > 0,
and the initial value RV is a.s. positive. The errors u; driving the autoregression form a sequence of m-dependent,
identically distributed, nonnegative continuous random variables. The order, m, of the dependence is finite.

Assumption 1 allows for various kinds of m-dependent error specifications, with m € N
potentially unknown. For example, serially correlated finite-order MA specifications. Since the

functional form and distribution of u; are taken to be unknown, the formulation is nonparametric.

Assumption 2. The error component in (12) satisfies P(c1 < uy < ¢3) < 1forall 0 < ¢ < ¢z < o0.

11
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It is important to point out that Assumption 2 is satisfied for any error distribution with
unbounded nonnegative support.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then the LPE in (14) is strongly consistent for ¢ in (12).
That is, g1 converges to ¢ a.s. as T tends to infinity.

The convergence of ¢ is almost surely (and, hence, also in probability). Our interest is in
forecasting raw RV, not the power transformation of RV in (12). Let RV 7+1 denote a forecast of RV
made at time T. A simple approximation to the optimal mean squared error, one-step-ahead, forecast
of RVr4 at time T is given by the sample average

- 1 L/ \1/A
RVryy = T-1 Y. (ff’TRVJ)"L + Ui) ,
i=2

where iI; = RV} — $rRV? | converges to u; in distribution as T tends to infinity under Assumptions 1
and 2.

3.2. Estimation of ¢ and A

In practice, we usually do not know the true value of A. In this section we propose an LPE based
two-stage estimation method for ¢ and A in the TNTAR model (12). In doing so, we also establish a
general expression for its one-step-ahead forecast. The estimators are easily computable using standard
computational software such as MATLAB.

Joint estimation of ¢ and A is non-trivial, even under certain parametric and simplifying
assumptions for ;. For example, even in the simple case when u; is a sequence of independent
exponentially distributed random variables it appears that the MLEs of ¢ and A are inconsistent.
Because of this we propose an estimation method based on the LPE for ¢.

In our LPE based two-stage estimation method, we first choose 7\7 to minimize the sum of squared
one-step-ahead prediction errors:

A iy [Rvi— &, ()] 15
T*mlmﬁtzz[ t t()} ’ (15)
where .
1 n A
RVi(1) = 7= ¥ [or(DRV + (D))
i=2
with
T
5o(l | RV - I _ 5 (I\RV!
¢r(l) = min RV and #;(I) = RV; — ¢7r(I)RV;_4,
t—=1) t=2

respectively. Although our estimator for A looks like the standard nonlinear least squares (NLS)
estimator of Jennrich (1969), the two approaches are quite different because in our model an explicit
expression for E(RV; | RV;_1) is not available. In fact, the NLS estimators of A and ¢, that minimizes
YE,(RV] — pRV/_|)?, always take values of 0 and 1, respectively and hence are inconsistent.

The intuition behind the proposed estimation method is that we expect RV4(A1) to be close to
E(RV; | RV;_1) for large values of T. This is not surprising since the TNTAR model (12) implies that

RV, = ((pRVtA,l + ut>1//\,

and hence "
E(RV; | RV;_1) = E R(pRVt{l + ut> \ Rl/t,l} .

12
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In the second stage, we use the LPE to estimate ¢. More specifically,

~ T
A

~ RV/'T
r(Ar) =mind 4 (16)
RV,

<)

or =
t=2

while we minimize the sum of squared one-step-ahead prediction errors when estimating A, other
criteria, such as minimizing the sum of absolute one-step-ahead prediction errors, can be used. We have
experimented with absolute prediction errors using the S&P 500 data and found that our out-of-sample
forecasting results for the TNTAR model are quite insensitive to the choice of the objective function in
the estimation stage. However, the objective function with squared prediction errors performs better
in simulations.

It is beyond the scope of this paper to derive asymptotic properties for the two-stage estimators.
However, under primitive assumptions, the consistency of At and @1 can be established using the
fundamental consistency result for extremum estimators. Moreover, under high-level assumptions,
the martingale central limit theorem can be used to establish the asymptotic distribution of Ar.

With an estimated A and ¢, a general one-step-ahead semiparametric forecast expression for the
TNTAR model is given by

T

5% 1 S UM o
RVT+1 = 0 2 ((pTRVTT + u;

)1/XT
=15

’

where 1; = RVI.AT — gAaTRVl}‘_T1 is the residual at time 7. Of course, in line with Granger and Newbold (1976),
several forecasts of RV 1 may be considered. For example, one could base a forecast on the well known
approximation E[h(y)] = h[E(y)] using h(y) = y'/*. However, this approximation does not take into
account the nonlinearity of h(y).2

4. Monte Carlo Studies

We now examine the performance of our estimation method via simulations. We consider two
experiments in which data are generated by the nonnegative model

RV} = @RV} | + uy

uy = €t + Per_q,

with i.i.d. standard exponential driving noise ;.

In the first Monte Carlo experiment A is assumed to be known and we only estimate ¢ using the
LPE in (14). In this case the consistency is robust to the first-order moving average specification of ;.
Hence, we simulate data from the model with the value of i being different from zero. Specifically,
the parameter values are set to A = —0.25 and ¢ = 0.75. The values of ¢ considered are 0.25, 0.5 and
0.75, respectively. In the second experiment A is assumed to be unknown and is estimated together
with ¢ using the proposed two-stage method. The parameter values are A = —0.5 and —0.25, ¢ = 0.5
and 0.75, and ¢ = 0.

The values chosen for A and ¢ in the two experiments are empirically realistic (cf. the results of
Section 5). We consider sample sizes of T = 200,400 and 800 in both experiments. The sample size of
400 is close to the smallest sample size used for estimation in our empirical study, while the sample
size of 800 is close to the largest sample size in the study. Simulation results based on 100,000 Monte
Carlo replications are reported in Tables 2 and 3. Several interesting results emerge from the tables.

8 For instance, if y ~ N(0,0?) and h(y) = y? then E[h(y)] = 02 # h[E(y)] = 0.
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First, the smaller the value of T, the greater the empirical bias in $r in the first experiment and in At
and ¢ in the second experiment. Second, as T increases, the empirical mean squared error of @7 in the
first experiment, and those of Ar and @r in the second experiment, decreases. It may be surprising to
see that the bias of ¢ can be negative in the second experiment. Here the negative bias arises because
A is estimated. In sum, it seems that the proposed estimation method works well, especially when T is
reasonably large.

Table 2. Simulation results for the LPE method. Summary statistics for ¢ based on data generated by
the nonnegative process RVt_O‘25 = (pRfo{'ZS + €t +0.75¢;_1 with i.i.d. standard exponential noise €;.
The values of ¢ considered are 0.25, 0.50 and 0.75, respectively. Bias and MSE denotes the empirical
bias and mean squared error, respectively. Results based on 100,000 Monte Carlo replications.

T =200 T =400 T =800
Parameter Estimator Bias MSE Bias MSE Bias MSE
¢ =025 or 0.047  0.003 0.033  0.001 0.023  0.001
¢ = 0.50 or 0.028 0.001 0.020  0.001 0.014  0.000
¢ =075 or 0.013  0.000 0.009  0.000 0.006  0.000

Table 3. Simulation results for the proposed two-stage estimation method. Summary statistics for Ar
and @7 based on data generated by the nonnegative process RV;* = 47RVt’\_ ; + €t withii.d. standard
exponential noise €;. Bias and MSE denotes the empirical bias and mean squared error, respectively.
Results based on 100,000 Monte Carlo replications.

