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Banknotes under Natural Rate Uncertainty

Thomas Link*

November 2019

Abstract

The elimination of large-denomination banknotes is one of several options to relax
the effective-lower-bound constraint on nominal interest rates. We explore timing issues
associated with the calling-in of large notes from a central banker’s perspective and employ
an optimal stopping model to show how the volatility and the expected path of the natural
rate of interest determine an optimal timing strategy. Our model shows that such a
strategy can involve a wait-and-see component analogously to an optimal exercise rule
for a perpetual American option. In practice, a wait-and-see component might induce a
central banker not to call in large notes until the natural rate has fallen to an exceptionally

low level.

JEL classification: E42, E58
Keywords: cashless economy, phase-out of paper currency, wait-and-see policy, option

value
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1 Introduction

It is well established that cash implies an effective lower bound (ELB) on nominal interest
rates and thus a constraint for monetary policy.! Proposals to relax the ELB-constraint
range from abolishing cash straightaway (for instance Buiter, 2009), on the one hand,
to implementing measures that reduce the attractiveness of cash as an outside option in
times of negative nominal interest rates on the other hand. Concrete measures of this kind
include issuing banknotes with a ‘magnetic strip’ that can be used to enforce holders of
such banknotes to pay a carry tax on currency (Goodfriend, 2000, p. 1016) or ‘phasing out’
large-denomination banknotes (Rogoff, 2017a, p. 57).2 While Goodfriend’s approach relies
on technical ways to enforce higher costs of carry for cash artificially, Rogoft’s approach
aims at directly increasing the costs associated with cash hoardings like transportation,
storage, and insurance costs.® In this paper, we take up Rogoff’s proposal and consider
the implied decision problem of a central banker that has the power to implement it.
Our starting point is the observation that Rogoff’s approach to lower the ELB is easy to
implement, practical (in contrast to the other two approaches mentioned), scalable, and,
most notably, that it is in fact feasible within the mandate and set of instruments of at
least one major monetary authority. Evidence has recently been provided by the European
Central Bank that stopped the issuance of 500-euro notes in April 2019.4

A central bank like the European Central Bank (ECB) with a clear mandate and
the primary objective of maintaining price stability should face a relatively narrow and
well-defined problem in deciding whether or not to phase out large notes — especially

since it is not the complete ‘abolition’ of cash at stake, but just an adjustment in the

!See, for instance, Goodfriend (2000, p. 1007), Buiter (2009, p. 214), or Rogoff (2017a, p. 47). However,
it has also been pointed out that cash is not the only reason that the ELB exists: We refer to Rogoff (2017a,
p. 61) and (as also cited therein) to McAndrews (2015) for a discussion of various other frictions that had
to be tackled in order for central banks to be able to effectively implement negative rates.

2See also Buiter and Panigirtzoglou (2003) for a detailed discussion with a comment on the feasibility
and a theoretical analysis of the ‘carry tax’ approach. Buiter (2007a) discusses an alternative to that
approach which, in principle, involves the introduction of an exchange rate between cash and central
bank reserves. A detailed discussion of the approach to ‘phase out’ large-denomination banknotes is also
presented in Rogoff (2016) and Rogoff (2017b). For a survey of several approaches to relax the ELB-
constraint and a discussion of feasibility issues see, for instance, Agarwal and Kimball (2019).

3See Rogoff (2017a, p. 59).

4Agarwal and Kimball (2019, p. 44) suggest that the decision to curtail the denominational structure
of banknotes has increased the scope for the ECB to lower its policy rates — simply because the physical
effort of storing multiples of €500 in cash and thus the hurdle to take a flight into euro-denominated cash
are higher now (which is the exact same rationale put forward by Rogoff, 2017a, p. 59).



denominational structure of banknotes. No weight should be assigned to arguments that
stand against completely abolishing cash, such as the loss of privacy or of the possibility
to make payments independent of information technology and access to the internet (for a
central bank like the ECB, such arguments should in any case be subordinate to monetary
policy goals).” However, even for a ‘cash-averse’ central banker, there is a major reason
to keep issuing large banknotes: As Rogoff (2015, pp. 450-452) suggests, it is natural to
assume that phasing out large notes will reduce cash demand and thus the seignorage
revenue a central bank makes by issuing cash.® Rogoff (2015, p. 452) states that the loss
of seignorage profits is in so far problematic for a central bank, as its capacity to finance
itself and to thus shield its operational independence is put at stake.” The decision to
phase out large banknotes thus involves a major dilemma for a central bank when it
must trade off the benefits for monetary policy from a relaxed ELB-constraint against
the loss of seignorage revenues. In this paper, a central bank’s decision problem is, in
principle, reduced to this dilemma because we believe that other arguments for or against
the issuance of large notes, for instance, of 200- and 100-euro notes, should be less relevant
for a central bank with a clear mandate like the ECB.

