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Abstract:

Although linearly interpolated series are often used in economics, little has been done to 
examine the effects of interpolation on time series properties and on statistical inference. 
We show that linear interpolation of a trend stationary series superimposes a ‘periodic’ 
structure on the moments of the series.  Using conventional time series methods to make 
inference about the interpolated series may therefore be invalid.  Also, the interpolated 
series may exhibit more shock persistence than the original trend stationary series. 
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1. Introduction

Analysis of economic time series is often limited by the sampling frequency.  For example,

aggregate capital stock data is usually collected annually, while economists often require quarterly

data.  Also, some prewar U.S. output and price series are only available for benchmark years

which may be a decade apart, but economists who study prewar business cycles need at least

annual data.  A technique often used to increase data frequency or to estimate missing observations

is segmented linear interpolation.1  It involves generating new data points along each segmented

line connecting two available and consecutive data points.  Generated data are sometimes padded

by adding a serially correlated term derived from another indicator or component series.  Examples

include widely used series constructed by Kuznets (1946, 1961), Shaw (1947), Friedman and

Schwartz (1982), and Romer (1989).

As Romer (1989) argues, the accuracy of our views about prewar cycles depends on the

quality of the interpolated series because many studies of important macroeconomic relationships

use these series.  Yet the effect of interpolation on the stochastic properties of time series has

hardly been examined.  Furthermore, little is known about the way interpolation affects the

statistical measures computed from the series in question.  For example, Stock and Watson (1986)

conjecture that linear interpolation may have caused the difference between the GNP shock

persistence of the prewar and postwar series, as reported in their study and in studies by Campbell

and Mankiw (1987) and DeLong and Summers (1988).

Jaeger’s (1990) Monte Carlo results suggest that segmented linear interpolation reduces the size

of shock persistence in a difference stationary series.  In this paper we analytically examine the

effect of segmented linear interpolation on the time series properties of a trend stationary

process.2  We compare moments and cross moments of the original and interpolated series and

discuss consequences of applying conventional time series methods to interpolated series.  In

particular, we discuss implications for testing random walk vs trend stationarity using shock

1It is interesting to note that linear interpolation was apparently used as early as 2000 B.C. in ancient Babylonian

Mesopotamia to construct exponential tables.  See Boyer and Merzbach (1991). 
2By considering a trend stationary series we extend Jaeger’s (1990) work.  In addition, the findings reported in

Cochrane (1988), Christiano and Eichenbaum (1990), and Rudebusch (1993) that indicate the unit root component of

GNP data may be smaller than previously thought provide an added incentive for considering a trend stationary series.



2

persistence measures.

The paper is organized as follows.  In the next section we model a linearly interpolated series

and evaluate its properties.  In section 3 an illustrative example is presented to highlight the effect

of interpolation on moments of the process; practical implications are also discussed.  Section 4

concludes the paper.  

2. Linear Interpolation of Trend Stationary Time Series 

We start with a trend stationary series and rewrite it by introducing a new notation.  This

notation is useful for analyzing periodic and interpolated series, and thus is more suitable for our

purpose.  We then divide the series into segments of equal length, drop all but one observation in

each segment, and reconstruct the missing observations by linear interpolation.  The original and

interpolated series are compared and their properties are examined.

Consider the following trend stationary model characterizing an economic time series:

   YT – α T = UT, T = 1, 2, . . ., (1)

where    αT  is the deterministic component of the series, and  UT  is the stochastic component with a

stationary autoregressive-moving average (henceforth ARMA) structure.  We assume  UT  is

ARMA(1, 1),

   UT = 1 + θ L
1– ρL

Ε T, (2)

where    ΕT  is i.i.d.   (0, σ 2),  θ  and   ρ < 1, and L is the standard lag operator with    LΕ T = ET –1.

An ARMA(1, 1) process is adopted for the sake of concreteness.  Using an ARMA(p, q) process

introduces more complexities but does not change our findings (see also footnote 6).

The above notation is adequate for modeling annual series where T denotes the year.

However, when applied to a ‘periodic’ (e. g., quarterly or monthly) series, the single index T that

identifies the period becomes merely a counting device.  The setting considered here requires a

more specific notation.  Therefore, we write the   YT  series as   yt, i , with i = 1, 2, . . ., s, and
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  t = 0, 1, 2, . . ., where each element of the   yt, i series corresponds to an element of   YT  as follows:

  y0,1 = Y1,   y0,2 = Y2, . . .,   y0,s – 1 = Ys– 1,   y0,s = Ys,   y1,1 = Ys +1 , . . ., and   yt, i = Yst + i.  Here,

‘period’ refers to the time span covered by s subperiods at any t.3

We now introduce a new lag operator L, which we call periodic lag operator.  The operator

follows the rule

    
Lyt, i ≡

yt, i– 1 if i > 1

yt –1, s if i = 1.4

Then, an alternative but observationally equivalent representation of (1) and (2) is given by

    yt, i – α (st + i) = 1 + θL
1 – ρL

ε t, i, (3)

where   ε t, i and   ΕT have the same correspondence as   yt, i and   YT .  The deterministic component of

the process is now    α (st + i).