T =200 T =400 T =800
Parameter Estimator Bias MSE Bias MSE Bias MSE
A= —0.50 Ar —0.197 0.126 —0.113  0.069 —0.060 0.047
¢ =0.50 or —0.106  0.028 —0.069 0.018 —0.043 0.012
A= —-0.50 Ar —0.139  0.106 —0.062 0.067 —0.014 0.052
¢ =075 or —0.064 0.012 —0.038 0.006 —0.021 0.004
A=-0.25 Ar —0.195 0.064 —0.136  0.033 —0.098 0.019
¢ =075 or —0.144  0.030 —0.106 0.017 —0.080 0.011

5. An Empirical Study

We also study the performance of the proposed model for forecasting actual RV relative to popular
existing models. Before we report empirical results, we first review some alternative models and
criteria to evaluate the performance of different models.

5.1. Alternative Models

Numerous models and methods have been applied to forecast stock market volatility. For example,
ARCH-type models are popular in academic publications and RiskMetrics is widely used in practice.
Both methods use returns to forecast volatility at the same frequency. However, since the squared
return is a noisy estimator of volatility ABDL (2003) instead consider RV and present strong evidence
to support time series models based directly on RV in terms of forecast accuracy. Motivated by their
empirical findings, we compare the forecast accuracy of the TNTAR model against four alternative
models, all based on RV: (1) the linear Gaussian AR(1) model (AR); (2) the log-linear Gaussian AR(1)
model (log-AR); (3) the logarithmic autoregressive fractionally integrated moving average (ARFIMA)
model; (4) the heterogeneous autoregressive (HAR) model. We also compare the performance of our
model against the exponential smoothing method, a RV version of RiskMetrics. The AR and log-AR
models are defined by (10) and (11), respectively. We now review the exponential smoothing method,
the ARFIMA model, and the HAR model.

14
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5.1.1. Exponential Smoothing

Exponential smoothing (ES) is a simple method of forecasting, where the one-step-ahead forecast
of RVr4 at time T is given by

T-1
RVri1=(1—a)RVr +aRVr = (1-a) Y &'RVr_;, 17)
i=0
with0 <a <1.

The exponential smoothing formula can be understood as the RV version of RiskMetrics, where
the squared return, %, is replaced by RVr. Under the assumption of conditional normality of the
return distribution, 72 is an unbiased estimator of o7. RiskMetrics recommends a = 0.94 for daily data
and a = 0.97 for monthly data.

To see why the squared return is a noisy estimator of volatility even under the assumption of
conditional normality of the return distribution, suppose that r; follows (3). Conditional on o7, it is
easy to show that (Lopez 2001)

P (rf € Faﬁ, %3] ) =0.259. (18)
2772

This implies that with a probability close to 0.74 the squared return is at least 50% greater, or at
most 50% smaller, than the true volatility. Not surprisingly, Andersen and Bollerslev (1998) find that
RiskMetrics is dominated by models based directly on RV. For this reason, we do not use RiskMetrics
directly. Instead, we use (17) with « = 0.97, which assigns a weight of 3% to the most recently observed
RV. We remark that the forecasting results of Section 5 were qualitatively left unchanged when other
values for « were used.

5.1.2. ARFIMA(p, d, q)

Long range dependence is a well documented stylized fact for volatility of many financial time
series. Fractional integration has previously been used to model the long range dependence in
volatility and log-volatility. The autoregressive fractionally integrated moving average (ARFIMA) was
considered as a model for logarithmic RV in ABDL (2003) and Deo et al. (2006), among others. In this
paper, we consider two parsimonious ARFIMA models for log-RV, namely, an ARFIMA(0, 4,0) and an
ARFIMA(1,d,0).

The ARFIMA(p, d,0) model for log-RV is defined by

(1—PB1B—---—BpBP)(1— B)(logRV; — 1) = ¢y,

where the parameters p, 1, ..., By and the memory parameter d are real valued, and ¢; is a sequence
of independent N (0, 0?) distributed random variables.

Following a suggestion of a referee, we estimate all the parameters of the ARFIMA model using
an approximate ML method by minimizing the sum of squared one-step-ahead prediction errors.
See Beran (1995), Chung and Baillie (1993), and Doornik and Ooms (2004) for detailed discussions
about the method and for Monte Carlo evidence supporting it. Compared to the exact ML method of
Sowell (1992), there are two advantages to the approximate ML method. First, it does not require d to
be less than 0.5. Second, it has smaller finite sample bias. Compared to the semi-parametric methods,

15



JRFM 2019, 12,139

it is also more efficient.” The one-step-ahead forecast of RVr, 1 at time T of an ARFIMA(p, d,0) for
log-RV with p = 0is given by

— -1 52
RV =exp{fi— Y 7j(logRVr_j — i) + 73 ,
=0
and with p = 1 by

- . = ~2
RV7i1 = exp {ﬁJr B (log RVy — Z [ log RVr_; ;4) — (log RVr_jy1— ﬁ)] + ZE} ,

where
o T(-d)
Por(j+yr(-d)

’

and I'(+) denotes the gamma function.

5.1.3. HAR

The HAR model proposed by Corsi (2009) is one of the most popular models for forecasting
volatility. Given that we will forecast monthly RV in the empirical study, we modify the original HAR
model with monthly, quarterly and yearly components. The original HAR model was proposed to
model daily RV. We apply the modified model to raw RV (HAR) and to log-RV (log-HAR). The model
for raw RV can be expressed as

RV = Bo + ,BlRVtml + ﬁzR 4t ﬁ3R 1€ (19)

where the parameters fy,..., B3 are real valued, RV; is the realized volatility of month t,
and RV/", = RV;_;, RV;Ll = %Z?’:l RV,_;, RVK 1= % z}il RV;_; denote the monthly, quarterly
and yearly lagged RV components, respectively. This specification of RV parsimoniously captures the
high persistence observed in our empirical study. The one-step-ahead forecast of RV at time T is
given by

RV741 = Bo+ B1RVr + Z RVri1- fz Z INZ U

The corresponding forecast of the HAR model in (19) for log-RV is
_ 52
RV =exp ﬁo + /31 log RVt + Z log RVriq_; + — 2 log RVriq_; +
i=1 i=1

where 7?2 is the estimated variance of the independent N (0, ¢?) distributed errors ¢;.

5.2. Forecast Accuracy Measures

It is not obvious which accuracy measure is more appropriate for the evaluation of the
out-of-sample performance of alternative time series models. Rather than making a single choice,
we use four measures to evaluate forecast accuracy, namely, the mean absolute error (MAE), the mean
absolute percentage error (MAPE), the mean square error (MSE) and the mean square percentage
error (MSPE). Let RV it denote the one-step-ahead forecast of RV; at time f — 1 of model i and define

9 We also applied the exact ML method of Sowell (1992) and the exact local Whittle estimator of Shimotsu and Phillips (2005)
in our empirical study and found that the forecasts remained essentially unchanged.
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the accompanying forecast error by e¢;; = RV; — RV it~ The four accuracy measures are defined,
respectively, by

1&, 100 & /e \2
MSEfﬁt;eit, MSPEf?t;(R—V),

1L 100 & e
MAE = — Y|ey|, MAPE= — ) |-L
Ptzzl‘elfL P t:Zl‘RVf ’

where P is the length of the forecast evaluation period.

An advantage of using MAE instead of MSE is that it has the same scale as the data. The MAPE
and the MSPE are scale independent measures. For a comprehensive survey on these and other forecast
accuracy measures see Hyndman and Koehler (2006).

When calculating the forecast error, it is implicitly assumed that RV; is the true volatility at
time t. However, in reality the volatility proxy RV; is different from the true, latent, volatility.
Several recent papers discuss the implications of using noisy volatility proxies when comparing
volatility forecasts under certain loss functions. See, for example, Andersen and Bollerslev (1998);
Hansen and Lunde (2006) and Patton (2011). The impact is found to be particularly large when the
squared return is used as a proxy for the true volatility, but diminishes with the approximation error.
In this paper, the true (monthly) volatility is approximated by the RV using 22 (daily) squared returns.
As a result, the approximation error is expected to be considerably smaller than in the case of using a
single squared return.