It is obvious that the intensity of this dilemma is state-dependent and uncertain in
many dimensions with the net benefits from phasing out large banknotes dependent on
the likeliness, frequency, and scale of ELB-episodes in the future as well as on the amount
of forgone seignorage revenues. We focus on one key determinant and start with the
hypothesis that both factors, i.e., the probability and costs of ELB-episodes in the future
as well as seignorage losses, are a monotone function of the natural rate of interest. Model-
based simulation results that point toward the assumption that a lower natural rate level
involves a higher probability of ELB-episodes is provided by Kiley and Roberts (2017) and
Chung, Gagnon, Nakata, Paustian, Schlusche, Trevino, Vildn, and Zheng (2019). These
studies assess the likelihood of ELB-episodes in the United States for different states of

the world and different interest rate levels and find a significant risk in some scenarios

5For detailed discussions of arguments in favor of and against the issuance of cash, respectively large-
denomination banknotes, see, for instance, Rogoff (1998), Rogoff (2015), Rogoff (2017a) or Kriiger and
Seitz (2018).

5We use the term ‘seignorage’ for central bank revenue from issuing cash, noting that there are other
measures of seignorage (see, for instance, Buiter, 2007b).

"See also Rogoff (2016, chapter 6), Buiter (2009, p. 224), Thiele, Niepelt, Kriiger, Seitz, Halver, and
Michler (2015, p. 10), or Kriiger and Seitz (2017, chapter 4.1).



that the ELB-constraint will become binding again in the future.® In light of Holston,
Laubach, and Williams (2017) who observe a significant fall of natural rates in the United
States, Canada, the euro area, and the United Kingdom during the last three decades, it is
thus natural to assume that the probability of ELB-episodes in those other regions, ceteris
paribus, is also now significantly higher than it was three decades ago.? Altogether, with
seignorage revenues typically decreasing in the interest rate level (we comment on this
relationship in section 2), we build our analysis on the assumption that the net benefits
from phasing out large notes and thus from relaxing the ELB-constraint are higher the
lower the natural rate of interest is.

Rogoff (2016, chapter 7) discusses how a ‘phase out’ of large-denomination banknotes
could be implemented. In principle, the implementation schemes he considers range, on
the one hand, from removing the legal tender status of certain banknotes without delay or
at relatively short notice (similar to the calling-in of 500- and 1,000-rupee notes in India
in 2016) to, on the other hand, a ‘soft’ implementation version where certain banknotes
are gradually removed from circulation over time by simply stopping their issuance while
keeping their legal-tender status (which is the ECB’s approach to phasing out the 500-
euro note). In this paper, a ‘tough’ scheme is considered where the central bank stops the
issuance of a large-denomination banknote and immediately removes its status as legal
tender. We refer to this move as the ‘calling-in’ of the large-denomination banknote.

Our goal is to explore optimal timing issues from a central banker’s perspective under
three assumptions: 1) The net benefits from calling in large notes are uncertain and a
function of the (stochastic) natural rate of interest. 2) The calling-in move is irreversible
(for instance, because the reputational costs of reversing it are prohibitively high). 3)
The move can be timed freely. With these three features, the central banker’s problem of
finding the optimal timing to make the calling-in move has a structure that is equivalent

to the optimal exercise problem of a perpetual American option or to a firm’s optimal

8Kiley and Roberts (2017) analyze the risk of ELB-episodes for different ‘steady-state nominal interest
rates’. Since they assume a 2% inflation target (see ibid., p. 337), the different steady-state nominal
interest rates they consider are driven by different ‘equilibrium real interest rates’ (i.e., natural rates of
interest). Chung, Gagnon, Nakata, Paustian, Schlusche, Trevino, Vildn, and Zheng (2019) present a related
study. They show that the probability that the United States will experience an ELB-episode in the future
increases with a decreasing ‘neutral level of the real federal funds rate in the longer run’ (see ibid., pp.
7-8). See also Yates (2004) for a review of earlier studies on the risk of ELB-episodes.

9See Rogoff (2017a, pp. 49-51) for a more detailed discussion on the relationship between low real
interest rate levels, low monetary policy rates, and the risk of future ELB-episodes.



timing problem for an irreversible investment under uncertainty (a ‘real option’).!? As
pointed out by Dixit and Pindyck (1994, pp. 6-7, 153), a key feature of corresponding
decisions with an option element is the ‘wait-and-see’ component of an optimal timing
strategy. That is, under certain circumstances, optimality does not require a decision-
maker to exercise a real option — analogously to a financial option — until the expected net
benefits from making a move are significantly greater than zero. With regard to a central
banker’s decision problem this implies that even if the expected net benefits from calling
in large banknotes today are greater than zero, under certain circumstances, there can be
a simple reason to postpone such a calling-in move to a future date. We use a stylized
optimal stopping model to show how the optimal timing of calling in large-denomination
banknotes depends on the volatility and the expected path of the natural rate of interest.
In the idea of concentrating on the option structure of a real policy problem, our paper is
most closely related to Alvarez and Dixit (2014) who explore the euro area’s ‘real option’
of abandoning the common currency.'!