The detrended   yt, i series only contains the stochastic component which we denote by   yt, i.  The

first two moments, cross moments, and the autocorrelation function of   yt, i are given by

   µy = E( yt, i) =0, (4a)

   
γ y(0) = Var(yt, i) = σ 2 1 + θ2 +2ρθ

1 – ρ 2 , (4b)

    γ y(1) = Cov(yt, i , Lyt, i) = σ 2 (1 + ρθ)(ρ + θ)
1 – ρ2

1

, (4c)

   γ y(k) = ργy(k – 1)  for k ≥ 2, and (4d)

3Note that this notation is general enough to fit any periodic structure or data frequency.  For example, t and i

may, respectively, denote decades and years within a decade.  In fact, t may denote any arbitrary time interval, in

which case i denotes nonoverlapping and equal subperiods within that interval.  In a more conventional setting for

quarterly data, t and i denote years and quarters, respectively.
4Obviously,    Lsyt, i equals   yt –1, i.  Also, note that applying the periodic lag operator to the indices themselves

follows the same rule.  That is, for   i > 1,    L i = i – 1 and    L t = t, while for   i = 1,    L i = s and    L t = t –1.
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ry(k) =
γ y(k)

γ y(0)
. (4e)

The process is stationary and its moments do not depend on i.

Now consider a situation where in each period only one of the s data points is available; this

point pertains to the end of the period,   yt, s.  To increase frequency, missing observations are

generated by segmented linear interpolation.  Each segment covers one period.  The   s–1 missing

observations in that period are generated according to the following linear interpolation:

   xt, i ≡ i
s yt, s – yt –1, s + yt – 1,s = i

s yt, s + s – i
s yt – 1, s. (5)

We refer to   yt, i as the original series and to   xt, i as the interpolated series.  Obviously,   xt, i = yt , i for

  i = s, as the interpolation does not change the available observations.5

Substituting   yt, s and   yt –1, s from (3) into (5) yields

    xt, i = xt, i – α (st + i) = i
s

1 + θL
1 – ρL

εt, s + s – i
s

1 + θL
1 – ρL

εt – 1, s. (6)

It can be seen from (6) that the interpolated series has the same deterministic component as the

original series; this is obviously an appealing feature of linear interpolation.  The mean of the

stochastic component of the interpolated series also remains zero.

However, the interpolation does alter the variance/covariance structure of the series.  Using (5)

and (6) it is straightforward to show that the variance and autocovariance functions of the

interpolated series are respectively

   
γ x, i(0)=

i2 +(s – i)2

s2

1

γy(0) +
2i(s – i)

s2 ρ3γ y(1),        and (7)

5As mentioned earlier, a stochastic term may be added to each interpolated observation to account for deviations

from the trend.  The addition of such term, however, does not affect the findings reported here and therefore is not

included for notational simplicity.
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γ x, i(k) =

s(s– i)+(2i–s)(i– k)
s2 γ y(0) + si–(2i – s)(i – k)

s2 ρ3γ y(1), if 0 < k ≤ i

(8)

s(s –i)+(2i – s)(Lki)
s2 ρ –1 +

si– i(Lki)
s2 ρ3 ρ 4 k– i

s γ y(1) –
(i – s)(Lki)

s2 A, if k > i

where    γ y(0) and    γ y(1) are given in (4),   k – i
s  is the closest integer larger than or equal to   k – i

s , and

   A = γ y(0) if   k – i
s = 1, or else    A = ρ4 k – i

s –5 γy(1).6  In   Lki, the periodic operator L is applied

k times to the index i.  The autocorrelation function of the interpolated process is given by

    
rx, i(k) =

γ x, i(k)

γ x, i(0) γx, L ki(0)
. (9)

It is apparent from equations (7)–(9) that the variance, covariance, and autocorrelation functions of

the interpolated series are invariant to changes in t but they vary with i—such variations are

termed periodic.  These functions also differ from the variance and autocovariance functions of the

original series given in (4).  The magnitude of such periodic variations and differentials depends on

parameters of the stochastic component of the original series.    

3. An Example and Interpretation of Results

The following example illustrates the periodic variation in the theoretical variance and

autocorrelations of the interpolated series.  It also shows the extent of divergence between these

moments and the corresponding moments of the original series.  The moments are computed using

equations (4), (7), and (8) where    γ y(0) and    γ y(1) are obtained assuming the stochastic component

of the original series to be AR(1) with parameters   σ 2 and ρ.7  We set   σ 2 =1  and   s = 4.  The

results are displayed in Figures 1–3.