5.3. Data

The data used in this paper consists of daily closing prices for the S&P 500 index over the period
2 January 1946-31 December 2004, covering 708 months and 15,054 trading days. We measure the
monthly volatility using realized volatility calculated from daily data. Denote the log-closing price on
the k’th trading day in month ¢ by p(t, k). Assuming there are T; trading days in month ¢, we define
the monthly RV as

T;
RV; = $ %k; [p(t,k) —p(tk—1))%, t=1,...,708
where 1/T; serves the purpose of standardization.

In order to compare the out-of-sample predictive accuracy of the alternative models, we split the
time series of monthly RV into two subsamples. The first time period is used for the initial estimation.
The second period is the hold-back sample used for forecast evaluation. When computing the forecasts
we use a recursive scheme, where the size of the sample used for parameter estimation successively
increases as new forecasts are made. The time series plot of monthly RV for the entire sample is shown
in Figure 3, where the vertical dashed line indicates the end of the initial sample period used for
estimation in our first forecasting exercise.

Table 4 shows the sample mean, maximum, skewness, kurtosis, the p-value of the JB test statistic
for normality, and the first three sample autocorrelations of the entire sample for RV and log-RV. For RV,
the sample maximum is 0.026 which occurred in October 1987. The sample kurtosis is 28.791 indicating
that the distribution of RV is non-Gaussian. In contrast, log-RV has a much smaller kurtosis (3.657)
and is less skewed (0.389). It is for this reason that we include Gaussian time series models for log-RV
in the exercise. However, a formal test for normality via the B statistic rejects the null hypothesis
of normality of log-RV, suggesting that further improvements over log-linear Gaussian approaches
are possible.

Higher order sample autocorrelations are in general slowly decreasing and not statistically
negligible, indicating that RV and log-RV are predictable. To test for possible unit roots, augmented
Dickey-Fuller (ADF) test statistics were calculated. The ADF statistic for the sample from 1946 to
2004 is —5.69 for RV and —5.43 for log-RV, which is smaller than —2.57, the critical value at the 10%
significance level. Hence, we reject the null hypothesis that RV or log-RV has a unit root.
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Figure 3. S&P 500 monthly realized volatilities, Jan 1946-Dec 2004. The vertical dashed line
indicates the end of the initial sample period used for parameter estimation in our first out-of-sample
forecasting exercise.

Table 4. Summary statistics for the S&P 500 monthly RV data. JB is the p-value of the Jarque-Bera test
under the null hypothesis that the data are from a normal distribution, p; is the ith sample autocorrelation.

Mean Maximum Skewness Kurtosis JB 1 P2 P3
RV 0.004 0.026 3.307 28.791  0.000 0576 0477 0.408
log-RV ~ —5.687 —3.666 0.389 3.657 0.000 0.683 0.595 0.511

5.4. Empirical Results

Each alternative model was fitted to the in-sample RV data and used to generate one-step-ahead
out-of-sample forecasts.'? Following a suggestion of a referee, we also included a standard
GARCH(1,1) (sGARCH) and a realized GARCH(1,1) with a log-linear specification (real GARCH),
Hansen et al. (2012).!! Since a forecast frequency of one month is sufficiently important in practical
applications, we focus on one-step-ahead forecasts in this paper. However, multi-step-ahead forecasts
can be obtained in a similar manner.

We perform two out-of-sample forecasting exercises. In both exercises, we use the recursive
scheme, where the size of the sample used to estimate the alternative models grows as we make
forecasts for successive observations.'?> More precisely, in the first exercise, we first estimate all the
alternative models with data from the period January 1946-June 1975 and use the estimated models to
forecast the RV of July 1975. We then estimate all models with data from January 1946-July 1975 and use
the model estimates to forecast the RV of August 1975. This process (an expanding window of initial
size 354) is repeated until, finally, we estimate the models with data from January 1946-November
2004. The final model estimates are used to forecast the RV of December 2004, the last observation in
the sample.

10" The Ox language of Doornik (2009) was used to estimate the two ARFIMA models. MATLAB code and data used in this
paper can be downloaded from http://www.mysmu.edu/faculty /yujun/research.html.

The sGARCH and realGARCH models were estimated using monthly log-returns and the rugarch R package
of Ghalanos (2019).

While we consider the recursive forecasting scheme one could, of course, also consider the rolling or fixed scheme.
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5.4.1. Sample including the 1987 Crash

In the first exercise, the first month for which an out-of-sample volatility forecast is obtained is
July 1975. In total 354 monthly volatilities are forecasted, including the volatility of October 1987 when
the stock market crashed and the RV is 0.026.

In Figure 4, we plot the monthly RV and the corresponding one-month-ahead TNTAR forecasts
for the out-of-sample period, July 1975 to December 2004. It seems that the TNTAR model captures the
overall movements in RV reasonably well. The numerical computation of the 354 forecasts is fast and
takes less than five minutes on a standard desktop computer.

0.031

1 1 1 1 1 1 1 1 1 1
1985 1990 1995 2000
Year
Figure 4. Realized volatility and out-of-sample TNTAR forecasts for the period Jul 1975-Dec 2004.

Dashed line: S&P 500 monthly realized volatility. Solid line: one-step-ahead TNTAR forecasts.

In Figure 5, we plot the recursive estimates, At and @r. While A1 takes values from —0.45
to —0.28, @ ranges between 0.58 and 0.64. It may be surprising to see that the path of ¢r is
non-monotonic. This is because the estimates of the power transformation parameter, A, are varying
over time. Our empirical estimates of A seem to corroborate well with the optimal value of A obtained
by Gongalves and Meddahi (2011) using simulations in the context of a GARCH diffusion and a two
factor SV model. While ¢7 is quite stable, Ar jumps in October 1987.

For comparison, we also consider a TNTAR model with A taken to be known. Visual inspection,
see Figure 6, shows that a power transformation with A = —1/2 improves linearity considerably.!?
We denote the corresponding TNTAR model TNTAR*, and employ the LPE based forecasting scheme
proposed in Preve (2015): We first fit the TNTAR model

1 _ ¢ +ut,

RV,  /RVi_4

using the LPE and calculate LP residuals

_ 1 er
T VRV, VRV

=)

13 We explored all non-zero A-values on Tukey’s ladder of power transformations in (13) and found that A = —1/2 produced

the strongest linear relationship (an increase in R? from 0.341 to 0.410).
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Due to the robustness of the LPE, simple semiparametric forecasts in the (possible) presence of
structural breaks are then obtained by applying a one-sided moving median. More specifically, as a
simple one-month-ahead forecast we take RV 1,1 = m7, where mr is the sample median of

(o 0) o )
VRV "\ VRV '
the reciprocals of the by ¢1/+/RV7 shifted, squared last 12 LP residuals.

0.8
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Figure 5. Recursive TNTAR parameter estimates for the first out-of-sample forecasting exercise. Solid
line: path of At. Dashed line: path of §r.
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Figure 6. The left panel displays a plot of the target variable against the explanatory variable in
the AR model (10). The right panel displays a similar plot for the TNTAR model (12), with power
transformation parameter A = —1/2. Superimposed are simple linear regression lines. Data for the
period January 1946-June 1975.

Table 5 reports the forecasting performance of the alternative models under the four forecast
accuracy measures of Section 5.2. Several results emerge from the table. First, the relative performances
of the alternative models are sensitive to the forecast accuracy measures. Under the MSE measure,
the two ARFIMA models rank as the best, followed by the log-HAR and TNTAR* models. ABDL (2003)
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found that their ARFIMA models perform well in terms of R? in the Mincer-Zarnomitz regression.
Since the MSE is closely related to the R? in the Mincer-Zarnomitz regression, our results reinforce their
findings. However, the rankings obtained under MSE are very different from those obtained under
the other three accuracy measures. The MAPE and the MSPE, for example, rank the TNTAR* model
the first and the TNTAR model the fourth. Second, the performances of the two ARFIMA models are
very similar under all measures. To understand why, we plotted the sample autocorrelation functions
of the ARFIMA(0, d,0) residuals for the entire sample and found that fractional differencing alone
successfully removes the serial dependence in log-RV. Third, the improvement of ARFIMA(0, d, 0) over
TNTAR is 7.4% in terms of MSE. On the other hand, the improvement of TNTAR over ARFIMA(0, d, 0)
is 0.8%, 5.9% and 6.0% in terms of MAE, MAPE and MSPE, respectively. These improvements are
striking as we expect ARFIMA models to be hard to beat. Fourth, ES performs the worst in all cases.