Section 2 formalizes a central banker’s decision problem and introduces an optimal
stopping model of calling in large-denomination banknotes. The model is solved in section
3.1 for the deterministic and in section 3.2 for the stochastic case. Section 4 sheds light
on the determinants of optimal policy and the ‘value’ of the central banker’s option to
make a calling-in move. Section 5 presents some numerical examples to assess a central

banker’s wait-and-see behavior in different states of the world. Section 6 concludes.

2 An Optimal Stopping Model of Calling In Large-

Denomination Banknotes

A central banker with power over the legal tender in a closed economy has the option to
make a change in the denominational structure of banknotes. The central banker initially
issues banknotes in two denominations, ‘small’ and ‘large,” and has the authority to call

in the large denomination by stopping its issuance and removing its status as legal tender

108ee Dixit and Pindyck (1994, pp. 3-25) for a discussion on the analogy between financial and real
options and their characterizing features.

"n solving our model and in technical regards, we primarily draw on the dynamic programming
methods and solution concepts described by Dixit and Pindyck (1994).



straightaway.'? The reputational costs of reversing such a calling-in move are prohibitively
high, thus the change in the denominational structure is irreversible. The move is one-shot
and can be made at any time. Time is continuous and the time horizon is [0, 00).

Cash demand and banknotes in circulation are not explicitly modeled. We just assume
that small and large banknotes are only imperfect substitutes, such that cash demand
depends on the denominational structure and is larger the higher the value of the largest
denomination available is (for instance, because there is a specific demand for large notes
as a store of value, as Fischer, Kohler, and Seitz (2004) describe). Calling in the large
notes reduces cash demand and ultimately cash in circulation. For the central banker
in particular, two consequences of such a calling-in move are relevant: The benefit from
relaxing the ELB-constraint and a cost in the form of lost seignorage revenues.

Our way of capturing the costs and benefits from calling in large banknotes that will
ultimately enter the central banker’s objective function is extremely stylized: We follow
the approach that Alvarez and Dixit (2014) use to formalize a currency union’s decision
problem of choosing the optimal timing to break up the union (they consider a potential
break-up of the euro area). In principle and to put it simply, Alvarez and Dixit (2014)
capture the currency union’s costs and benefits from having the common currency by
an exogenous process of flow utilities that is independent of the union’s timing and of
other future variables.!> Although extremely stylized, this approach is convenient as it
allows for a clear analysis of the effects of uncertainty over future states of the world on
the decision-makers’ actions and wait-and-see behavior. In this manner, we capture the

central banker’s net benefits from calling in large notes by the flows of utility u; in period

128ee also Rognlie (2016) who uses a model with two cash denominations in the context of the elimination
of large denominations to lower the ELB-constraint, too. However, Rognlie (2016) considers the elimination
of large denominations in the context of a New Keynesian framework and analyzes household utility under
optimal monetary policy dependent on the existence of small and large cash denominations (see Rognlie,
2016, pp. 41-42). In contrast to our paper, Rognlie (2016) does not discuss issues regarding the optimal
timing of eliminating large denominations.

13 Actually, Alvarez and Dixit (2014) start with the modeling of flow benefits a member of the currency
union has from belonging to the union, see Alvarez and Dixit (2014, p. 80, equation (3)).



t that are received once the calling-in move has been made. With U; denoting the central

banker’s overall period-t utility we can write

0 fortel0,T),
U = (1)

up for t € [T, 00),

where T' € [0, 00) denotes the point in time when the calling-in move is made.

Since we want to describe a central banker whose main benefit from calling in large
notes is a welfare gain from the relaxation of the ELB-constraint on monetary policy rates
and whose main cost is the loss of seignorage revenues, we can state the central banker’s

net period utility from calling in large notes as

Ut =g —T¢t — W, (2)

where g € Ryp and w € R~ are known and constant parameters and r; denotes the natural
rate of interest in period ¢. The natural rate is governed by an Ornstein-Uhlenbeck process

(OU process) with

d?“t = H(T’SS — T’t)dt + O'dBt, t Z 0, (3)

where By is Brownian motion (with By = 0), # € Rsq is the speed of reversion to a
long-run mean or steady-state level 7 € R, and o € R>¢ is a volatility parameter. This
specific process is simple enough to allow for an analytical solution of the central banker’s
decision problem but it is also sophisticated enough to describe a variety of plausible
empirical scenarios (we discuss different scenarios in section 3.1).14 The two constants w
and g are level parameters that capture the costs and benefits from calling in large notes
that do not depend on the state of the world, respectively on the natural rate of interest.