Figure 1 shows the variance of the interpolated series for various values of ρ.  Three distinct

6Similar expressions can be derived for k < 0.  Details of the derivations are available upon request.  It is also

noted that similar expressions can be derived for an ARMA(p, q) process.  For example, the variance in case of a

general ARMA(p, q) process would be    γ x, i(0) =
i2 +(s – i)2

s2

1

γ y(0)+
2i (s – i)

s2 γ y(4).

7We choose AR(1) for expositional convenience and also because of its popularity in the ‘unit root vs trend

stationary’ literature.  Our findings, however, are robust to alternative specifications.
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values are observed, one for   i = 4, one for   i = 2, and one for   i = 1 or 3.  As mentioned earlier,

  xt, 4 = yt,4  and therefore    γ x,4(0) equals the variance of the original series (solid line).  This variance

is larger than the other two periodic variances by as much as 100%.  Figure 2 shows the first order

autocorrelation of the interpolated and the original series (solid line) for various values of ρ.8

Here we have two distinct periodic autocorrelations, and both are considerably larger than the

autocorrelation of the original series regardless of the value of ρ.  To examine the behavior of the

periodic autocorrelations of the interpolated series at higher lags, we set   ρ = 0.9 and compute   ry(k)

and   rx, i(k), i = 1 to 4, and k = 1, 2, . . ., 8.9  The results, displayed in Figure 3, indicate that

there are two or three distinct periodic autocorrelations at each k.  These parameters are larger than

the autocorrelation of the original series (solid line).

The above example illustrates that the moments of a linearly interpolated series exhibit

significant periodic variations even though the original series is stationary around its trend.  The

number of distinct periodic parameters depends on the interpolation frequency.  For example, if the

interpolation is intended to quadruple the frequency, the number of periodic moments will be 2–3

times the number of original moments.  Moreover, the periodic autocorrelations of the interpolated

series are larger than the autocorrelations of the original series at matching lags.

The theoretical results presented here have important practical implications.  First, segmented

linear interpolation alters the stochastic properties of a trend stationary series by introducing

periodicity into moments of its stochastic components.  This indicates nonstationarity if viewed in a

conventional sense.  However, the interpolated series is periodically stationary because moments

are invariant to changes in the period despite their variation within the period.10  Ignoring this

periodicity and using conventional time series analysis may lead to dynamic misspecification, and

consequently to invalid statistical inference.  For example, standard unit root tests may not be valid

8In the present example the original detrended series is AR(1), so its k-th order autocorrelation is ρ k,    k ≥ 0.
9This particular value of ρ is chosen because the stochastic component of economic series is expected to have a

high serial correlation.  For the sake of completeness, we repeated this exercise for smaller values of ρ and found the

variations reported here to be even more pronounced.
10The moment parameters of a periodically stationary series do not change across periods but they change within a

period.  For example, in a quarterly setting there are four sets of moments pertaining to each quarter and these

moments are invariant to a change in the year.  Periodic processes have recently received considerable attention.  See,

e. g., Osborn (1988, 1991), Barsky and Miron (1989), and Chatterjee and Ravikumar (1992).
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when applied to linearly interpolated series.  Instead, such series should be analyzed using the

tools developed for periodically stationary series.  See, e. g., Osborn (1988, 1991) and the

references therein.

Second, the autocorrelation function of a trend stationary series appears to lie below the

periodic autocorrelation functions of its linear interpolation.  Therefore, standard estimates of the

original autocorrelation function using the interpolated series will be biased upward.

Consequently, any shock persistence measure that is a linear combination of the estimated

autocorrelations, as in Cochrane (1988), may be positively biased, leading to an overestimation of

the random walk component.  Any evidence of a random walk found in interpolated series should

therefore be interpreted with caution.

4. Conclusions

Our results suggest that segmented linear interpolation of a stationary process leads to varying

moments that may be viewed as an indication of nonstationarity in a conventional  sense.  The

variation in moments is periodic, however, and the interpolated series are in fact periodically

stationary.  Therefore, such series should be analyzed in the context of periodic time series models

rather than by conventional methods.

Furthermore, ignoring the periodic nature of the interpolated series and estimating the

autocorrelations by conventional methods results in estimates which are biased upward.

Consequently, shock persistence measures computed from such estimates may also be biased

upward, leading to an incorrect inference that the series contains a random walk.

Jaeger’s (1990) Monte Carlo results suggest that interpolation introduces a downward bias in

the shock persistence measures if the original series follows a random walk.  We, on the other

hand, find an upward bias if the original series is trend stationary.  This implies that the direction

of the bias caused by linear interpolation will depend on whether the original series follows a

random walk or a trend stationary process.  This indeterminacy in the direction of the bias makes

any random walk vs trend stationarity inference about a linearly interpolated series suspect.
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Fig. 2. First order autocorrelation of the original series and first order periodic autocorrelations
of the interpolated series evaluated at various ρ’s.
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Fig. 3. Autocorrelation function of the original series and periodic autocorrelation functions of
the interpolated series evaluated at various lags (k).
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