Table 5. Forecasting performance of the alternative models under four different accuracy measures.
Results based on 354 one-step-ahead forecasts for the period Jul 1975-Dec 2004

MAE x 10° MAPE MSE x 10° MSPE
Value Rank Value Rank Value Rank Value Rank
ES 1.268 9 31.04 11 3.862 11 15.30 9
AR 0.975 6 20.93 6 3.312 9 7.80 5
HAR 0.945 2 20.75 3 3.018 5 7.29 2
log-AR 0.954 4 20.74 2 3.076 8 7.56 4
log-HAR 0.937 1 20.90 5 2.866 3 7.33 3
sGARCH 1.101 8 27.23 9 3.344 10 12.43 7
real GARCH 1.089 7 28.05 10 3.026 6 12.93 8
log-ARFIMA(0,d,0)  0.961 5 22.09 8 2.847 1 8.04 6
log-ARFIMA(1,d,0)  0.961 5 22.08 7 2.851 2 8.04 6
TNTAR 0.954 4 20.78 4 3.075 7 7.56 4
TNTAR* 0.948 3 20.47 1 2911 4 6.96 1

Table 6 reports p-values of the Diebold and Mariano (1995) test for equal predictive accuracy
of different models in Table 5 with respect to the benchmark TNTAR model. We compare forecast
differences using four different loss functions. Under absolute loss (MAE), the TNTAR delivers
superior forecasts in three cases. In six cases, the forecasts are not statistically different. For MAPE,
the TNTAR delivers superior forecasts in five cases. The forecasts are not statistically different in four
cases. Under square loss (MSE), the TNTAR delivers superior forecasts in two cases, the forecasts are
not statistically different in four cases and in three cases alternative models have the best performance.
Finally, for MSPE, the TNTAR delivers superior forecasts in three cases. In six cases, the forecasts are
not statistically different.

Table 6. p-values of the Diebold-Mariano test for equal predictive accuracy of different models with
respect to the benchmark TNTAR model under four different loss functions. Results based on 354
one-step-ahead forecasts for the period Jul 1975-Dec 2004.

MAE MAPE MSE MSPE

ES 0.000 0.000 0.001  0.001
AR 0.275 0.680 0.208  0.431
HAR 0.660 0.961 0.607  0.480
log-AR 0.898 0.754 0973  0.968
log-HAR 0.418 0.824 0.003  0.482
sGARCH 0.001 0.000 0.057  0.000
real GARCH 0.001 0.000 0.709  0.000

log-ARFIMA(0,d,0)  0.728 0.034 0.008  0.188
log-ARFIMA(1,d,0)  0.725 0.035 0.008  0.184
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5.4.2. Sample Post the 1987 Crash

To examine the sensitivity of our results with respect to the 1987 crash and the 1997 crash due
to the Asian financial crisis, we redo the forecasting exercise so that the first month for which an
out-of-sample volatility forecast is obtained is January 1988 and the last month is September 1997.

In Figure 7, we plot the monthly RV and the corresponding one-month-ahead TNTAR forecasts for
the out-of-sample period, January 1988-September 1997. As before, forecasts from the TNTAR model
captures the overall movements in RV reasonably well. Table 7 reports the forecasting performance
of the alternative models under the four forecast accuracy measures. Since the RVs are smaller in
this subsample, as expected, the MAE and the MSE are smaller than before. However, the relative
performances of the alternative models obtained for the subsample are similar to those obtained for
the entire sample, although the HAR and log-HAR models now outperform the ARFIMA models also
in MSE. The TNTAR* model once again performs the best overall.
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0.002
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Figure 7. Realized volatility and out-of-sample TNTAR forecasts for the period Jan 1988-Sep 1997.
Dashed line: S&P 500 monthly realized volatility. Solid line: one-month-ahead TNTAR forecasts.

Table 7. Forecasting performance of the alternative models under four different accuracy measures.
Results based on 117 one-step-ahead forecasts for the period Jan 1988-Sep 1997.

MAE x 103 MAPE MSE x 10° MSPE
Value Rank Value Rank Value Rank Value Rank
ES 1.077 10 35.38 11 1.707 11 20.18 11
AR 0.783 7 23.88 8 1.258 6 10.73 8
HAR 0.749 2 22.68 3 1.079 1 9.28 2
log-AR 0.779 6 23.38 4 1.272 8 10.53 6
log-HAR 0.750 3 22.45 2 1.123 2 9.37 3
sGARCH 0.963 8 32.90 9 1.387 9 18.77 9
real GARCH 0.991 9 33.73 10 1.480 10 19.51 10
log-ARFIMA(0,d,0)  0.779 6 23.65 7 1.160 3 10.24 5
log-ARFIMA(1,d,0)  0.778 5 23.61 6 1.162 4 10.22 4
TNTAR 0.777 4 23.45 5 1.260 7 10.58 7
TNTAR* 0.744 1 21.27 1 1.163 5 8.18 1

6. Concluding Remarks

In this paper, a simple time series model is introduced to model and forecast RV. The new TNTAR
model combines a nonnegative valued process for the error term with the flexibility of Tukey’s power
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transformation. The transformation is used to improve linearity and reduce heteroskedasticity while
the nonnegative support of the error distribution overcomes the truncation problem in the classical
Box-Cox setup. The model is semiparametric as the order of m-dependence, support parameter 7 and
functional form of its error term are left unspecified. Consequently, the proposed model is highly
parsimonious, having only two parameters that need to be estimated for the purpose of forecasting.
A two-stage estimation method is proposed to estimate the parameters of the new model. Simulation
studies validate the new estimation method and suggest that it works reasonably well in finite samples.

We empirically examine the forecasting performance of the proposed model relative to a number
of existing models, using monthly S&P 500 RV data. The out-of-sample performances were evaluated
under four different forecast accuracy measures (MAE, MAPE, MSE and MSPE). We found empirical
evidence that our nonnegative model generates highly competitive volatility forecasts.

Why does the simple nonnegative model generate such competitive forecasts? Firstly, as shown in
Section 2.2, the logarithmic transformation may not reduce heteroskedasticity and improve normality
as well as anticipated. A more general transformation may be required. Secondly, the nonnegative
model is highly parsimonious. This new approach is in sharp contrast to the traditional approach
which aims to find a model that removes all the dynamics in the original data. When the dynamics
are complex, a model with a rich parametrization is called for. This approach may come with the cost
of over-fitting and hence may not necessarily lead to superior forecasts. By combining a parametric
component for the persistence and a nonparametric error component, our approach presents an
effective utilization of more recent information.