Letting the natural rate enter the utility function with a negative sign reflects two
assumptions. The first assumption is that the potential benefits from relaxing the ELB-

constraint on monetary policy rates by calling in large banknotes are larger the lower the

1 Of course, the denominational structure itself and a lowered ELB could in turn influence the structure
of the economy and in particular the natural rate, but we shall ignore such and other interdependencies
and assume that the natural rate follows an exogenous process.



natural rate is. To accept this assumption it helps to consider the economics within a basic
New Keynesian model as, for instance, presented in Gali (2015, chapter 3). The deviation
of actual output and inflation from their natural and/or efficient levels (i.e., output and
inflation gaps) in such a framework increases in the difference between the actual and the
natural real rate of interest (i.e., in the real rate gap) with a positive real rate gap being
associated with negative inflation and output gaps.'® In turn, the real rate gap during
ELB-episodes is larger the lower the natural rate of interest is during these periods.'® The
reason is that the central bank is unable to lower the policy rate during ELB-episodes to
reduce the actual real rate of interest down to a desirable level. All in all, the welfare
losses due to the inflation and output gaps during an ELB-episode and thus the benefits
from relaxing the ELB-constraint are larger the lower the natural rate is.

The second assumption that is reflected in the negative sign of r; in the central banker’s
period utility is that the loss in seignorage revenues in the form of central bank profits from
issuing cash is larger the higher the natural rate is. A real world example can illustrate this
relationship:!” The European Central Bank’s interest income from banknotes in circulation
as stated in its profit and loss account is computed per convention. In principle, it is the
interest the ECB earns on its share of euro banknotes in circulation, applying the rule that
this share is always 8% and using a rate of return that is just the ECB’s main refinancing
rate (MRO rate). Consequently, the ECB’s interest income from banknotes in circulation
is increasing in the MRO rate and in particular it is zero at all when the MRO rate is
zero (which has been the case in recent years).!® So, returning to our model framework,
the negative dependence of the central banker’s utility from calling in large notes on the
natural rate can be thought of as describing a world where, on the one hand, the interest
income from banknotes in circulation increases in the policy rate which in turn is an

increasing function of the natural rate of interest — and on the other hand, a world where

15See Gali (2015, p. 63, equations (22) and (23)) and also Holston, Laubach, and Williams (2017, p.
560) for a short note on this relationship.

16See, for instance, Galf (2015, chapter 5.4) for monetary policy under an ELB-constraint.

17We are grateful to Franz Seitz who pointed out this example after a seminar talk in Leipzig. See also
Kriiger and Seitz (2017, chapter 4.5).

18See European Central Bank (2019, p. A4) for these accounting rules. The ECB’s share is 8% irrespec-
tive of its true value so that 92% of the euro banknote issuance are allocated to euro area national central
banks that actually issue banknotes. See also European Central Bank (2019, p. A24) for the position
‘interest income arising from the allocation of euro banknotes within the Eurosystem’ which was zero in
2017 and 2018.



cash demand and thus currency in circulation is smaller when only small denominations
are issued.'

Let us now consider the central banker’s timing problem. We take a t = 0-perspective
and assume that only the current level of the natural rate ro = r» € R is known such that
the decision to call in large notes must be made under uncertainty over the future path
of the natural rate and thus under uncertainty over the future net benefits from making a
calling-in move. At this point we refer to the real options literature and in particular to
Dixit and Pindyck (1994, pp. 3-25) who point out the analogy between financial options
and real options, i.e., opportunities to make real investments that can be timed freely,
that are irreversible, and that are made under uncertainty over future states of the world.
In principle, our central banker’s calling-in move can be regarded as an investment that
shares the three exact same characteristic features: the move is irreversible, can be timed
freely, and is made under uncertainty. So, since the central banker’s timing problem has
the same structure as the problem of pricing an American option or as a firm’s problem
of finding the optimal timing to make an investment, we use dynamic programming as
described in Dixit and Pindyck (1994, pp. 93-132, 135-174) to solve this problem. In
doing so, we follow Alvarez and Dixit (2014) who apply dynamic programming to value a
currency union’s ‘real option’ to break up the union.

Accordingly, we solve the central banker’s problem of when to optimally call in large
notes by finding the ‘value’ V(r) of her option to make this calling-in move depending
on the period-0 natural rate rg = r. We use the term ‘calling-in option’ from now on
and measure ‘value’ in terms of utility such that the value of the calling-in option is the
expected present value of the stream of flow utilities from calling-in large notes provided
that the calling-in move will be timed optimally.?® Determining the value function yields
an optimal timing strategy for the ‘exercise’ of the calling-in option in the form of the rule
to call in large notes as soon as the natural rate hits or falls below a certain threshold r.
We define the value of the calling-in option, given that the central banker follows this rule,

and given that the period-0 level of the natural rate is r > r, as supremum of the expected

19See, for instance, Rogoff (2016, chapter 6) for this last point in the context of a central bank’s
seignorage revenues.

208ee Dixit and Pindyck (1994, pp. 99-101) for a discussion of the basic role of value functions in a
dynamic programming context.



present value of the stream of flow utilities the central banker receives after having made
the calling-in move at time T'. With § € R~ denoting the rate at which the central banker

discounts future utility, the value of the calling-in option is thus

V(r)= ;l;%IE [/TOO (g — 1 —w) - exp(—at)dt } ro=r|, (4)

where the supremum is taken over all timings 7" > 0 to make the calling-in move. Note
that each timing is a stopping time, i.e., a random variable that is defined by a timing
strategy in the form of a rule to make the move once the natural rate hits or falls below
a certain threshold. Finding the optimal threshold r and the value V' of the calling-in

option is an optimal stopping problem. We solve this problem in the next section.

3 Optimal Policy and Option Value

3.1 Optimal Timing and Option Value under Perfect Foresight

Before we solve the model for the case where o > 0 in section 3.2, we consider a world
with perfect foresight and thus without uncertainty over the future path of the natural
rate of interest. So, for the remainder of this section, we assume ¢ = 0. In solving a
deterministic version of the model first, we choose the same order of analysis as Dixit
and Pindyck (1994, pp. 136-147) (for a generic timing problem) in order to provide some
intuition on how the results of the model are driven by the non-stochastic variables, and
in particular, by the anticipated path of the natural rate. For that purpose, we analyze
the central banker’s timing strategy in six scenarios with different paths of the natural
rate.

The central banker’s timing problem under perfect foresight is relatively simple and the
solution is obtained as follows: Consider first the path of the natural rate. In general, with
the natural rate behaving as described by equation (3), 7 conditional on ro = r € R is

Gaussian with E[r] = r-exp(—0t)+7*°-(1—exp(—6t)) and Var(r;) = ‘2’—;-(1—exp(—219t)).21

21See, for instance, Maller, Miiller, and Szimayer (2009, p. 423) and Dixit and Pindyck (1994, pp.
74-78).

10



So, the expected natural rate is a monotone function of time. For o = 0 the actual natural

rate in period t will be equal to the expected natural rate in period ¢t where, with ro = r,
re =1 -exp(—60t) +r°° - (1 —exp(—6t)). (5)

Therewith, we can compute the expected (period-0) present value of the stream of flow
utilities uy = g — s —w the central banker will receive after having called in the large note,
given that rg = r and given that the calling-in move will be made at time 7' > 0. For

o = 0, this expected value equals the actually realized value F(r,T) with??

F(r,T)= /TOO (g —r —w) - exp(—at)dt (6)

(g =71 —w)-exp(=0T) — 510 (r—7r%)-exp(—(d +0)T).

| =

This is the central banker’s objective function under perfect foresight. She maximizes (6)
simply by choosing an optimal point in time 7% € [0, 00)U{o0} to make the calling-in move
(T* = oo means that the move will never be made). So, the optimal stopping problem (4)

degenerates to

V(r)= ;g%F(r, T), (7)

where T € [0, 00) is a deterministic variable and T™* € [0, 00) U {00} is thus already known
in period ¢t = 0 (in the general case for 0 > 0, T' is a random variable). Note, that as the
central banker can simply choose never to exercise the calling-in option at all, its value V'
in terms of future utility must be bounded from below by zero.??

The optimal timing strategy to make the move in period T™ can also be formulated

as a decision rule: do not make the calling-in move as long as the natural rate is above a

certain threshold r and make the move as soon as the natural rate hits or has fallen below

22Here, a great technical advantage of the OU process for our purposes becomes apparent: the integral
in (6) is easy to solve with r; as defined in (5).

Z3Note, that the value of the calling-in option cannot simply be stated as maximum of F' over T since
such a maximum does not necessarily exist (think of F' converging to zero from below for T — o0). So, we
use the supremum in the formulation of the deterministic timing problem, too.

11



this optimal threshold. In the absence of uncertainty over the natural rate, the optimal
threshold r can easily be computed by evaluating (5) at t = T™ to obtain r = rp-.
Therewith, the value V' of the calling-in option can also be expressed as the present

value of the ‘exercise payoff’ V with

V(r) =V(r) - exp(=6T"), (8)

where the exercise payoff V at a given natural rate r is defined as the expected present
value of the stream of flow utilities from calling in the large note given that the calling-in

move is made at this given natural rate r with??