Although we only examine the performance of the proposed model for predicting S&P 500
realized volatility one month ahead, the technique itself is quite general and can be applied in many
other contexts. First, the method requires no modification when applied to intra-day data to forecast
daily RV. In this context, it would be interesting to compare our method to the preferred method in
ABDL (2003). Second, our model can easily be extended into a multivariate context by constructing
a nonnegative vector autoregressive model. Third, while we focus on stock market volatility in this
paper, other financial assets and financial volatility from other financial markets can be treated in
the same fashion. Fourth, as two alternative nonnegative models, it would be interesting to compare
the performance of our model with that of Cipollini et al. (2006). Finally, it would be interesting to
examine the usefulness of the proposed model for multi-step-ahead forecasting. These extensions will
be considered in later work.
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Abstract: The purpose of this paper is to investigate the dynamics and steady-state properties of
threshold autoregressive models with exogenous states that follow Markovian processes. Markovian
processes are widely used in applied economics although their statistical properties have not been
explored in detail. We use characteristic functions to carry out the analysis, and this allows us to
describe limiting distributions for processes not considered in the literature previously. We also
calculate analytical expressions for some moments. Furthermore, we see that we can have locally
explosive processes that are explosive in one regime whilst being strongly stationary overall. This is
explored through simulation analysis, where we also show how the distribution changes when the
explosive state becomes more frequent although the overall process remains stationary. In doing so,
we are able to relate our analysis to asset prices which exhibit similar distributional properties.
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1. Introduction

The purpose of this paper is to investigate the dynamics and steady-state properties of threshold
autoregressive models with exogenous states that follow Markovian processes. These models fall within
the class of regime-switching models, which have become increasingly popular in applied economics
and finance. Initially introduced by Goldfeld and Quandt (1973) and Tong (1978), regime-switching
models have been used in economics and finance for a wide variety of applications including forecasting
exchange rates (Engel 1994), understanding price transmission (Goodwin and Harper 2000), detecting
bubbles in the art market (Knight et al. 2014), and providing a metric of market efficiency (Ahmed and
Satchell 2018). Hansen (2011) provides a concise summary of threshold autoregressive processes and
their applications.

Hamilton (1989, 1990, 2010) has made seminal contributions to the theory and application of
regime-switching models. As outlined above, this article discusses a particular class of regime-switching
models. The problems we discuss appear to have much in common with Markov switching models,
and Timmermann (2000) has provided a detailed analysis of moments and autocorrelations, which
would include our model as “MSIII” in his terminology. However, his analysis does not address
non-moment distributional properties or the non-existence of moment-generating functions (mgfs).

Indeed, Timmermann states in Appendix 1, page 103, that “The expressions for the cases where &;
follows a t-distribution or a normal distribution are based on the moment-generating distributions
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for these distributions”, and this is confusing as it is known that the t-distribution does not have a
moment-generating function. We therefore re-examine this model, allowing for the non-existence of
moment-generating functions, and use the characteristic function (which will always exist) to derive
various properties of the model.

Whilst we could carry out a similar analysis for the other models described in Timmermann (2000),
our focus is on threshold auto-regression and the elusive search for explicit steady-state distributions.
Prior to this article, Gonzalo and Gonzalez-Rozada (1997) described statistical properties of Threshold
Autoregressive models of order 1 (TAR(1)) models. However, their analysis was restricted to a
mixture of stationary and unit roots, whereas our analysis considers non-stationary roots as well.
Another important contribution relevant to our work is Pourahmadi (1988). In Theorem 3.1 in his
article, Pourahmadi (ibid.) discussed the covariance stationarity of a process similar to the threshold
autoregressive process we consider in Section 4, in that he analyzed processes with a unit root and a
zero root. However, the results derived in Section 2 below and the processes considered in Section 4
are applicable to a more general setting and we do not restrict ourselves to covariance stationarity.
We acknowledge Pourahmadi’s contributions while deriving our results in Section 2.

Caner and Hansen (2001) and Kapetanios and Shin (2006) also considered similar processes, but
their objective was to derive the distribution of unit root test statistics in the threshold autoregressive
framework rather than the distribution of the underlying process. Our results build upon the results of
Knight and Satchell (2011) and Ahmed and Satchell (2018): Both articles discussed theoretical moments
for threshold autoregressive models with exogenous triggers. While Ahmed and Satchell (2018)
only considered moments when the exogenous variable is independently and identically distributed,
Knight and Satchell (2011) also considered a Markovian exogenous variable.

In addition to deriving theoretical moments, we also use simulation analysis to show how the
distributions of threshold autoregressive models change when the process’s two states consist of
one stationary state and an explosive state. Our analysis focuses on these models for two reasons.
Firstly, we are able to derive a characteristic function for this case, thereby adding to the literature on
analytical results for threshold autoregressive models. We believe this is a significant contribution to
the statistical literature. Secondly, this class of models is of interest in the financial literature concerned
with explosive roots. In particular, Theorem 6 in Section 2 specifically refers to a special case that is
of interest to researchers working on asset pricing with some non-stationarity. The latter is what we
consider for our simulation analysis, and thus we consider it the most important contribution of the
current article. We also believe that these models can prove to be useful in the applied macroeconomic
literature. The simulation analysis presented in this article will help the reader appreciate how these
models can be useful in practice.

In applied Macroeconomics, for instance, Dynamic Stochastic General Equilibrium (DSGE) models
often model shocks as AR(1) processes (see Schmitt-Grohe and Uribe 2004). The literature came under
particular scrutiny after the financial crisis for its inability to simulate and thereby predict conditions
and outcomes that were observed during the crisis. In addition to the absence of financial markets,
such models are also restricted by their reliance on a stationary AR(1) model as a shock process, as
these processes can rarely be used to study the kind of macroeconomic shocks that led to the financial
crisis. On the other hand, these models will not have analytical or numerical solutions if the process
is non-stationary.

We postulate that using a TAR(1) shock process which is stationary but nevertheless can exhibit
locally non-stationary behavior can improve these models. Our work will enable calculation of moments
for such shocks (where such moments exist), allowing the user to work with analytical solutions, or,
if the user is deriving a numerical solution, ensuring that such a solution will exist. Indeed, some
work has already started relying on Markov-switching DSGE models (Foerster et al. 2016). This paper
complements the proposed methodology by enabling researchers to control and simulate shocks of
specific variances.
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There are further applications in the finance literature where TAR models have become popular.
The applications may extend to forecasting oil prices through threshold models or in modelling
exchange rate fluctuations. There are many areas where a TAR model and the characteristic functions
we derive can provide more depth to the underlying analysis. To use one recent example, Aleem and
Lahiani (2014) estimated a TAR model of exchange-rate pass through for Mexico. Their analysis was
limited to an estimation of the threshold above which the pass through is greater. The characteristic
functions from our article would have allowed them to estimate the volatility of exchange rates in
their model, improving both their model and the resulting predictions. Similarly, in Ahmed and
Satchell (2018), the empirical application relied on a Markovian exogenous trigger. The results from
this article would have allowed them to derive moments of their empirical TAR(1). Corollary 2 in
Section 2 offers one example of how the results of this article may contribute to applied and empirical
work in finance.

The rest of the article is organized as follows. In Section 2, we present the derivation and formulae
for characteristic functions of threshold autoregressive (1) models with exogenous Markovian triggers.
Section 3 outlines the simulation methodology. A separate section is necessary since obtaining a sample
from the steady-state distribution of a TAR model with a Markov-switching exogenous trigger is a
non-trivial exercise. Section 4 presents and discusses simulation results and Section 5 concludes.

2. Moment-Generating Functions of TAR(1) Models with Exogenous Markov-Triggers

In this section, we introduce the threshold autoregressive model with a Markov-switching
exogenous trigger. After introducing the model, we derive the moment-generating functions for
this model and present some interesting results. We shift to characteristic functions after Theorem 3,
where we do not have to assume the existence of all moments so that moment-generating functions
for such processes need not exist. Characteristic functions on the other hand will always exist
(Stuart and Ord 1994, chps. 3 and 4). Such processes are often used to model prices (particularly in
finance), therefore, we refer to our model as a price process indicated by p;.