V(r) =E[F(r,T=0)]=E [/OOO (9 — 1t —w)-exp(=dt)dt | ro=r (9)
1 S8 1 Ss
25-(9—7“ —W)—m'(T—T ). (10)

It is the specific path of the natural rate that determines whether (7) has an interior
or a corner solution. In the following, we solve the model for different scenarios and show
how T™ and r depend on the anticipated path of the natural rate. Recall, we have assumed
that the natural rate is governed by a mean-reverting process. In the absence of stochastic
movements (if ¢ = 0), the path of the natural rate is a deterministic and monotone
function of time, and whether this function is decreasing or increasing in time depends on
whether the natural rate reverts to its steady state level 7% from above or from below.
Therewith, the central banker’s period utility from calling in large notes uy = g — ry — w
(as a linear function of the natural rate) features mean-reversion as well with the path of
utility being inversely related to the path of the natural rate (the two constants g and w
are just level parameters). The long-run steady state level of period utility is thus just
u®® = g — 1% — w. So, the path of period utility is monotonically increasing in time if the
natural rate reverts to its steady state from above (rg > %) and monotonically decreasing

if the natural rate reverts to its steady state from below (rg < r*). In the context of the

2YWe use the term ‘exercise payoff’ but mean the same concept that Dixit and Pindyck (1994, p. 99)
define as ‘termination payoff.” For analogous timing problems see, for instance, the generic problems in
Dixit and Pindyck (1994, chapter 5) or in Chevalier-Roignant and Trigeorgis (2011, chapter 9).
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central banker’s decision problem, these two cases describe states of the world where the
ELB-constraint becomes more, respectively less, relevant as time evolves.

Now, for the following analysis, we define two regions, A and B, of the parameter space
where A : u* > 0 and B : u® < 0. A positive steady state of utility means that in the
long run the benefits from calling in large-denomination banknotes will be greater than
the costs, a negative steady state means that the costs will exceed the benefits in the long
run. In each of the two regions, we consider three scenarios I, I, and I11 with an initially
‘high,’” an initially ‘near-steady-state,” and an initially ‘low’ natural rate reverting to its

steady state, respectively.

Scenario A.I (rp = r > g —w > r*) This scenario describes a world where in the
long run, the benefits from calling in large notes are greater than the costs. With our
interpretation of the costs and benefits this means that, in the long run, the central
banker’s benefits from relaxing the ELB-constraint exceed the costs in the form of lost
seignorage revenues. But with a relatively high natural rate in period ¢ = 0, this scenario
also describes a world where ELB-issues are at first irrelevant and only gain importance as
time evolves and the natural rate decreases to a relatively low steady state which involves
a relatively high ‘risk’ of policy rates hitting the ELB. Formally, this is reflected in the
period-0 flow utility ug = g — rg — w which is negative for rqg > g — w but increases as time
evolves. What we want to show is that the central banker will wait to make the calling-in
move until the natural rate has fallen to a sufficiently low level — although moving earlier
would already yield a positive exercise payoff.

Now, if the steady state of utility u®® is strictly positive, we can derive the optimal
timing T of the calling-in move as well as the level r of the natural rate at which the

option is optimally exercised simply by maximizing F' over T' € [0,00). In this case,

V(r) =sup F(r,T) = max F(r,T). (11)
T>0 >0

The first-order condition for an interior maximum is implied by

OF(r,T)

5T = —(g — 1% —w) - exp(—=dT) + (r — r*%) -exp(—(0 + 0)T), (12)
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and reads
(9 —7°° —w) - exp(—=dT) = (r — r) -exp(—(0 + 0)T). (13)
This yields the unique interior solution??
1 r —rs
T"=--In| ——— 14
0" <9 - ) )
which implies

=Trr =g — W. (15)

1=

This g — w threshold is critical: If the natural rate is below the threshold g — w it is so
low that the central banker’s period utility u; is positive (with r = g — w it is clear that
u=g—1r"—w >0 for all ¥ < r). With our interpretation of the central banker’s costs and
benefits we can reformulate this statement: A natural rate below the threshold g — w is
so low that ELB-issues outweigh seignorage losses. This justifies the decision rule that is
implied by r, which is to make the calling-in move as soon as the period utility u; becomes
non-negative (recall that without stochastic fluctuations, the period utility u; will steadily
approach its steady state u** which in this scenario is positive, so once it has become
non-negative, the period utility will stay positive forever, given that o = 0).

If the central banker times the calling-in move optimally, respectively follows the de-
cision rule to make the move once the natural rate hits r, she will receive only positive
flows of utility. Consequently, the present value of these flows, i.e., the value V of the
calling-in option, will be strictly positive.?6 So, the central banker could still receive a
positive exercise payoff if she moved ‘somewhat’ earlier before the natural rate hits r.

All in all, this scenario describes a situation where deferring the calling-in move is

rational although the payoff from making the move ‘somewhat’ earlier would already be

BWith % =0(g—71" —w)-exp(—0T) — (6 +0) - (r —r°°) -exp(—(0 + 6)T') it easily checked that
9*F(r,T*) [T < 0 for r > g —w > r°° and that the global maximum of F' on [0, 00) is in fact in 7" > 0.

26This can easily be checked by considering V(r) = F(r,T*) = V(r) - exp(=0T*) =
(%(g —7r% —w) — ﬁ(g — 7 = w)) cexp(—oT™) = ﬁ -u® - exp(—0T™) which is strictly greater than

zero if u®° > 0.
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greater than zero. The reason for this deferral is the anticipated decline of an initially high
natural rate to a relatively low steady state in the future — which describes a world where
ELB-issues are initially irrelevant but are only gaining importance over time. As making
the calling-in move at a relatively high natural rate level initially would lead to negative
period utilities, waiting until the period utility becomes greater than zero increases the
central banker’s overall payoff.

The central banker’s tendency to defer the exercise of the calling-in option, that is, to
wait due to the anticipated reversion of the natural rate to its steady state is reflected in
the length of the interval between the optimal threshold r and the ‘break-even threshold’ v
defined as the natural rate below which the central banker would make the calling-in move
in a situation where she would have to decide between making the move now or never.
The break-even threshold is implicitly defined by F(rg = 7,7 = 0) = 0 which yields

% —w) :g—w+§uss. (16)

The representation of the break-even threshold 7 in (16) illustrates that the larger the
benefits from calling in large notes are in the long run, i.e., the larger u** is, the earlier
the central banker could make the move without incurring a negative exercise payoff.

Thus, if 7o = r € (r, ), the period-0-value of the payoff from exercising the calling-in
option at T' = 0 is already strictly greater than zero, but optimality requires the central
bank to defer the calling-in move to 7™ until also the period flow utility u; exceeds zero
(recall that us—p+ = g — re—pr —w = 0, with ri—p« = r = g — w). So, the move is deferred
to avoid negative streams of period utilities.

Also the next two scenarios describe a world where the long-run benefits from calling
in large notes are greater than the costs (u** > 0). But with 9y < g —w in both scenarios,
the natural rate is and will remain so low that the short-run benefits from calling in large
notes are also so large that optimality requires the central banker to make the calling-in
move without delay in period t = 0. So, the next two scenarios describe an economic
environment where ELB-issues will be relevant from the outset and forever. Trivially, the
decision rule to make the move as soon as the natural rate hits or has fallen below the

threshold g — w also applies in the next two scenarios.
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Scenario A.I1I (g—w > 19 =1r > r%) The optimal timing of the calling-in move in this
scenario is 7% = 0. This is a corner solution of maxy>o F'(r,T) with F(r,T = 0) > 0 and
OF(r,T)for < OV T € (0,00). The reason that the move should be made in period ¢t = 0 is

that period utility u; is positive from the outset (since 1o < g — w).

Scenario A.JII (9 —w > 7% > r9g = r) As in scenario A.II, the optimal timing
of the calling-in move is T = 0. Again, this is a corner solution of maxyps>o F(r,T)
with F(r,7 = 0) > 0 and 9F(nT)/ar < 0V T € [0,00). The difference to the previous
two scenarios is that the natural rate reverts to its steady state from below. One could
interpret this scenario as describing a world during or after a financial or an economic
crisis where a relatively low natural rate produces a severe and pronounced ELB-episode.
As time evolves, this severe episode will find an end, but the relatively low steady state of

the natural rate implies that ELB-issues will remain relevant forever.

Scenario B.I (rg =r > r* > g—w) With a high natural rate ry and a relatively high
steady-state level r*%, this scenario describes a world in which the ELB-constraint is and
will be of no importance such that relaxing it would be useless. Neither the short-run
benefits nor the long-run benefits from making the calling-in move will exceed the costs.
With rg = r > r® > g — w, the period flow utility u; from calling-in large notes will never
be positive so that F'(r,7) < 0V T > 0 and thus V(r) = 0. The calling-in option will

never be exercised.

Scenario B.II (r® >ry =r > g —w) As in scenario B.I, the natural rate will always
remain so high that the period utility u; from calling in large notes will always be negative.

Hence, F(r,T) <0V T > 0 and V(r) = 0. The calling-in move will never be made.

Scenario B.III (r** > g—w > ryg = r > —oo) This scenario describes a world where
the benefits from making the calling-in move exceed the costs in the short run (rp < g —w
such that uyp > 0) but not in the long run (u*® < 0). For instance, large-scale financial
or economic crises could feature such exceptionally low natural rates. With monetary
policy rates that have reached the ELB in such a scenario, calling in large notes could be

a rational move even if this decision entailed long-run losses (as long as future losses are
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discounted — which we assume by setting 0 > 0). The condition for making the move is
that the short-run benefits are sufficiently large, which is only the case for exceptionally
low natural rates such that the short-run period utility from calling in large notes is
significantly greater than zero. The condition for a significantly positive utility u; is that
the natural rate is significantly below the threshold g —w. We can state this more precisely
by considering the break-even level 7 again as defined in (16) as 7 = g—w+ %uss. Recalling
that ©*® < 0 in this scenario, it is clear that the break-even threshold 7 is lower, the smaller
the steady state u®® is. Since the natural rate increases as time evolves, optimality requires
the central banker to make the move without delay in period ¢t = 0 if o < 7. Thus, the
rule of whether or when to make the calling-in move in a world where this move implies
long-run losses (u** < 0) is implied by the optimal threshold r = 7: move immediately if