The price process has a switching AR(1) form:

pt = ap1 + Pr-1pi-1 + 017t 1)

where a;_; is a switching drift, f;_; is a switching coefficient term, and ¢;_; is a switching variance
term for the error process. Let:

a1 =, z-1) Pr-1 = (B, z1-1) 011 = (0, Z-1)

where a is a vector containing all drift terms, § is a vector of coefficients, and o is a vector of error
standard deviations. In general, all the above vectors are k X 1, but we illustrate them when k = 3 for
notational convenience. We assume that z; is Markovian and follows a multinomial distribution, and
that 7; has a moment-generating function (1) which is assumed to be location-scale. z; determines
what state a;_; and f;_1 are in. In particular,

a=(ay,az,a3) = (B1,B2,p3) 0 = (01,02,03) ni ~iid(0,1)

1 0 0
ze€ley,erester =] 0 |lea=| 1 |es=]| 0
0 0 1

E[z¢lz;-1] = Pz;_1, where P represents the Transition Matrix for the Markovian state variable z;. For
econometric purposes, we envisage an exogenous continuous random variable Z; and constants
S, ....93,s0 thatzy = ¢; if 9,1 < Zy <9, i.e, when the continuous random variable Z; is between
thresholds 9 j-1and 9, and the value of the Markovian variable z; is equal to ej. The nature of Z;
determines P and the kind of regime-switching model Z; is.

28



JRFM 2019, 12,123

P11 P12 P13
Here, P =| p21 p22 p23 |is the transition matrix, which describes the probability of switching
P31 P32 P33

states. Note that i’P = i, where i is a vector of ones, and Pt = w where 7 is the vector of stationary
(steady-state) probabilities and i’ = 1.

pji = P(Z[+] = €j|Zf = ei) = P(zl = ej|z0 = e,») 1<i4,j<3

so that the Markov Chain is stationary. Whilst we can estimate P by counting frequencies, we can
also hypothesize a Markov process for Z; and then integrate over the appropriate rectangle of the
probability density function of (Z;, Z41).
We now consider exp(up;) in order to derive the moment-generating function for p;. Here, u € R.
The moment-generating function of p; is defined by ¢ (u) = E[exp(up;)]. Our aim is to determine
a recursion for ¢y (u) € R.

Now,
zt =Pz +v; €R® )
where,
0
Elwlzi1] =| 0 |=0€eR>.
0

From (1), we have that:

exp (upy) = expluda, zi—1)) explu (B, zi-1)pi-1) exp(u{ o, zi-1)n:)
Using iterated expectations, we find that the moment-generating function for py is:
r(u) = E(E(explia, zi-1)] explu (B, z-1)pi-1] exp(uo, zi-)ezion))
For functions F (ps—1, Z;—1), we note that:
E(F(pr-1, Z11)) = E(Zlle F(pi-1, ¢j) ;)

by the law of total probability.
Thus,

k
o0 = 5y )] al{p. el o) ®
is a dynamic recursion for the moment-generating function of p;.
Steady-State Distribution under Markovian States

The above discussion leads to the following result.

Theorem 1. Assuming a steady state for prices, denote E(exp(up) ) = ¢(u) and E(exp(un;) ) = ¢(u) as
the appropriate mgfs (or characteristic functions with a trivial definitional change). Then,

o(u) = Z];=1 exp (uaj) ¢>(,Bju) us w(aju) (4)
is the steady-state relationship.

We can use Theorem 1 to arrive at analytical expressions for different moments of the process, p;.
Define:
up = lezl TiBj; U = 21}21 i3 0 = pap = (up)
Ha = ZI;ZI Taj; U = Zl;:l Tj0j; faB = Z?:l miBja; etc.
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We differentiate (4) once to obtain the first moment of p;, and we get:

_ Ma+ poE(mr)
Elpr) = —3 .

Differentiating the mgf a second time gives us the second moment of p;:

E(P:Z) _ ,UZU(‘FZ#MBE(.U:?)+2.u(rBE(ql)E(pt)+2}1110E(’]t>+,“26E(7I%)
~H2B

Further calculations and simplifications lead to an expression for the variance of p;:

Var(p) = E(p?) - (E(p1))?
_ t2a+21aBE(pe)+2u5BE (1) E(pt)+ 2100 E(ne) + 1120 E (117) _(y,,+,L¢JE(m))2

Var(py) T=1ip T-pp

Various interesting results can be derived from Theorem 1 for plausible parameter values. We list
one case below, but other results can be regarded as special cases. Here, we are concerned with the
case where k = 2, aj = 0, 1 =B, P2 =0, and 07 = 0, so that the mgf function becomes:

P(u) = ¢(Bu) (m+ (1-m)ip(u)) ®)

Corollary 1. If ¢(u) is the moment-generating function of a negative exponential with parameter A, and
aj=0,01=0,02=0, and . = B where By = P = P which is less than 1, then ¢p(u) = ﬁ, i.e., a negative
exponential random variable with parameter A.

Proof. To show that Equation (5) has a solution for some (1), we consider the negative exponential
function, i.e., we assume that the disturbance term is distributed as a negative exponential with
parameter A. The corresponding moment-generating function, ¢ (i), for this disturbance term is % if
we further assume that f = 7 and that 0 < < 1. Note that Equation (5) corresponds to the situation
where the f coefficient does not move across states, but the standard deviation of the disturbance term

does, i.e.,, 01 = 0 and 0 = 0. Our result implies that o = % ]

For our distributional assumption regarding the disturbance, the corresponding
moment-generating function is (taking into consideration the two states):

(m+ (1-n)p(u) = n+ 212

Substituting this in (5) and using the trial solution, ¢(u) = ﬁ, we have:

s = () + 5

If we further assume that § = 71, the LHS and RHS are equal, thereby proving our result.

We recognize the solution as being a negative exponential auto-regression of degree 1 (NEAR(1)).
These models were investigated in detail by Gaver and Lewis (1980), which also included earlier
references to related models. We note that the same arguments could be applied to Gamma random
variables with integer degrees of freedom.

The attractiveness of these models is that they are AR(1) models where the underlying process
is always positive, and hence, can be used to model equity or bond prices in finance. Our version is
a slight extension of existing NEAR(1) models, in that Corollary 2 will be consistent with a Markov
process for the state process rather than an i.i.d. process, as in the current NEAR(1) literature.
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Furthermore, if Z;_1 is Markovian with transition matrix P such that = = Pr, then:

k
T = Z ﬂmpjm/
m=1

and
(P(u) = Zl}:l exp(uaj) ¢(ﬁ]ll) ll)(G]u) 22:1 Pjnl Tlm
Alternatively,

¢(u) = (exp(ua)p(Bu) P(ou), Pr) 6)

There are a number of observations relevant to (4) and (6) which we present below:

Theorem 2. Since 1 = Pt has multiple solutions for P given m, these different Prs do not change the solution to
Equation (6). As an example, for k = 2, suppose = = 0.5. It then follows that Py = Pp, but if P11 = 0.2 0r 0.8
in this context, the steady-state distribution will be unaffected except through a change in position.

The steady-state values are equal (i.e., 0.5), and thus, such changes in the structure of the transition
matrix should not influence steady-state values. Note, however, that this does not say anything about
the speed at which the two processes in this example converge to the steady state. For more on speed
of convergence, refer to Rosenthal (1995). Since the processes converge to the steady state through
different paths, simulating the steady state becomes a non-trivial procedure, as explained in Section 3.

Theorem 3. Suppose that in Equation (6), « is zero, and ¢(u) and (u) are infinitely differentiable
moment-generating functions and that the variance of the error process is constant.

Theorem 4. If ¢(u) is symmetric, then Y (u) is symmetric. The proof is trivial.

Theorem 5. If ¢(u) is symmetric, then ¢(u) is symmetric (proof by induction on Taylors series terms).
We shall prove that all odd moments are zero:

Proof.

wor-|

k
o(Bju) 7 ll’(u)]
=1

]
The coefficient of u" for ¢(u),

P = Ly 7 K On-sf U )

Y1 = 0 implies that ¢, = 0. We now suppose that ¢;,1 = 0, which implies that ¢»;.1 = 0 for
j=0,...,kand consider ¢,;3. From (7), the inductive hypothesis and the properties of products of
odd and even numbers, the result follows. O

Theorem 6. Suppose that aj = 0, the variance of the error term is constant, and that we treat

]

k
Plu) = [ o(Bju)m; W)] ®)
=1

as a statement about characteristic functions. Then, if at least one of the Bjrs is greater than 1 and all of them are
non-negative, for some n, the nth moment will not exist. The proof follows from using (7) again and noting that
¢n (the nth differential of ¢(u)), which is proportional to the nth moment (if it exists), can be expressed as:
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(7))1(1 - Zl;:l T(].B'J/l) = 21;21 T(]' Z::l (PH—S,B;I_SI//S

The requirement for the existence of ¢, is that Zl;:l 7" < 1, which cannot hold for a large
enough 1 under the assumptions of Theorem 6. This result links local explosivity to fat tails. Thus,
processes with locally explosive states will cease to have moments once 1 becomes sufficiently large.

Ahmed and Satchell (2018) derived similar conditions for the existence of a mean and variance
for a TAR(1) process with an independently distributed exogenous trigger for state switching. We
have generalized the result for the nth moment and for an exogenous trigger that is Markovian.
Pourahmadi (1988) arrived at a similar result in Section 2 of his article (see Equations (2.3)-(2.5)
in Pourahmadi (ibid.)), but he carried out his derivation in the context of doubly stochastic
processes, as opposed to the specific case of a threshold autoregressive process that we consider.
Secondly, Pourahmadi was mainly interested in second-order stationarity, while we present results
for the existence of all moments. Thus, we substantially improve upon the results contained in
Pourahmadi (1988) and Ahmed and Satchell (2018). Below, we consider a special case which will be of
particular interest to finance practitioners.

Corollary 2. Assume that o i = 0,and the variance of the error term is constant, i.e., 61 = 0y = 0.

Consider now the special case k = 2, g1 = 1, and g, = 0. This is an important special case as it
gives us a random walk in one regime and white noise in the other. Substituting into (8), we see that:

P(u) = (p(u)m +1 - )i (u)
This can be re-arranged to yield:

_ (=mypw)

W) = g ()

Since |1/)(u)| <1, nil[;(u)' <1 and ¢(u) can be represented in terms of a valid series expansion
which can be analyzed term by term. Indeed,

0o

ou) = (1-m) ) Wy(u)™! ©)

j=0

The right-hand side is uniformly and absolutely convergent because of the Weirstrass M-test, and
thus we can integrate term by term. Pourahmadi (1988) also considered this as a special case in his
article and derives conditions for the existence of a variance and covariance (see Sections 3 and 4 in
his article).

We can now consider different choices for ¢(u).

Suppose we have a normally distributed error term with a mean of zero and a variance of 02, i.e.,

Y(u) = exp(— ”22“2). Then, (1)’ represents a normal random variable with a mean of zero and a
variance of (j + 1) 62. We can identify the distribution of p; as an infinite weighted sum of normal
random variables of increasing variances, but whose relative importance declines with a power of m.
This process was analyzed in Knight and Satchell (2011) and extended in Grynkiv and Stentoft (2018).

Likewise, assume the variance of the error is constant. If we consider a mean corrected Poisson so
that (1) = exp(6(exp(iu) — 1 —iu)) with mean parameter 6, we can identify the distribution of p; as
an infinite weighted sum of Poisson random variables of increasing means (j + 1) 6, but whose relative
importance declines with a power of 7.
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This case can be extended to include intercepts, in which case,

d(u) = (expliaru)p(u)m + (exp(iagu) (1= m))y(u)
o~ RS

Since |exp(ia1u)mp(u)| < 1, the analysis proceeds as before, and:

() = (1= ) expliazu) ), wp(u) ! exp(ijoru)
j=0

We see that the jth component is as above, but has a mean augmented by ja; + a,. For other
examples, we refer the interested reader to Pourahmadi (1988) Section 4, who derived marginal
distributions for different processes.

The results can be generalized to Vector threshold auto-regressions. These results are not presented
here but are available upon request. The interested reader may also refer to Grynkiv and Stentoft (2018)
for some discussion.

3. A Caveat on Simulating the Steady State

Simulating the steady state for processes similar to those considered in Section 2 is not as straight
forward as it may appear at first glance and warrants further consideration, which this section seeks
to provide. Generating a discrete Markov chain, which is essentially a variable that takes discrete
integer values of 0 or 1 depending on the transition matrix P, does not generate a steady-state Markov
chain, but rather a path to the steady state. It is common in this literature to simulate steady-state
paths rather than a steady-state Markov chain. Indeed, in our earlier work, we worked with paths and
not steady states, as did Timmerman in his article (see Figures 1-6 in his articles for example). While
simulating steady-state paths sufficed for our earlier work, we need to simulate the steady state in
order to corroborate our results from Section 2. Otherwise, the underlying moments of the simulated
series can be different even if they converge to the same steady state.

This path is dependent upon the transition matrix P. If states are persistent, as determined by
the transition probabilities of the process staying in the prevailing state (p;;), this path may diverge
significantly from the steady state. On the opposite spectrum is a transition matrix with frequent
state switches, due to higher switching probabilities, which will take a different path to the steady
state. Although the steady-state probabilities of both paths are identical, the dynamics vary due to the
different paths taken by the processes.

We need to consider how discrete Markov chains converge to their steady states. The usual
definition is based on total variation distance, and considers the supremum, taken over measurable
subsets A, of the absolute difference between v(A) and u(A), where v() and u() are the two probability
measures (see Rosenthal 1995). Whilst our process will converge in this sense, it will almost surely not
converge along a sample path. Intuitively, it keeps moving from state to state.

Weillustrate this by considering two different transition matrices that correspond to the steady-state

probability vector [ 82 ] We consider a transition matrix with highly persistent states P; =

( 8? 8; ) and a transition matrix with frequent state switches P, = 8? gg . While both
processes approach the same steady states, the simulated series have different probability distributions.
Specifically, persistence of the non-stationary process, corresponding to 8; > 1, causes the path to
diverge far from the steady-state values, resulting in a process that has extreme values with significant
probability, which also obtains very high kurtosis. With frequent state switches, the simulated series

comes closer to a normally distributed process.
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To remedy this, each of the above paths was simulated for 10,000 periods and the process was
repeated 2000 times. The parameter values in the two switching states are 0 in state 1 and 1 in state 2.
We also carried out simulations when the switching states corresponded to values of 0.1 in state 1 and
1.1in state 2. We recorded the average of the first four moments of both paths in Table 1. As mentioned
previously, the persistent path obtains a much higher kurtosis and standard deviation than the more
frequently switching path, even though both paths continue to be symmetrically distributed. An
alternative approach would be to write out the solution to Equation (1) and simulate directly by
taking long samples of the error term and the exogenous process. From Table 1, we observe that the
highest 2nd and 4th moments are obtained for the persistent state when ; = 0.1 and g = 1.1. This is
despite the fact that this process also converges to a steady-state vector [0.50 0.50]. The moments are
significantly different for the alternative paths corresponding to P.

Table 1. Moments of TAR(1) with Markov-switching exogenous variables.

Steady State Vector Transition Matrix o Mean Stdev Skewness Kurtosis

09 01

[0.50 0.50] Pr=| 01 09 0 0.0004 2.450 0.00289 8.786
09 01

[0.50 0.50] Pr=| 01 09 0.10 -0.170 78.17 0.2761 4247

[0.50 0.50] P, = 0505 0 -0.0001 1.4139 —0.0004 4.480
05 05
05 05

[0.50 0.50] P2=| 05 05 0.10 0.0000 1.6014 -0.0012 6.837

Table 1 reports the first four moments of simulated threshold autoregressive series with Markov-switching
exogenous variables. Each series is 10,000 observations long, and 2000 series were simulated for each set of values.
P represents the transition matrix and delta represents a parameter that determines the values of f; in the two states;
P1=20,f2a=1+0.

Figures 1 and 2 below highlight the different distributions that result from the different paths,
along with cumulative probabilities corresponding to the normal probability density function’s quintile
values. Tail probabilities are much higher for the more persistent path, which also has more extreme
values, especially when the non-stationary state becomes explosive. Tail probabilities are 28.7% and
30.8% for 6 = 0 and 6 = 0.10, respectively, in Figure 1, which correspond to the more persistent
transition matrix, P. In fact, the distribution corresponding to 6 = 0.10 appears like a horizontal line
instead of a bell-shaped curve.

On the other hand, the distributions of simulated series corresponding to the more frequently
switching path (transition matrix Py) have lower tail probabilities and distributions that are closer to
the standard normal distribution. Figure 2 contrasts the distribution for the series corresponding to
path P; to a standard normal. While this simulated distribution has heavier tails, as evident from
the higher probabilities corresponding to normal quintiles, its 2nd and 4th moments are much closer
to the normal than to the simulated series for path P;. Similarly, for the distributions in Figure 2,
corresponding to f; = 0.10 and B, = 1.10, path P, look much closer to a normal distribution than to
their P counterparts in Figure 1.

Thus, we need a different approach to generate the steady-state distribution of the threshold
autoregressive process with Markovian triggers that are independent of the transition matrix, subject
to the same steady state. It is important to understand that the results derived in the section above
correspond to the steady state itself and not to the path of the process tending to a steady state, which,
as we have shown in this section, depends on the transition matrix. We describe how we simulate the
steady-state distribution in the next section.

34



JRFM 2019, 12,123

0.90 0.10)‘ _ [0.50

= (0'10 0.90 ]‘8 =010,5,=6,,=1+6

0.50.
0.4 T T T T T T T T
TAR delta=0
0.35F Normal _
TAR delta = 0.10

0.3 b
0.25 b
0.2 b
0.15 b
0.1 b
0.05 b
0
-10 10
Figure 1. Simulated Distributions for TAR(1) with P as the transition matrix.
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Figure 2. Simulated Distributions for TAR(1) with P, as the transition matrix.
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4. Simulation Results

In order to simulate a distribution for the steady state, we observed the Markov chain 10,000
times. However, each observation was 1000 time periods or steps apart. Thus, the Markov chain
we simulated was 10,000,000 periods long, and the steady-state simulation was 10,000 observations
in length. We verified that each series simulated this way converges to the steady-state probability
vector while at the same time being independent of the transition matrix, P. We did this by simulating
steady states for different transition matrices P that shared the same steady states.! Thus, the analysis
considered in this section depends only on the steady-state vector and not on the transition matrices.
The steady-state chain was then used to simulate the following threshold model:

yr = a+Bili-1 + 1

where B;; depends on the value taken by the exogenous discrete Markov state variable z;. Our simulations
assumed that 7y ~ N(0,1) and that a = 0. In order for our simulated series to have a steady-state
stationary distribution, we required that the criterion Z%Zl T 1n| ﬁi| < 0 be satisfied. Since we considered
a two-state process, the criterion can alternatively be written as ﬁ;’ ﬁ%‘” < 1. The criterion is trivially
satisfied when p; = 0 as In(0) = —co. When f; = 6 and B = (14 0), the criterion becomes
57(1+6)""™ < 1. Note, that the expression 6™ (1 + 5)'"™ is maximized for 7 = 0.

We considered a maximum 6 of 0.10, and checked that the criterion was satisfied for all our
simulations and that a steady-state distribution does exist. For exposition, we included the value taken
by the criterion function for each set of simulations in column 7 of Table 2 below.

Steady-state distributions obtained this way can be analyzed through the results derived in
Section 2. For each set of steady-state vectors in Table 2, we simulated threshold autoregressive series
(as described above) 2000 times. The parameter values in the two switching states are 6 in state 1 and
1+ 6 in state 2. Thus, the first state is always stationary, while the second state is either a random walk
or explosive.

Some patterns are exhibited clearly. The distributions of the series appear to be centered on zero,
and statistically their skewness (column 5) is not significantly different from zero, which follows from
Theorem 3. Since the disturbance term has an even distribution, it follows that the distribution of our
simulated series will also be even, symmetric, and centered on zero, i.e., (1) = ¢(—u) implies that
o () = p(-u).

The standard deviation (column 2), however, does appear to be much larger than the standard
deviation of the error process driving the threshold process. The series have excess kurtosis (column
6), which should not come as a surprise since the series display non-stationary behavior when ; > 1.
This state leads to excess kurtosis and higher standard deviation. As we deviate from our base case,
(6 = 0), we note a clear pattern in the 2nd and 4th moments of the series. Both the standard deviation
and kurtosis start to increase, since this behavior is caused by the non-stationary state becoming
increasingly more explosive (f; = 1+ 06, when 6 > 0). The pattern is repeated irrespective of the
steady-state vector chosen.

Unsurprisingly, the higher the steady-state probability of the stationary state (8; = 0), the closer the
process’s distribution is to a normal distribution. This is reflected in the first four moments. For instance,
when the stationary state occurs 90% of the time (as in rows 2—6 of Table 2), the standard deviation and
kurtosis are both lower compared to corresponding cases (i.e., same ) when the stationary state occurs
less than 90% of the time. When 6 = 0.05, the standard deviation and kurtosis respectively are 1.061
and 3.362 for © = 0.90, 1.134 and 3.762 for © = 0.80, 1.339 and 4.660 for = = 0.60, and 1.494 and 5.302
for m = 0.5. While all distributions appear symmetric and centered on 0, they become increasingly
leptokurtic as 7 falls.

1 These results have not been included but are available upon request.
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Table 2. Average moments of TAR(1) with changing Steady State Vectors.

Steady State Vector

m 1-m o Mean Stdev Skewness Kurtosis Criteria = Z,z=1ﬂi1ﬂ|ﬁi|
[0.90 0.10] 0 0.0001 1.0544 -0.0012 3.306 —00
[0.90 0.10] 0.01 -0.0007 1.0552 0.0004 3.311 —4.1437
[0.900.10] 0.03 0.0001 1.0583 —0.0008 3.336 -3.1529
[0.900.10] 0.05 0.0007 1.0608 —0.0006 3.362 -2.6913
[0.900.10] 0.10 0.0007 1.0714 —0.0007 3.442 —2.0628
[0.800.20] 0 0.0004 1.118 —0.002 3.597 —00
[0.800.20] 0.01 —0.0000 1121 —0.0007 3.630 -3.6821
[0.800.20] 0.03 0.0001 1.128 -0.0016 3.705 —-2.7993
[0.80 0.20] 0.05 0.0005 1.134 0.003 3.762 —2.3868
[0.80 0.20] 0.10 0.0001 1.152 0.0003 3.967 -1.8230
[0.60 0.40] 0 0.0004 1.291 —0.003 4.195 —c0
[0.60 0.40] 0.01 —0.0011 1.300 —0.001 4.277 —2.7591
[0.60 0.40] 0.03 —0.0001 1.316 —0.005 4.421 —2.0921
[0.60 0.40] 0.05 —0.0007 1.339 —0.002 4.660 -1.7779
[0.60 0.40] 0.10 —0.0004 1.400 0.002 5.410 -1.3434
[0.50 0.50] 0 0.0017 1.413 0.0026 4.470 —c0
[0.50 0.50] 0.01 —0.0004 1.428 —0.0042 4.612 —-2.2976
[0.50 0.50] 0.03 —0.0006 1.460 -0.0001 4.915 -1.7385
[0.50 0.50] 0.05 —0.0004 1.494 -0.0021 5.302 -1.4735
[0.50 0.50] 0.10 0.001 1.601 0.0227 6.720 -1.1036

Table 2 reports the first four moments of the simu