ro < 7, and do not move if ry > 7.27

3.2 Optimal Exercise Rule and Option Value under Uncertainty

We now solve the central banker’s optimal stopping problem (4) in a world without perfect
foresight where the path of the natural rate of interest is uncertain, i.e., where ¢ > 0.
The solution approach we use is taken from Dixit and Pindyck (1994) which is our main
reference in technical regards (as far as possible, we use the [shorthand] notation proposed
therein).?® In addition, we refer to @ksendal (2013) for some basic methods of 1t6 calculus
that are used here and Lebedev (1965) for the differential equation and the solution we
obtain.

So, following Dixit and Pindyck (1994) in this technical regard, we use dynamic pro-

gramming based on Bellman’s principle of optimality to solve the optimal stopping problem

2TWe assume implicitly that the calling-in option is also exercised if 7o = r = #. Moreover, we have not
considered the case r°° = g — w so far which implies ©*® = 0. With (16) it becomes clear that in this case
7 = g —w = r°° so that the option is exercised never if ro = r > r°% and exercised at t = 0 if ro = r < r°°.
For the case ro = r = r°° = g —w implying F(r,T) =0V T € [0, c0) we break ties in favor of the calling-in
option being exercised at t = 0.

#For instance, Dixit and Pindyck (1994) describe how to solve the optimal stopping problem of a firm
that has the option to make a real investment under uncertainty over the future value of that investment.
Inter alia, they show how to use dynamic programming to solve the firm’s problem when the evolution of
the project value is described by geometric Brownian motion (ibid., pp. 140-147) or by a mean-reverting
process that has an absorbing state (ibid., pp. 161-167) (note, the process defined by (3) that we use to
describe the path of the natural rate has no absorbing state).
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(4).29 Accordingly, the value function V(r) and the optimal threshold r can be obtained

by solving the Bellman equation
oVdt = E[dV] (17)

for V' where (17) holds for all levels of the natural rate r that are so high that optimality

requires the central banker to keep on issuing large banknotes — i.e., for all r € [r, 00).3°

31 We solve this problem by using the

Finding V and r is a free boundary problem.
solution approach described by Dixit and Pindyck (1994, pp. 95-114, 130-132) and in
particular by ibid. (pp. 140-147). Accordingly, we start by using the Ité formula to write
the Bellman equation (17) as the homogeneous ordinary differential equation

1
5021/” +0(r** —r)V' =6V =0 (18)

(see appendix A for the detailed derivation).3?

By introducing economically meaningful boundary conditions we can solve equation
(18) for V and obtain r.33 We assume that the solution of (18) must satisfy three boundary
conditions — two left and one right boundary condition. The two left boundary conditions
we apply are standard in the literature where they are often referred to as ‘value-matching
condition” and ‘smooth-pasting condition’: Referring to Dixit and Pindyck (1994, pp. 109,

130-132, 141) and Peskir and Shiryaev (2006, chapters 8, 9) for a further discussion of

298ee Dixit and Pindyck (1994, p. 100) for a discussion of Bellman’s principle of optimality in the
context of the valuation of investment projects.

39For a discussion of related Bellman equations that solve optimal stopping problems in continuous
time with an infinite time horizon see Dixit and Pindyck (1994, pp. 101-114) and in particular ibid. (p.
140, equation (7)) where a Bellman equation is discussed that is equivalent to the Bellman equation we
have. For a discussion of why a value function in an infinite-time-horizon setting does not explicitly depend
on time see, for instance, Dixit and Pindyck (1994, p. 107). For a Bellman equation in the context of a
monetary union’s problem of when to optimally break up the union see Alvarez and Dixit (2014, p. 81,
equation (9)).

31See Dixit and Pindyck (1994, p. 109).

32 Although the context of these papers is far away from our subject, we refer to Parlour and Walden
(2009, p. 13, equation (14)), Garlappi and Yan (2011, p. 819, equation (A2)), and Suzuki (2016, p. 39,
equation (42)) who obtain equivalent/similar differential equations in their respective valuation problems
with state variables that also follow an Ornstein-Uhlenbeck process, respectively.

338ee Dixit and Pindyck (1994, p. 109) for a short note on the rationales of respective boundary
conditions in optimal stopping problems in an economic context.
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the concepts, respectively the rationales, of these conditions, we use the value-matching

condition
Vi(r) =V(r) (19)
that requires the value of the calling-in option V' to equal the option’s exercise payoff V

in the moment the option is exercised, i.e., when r = r, and the smooth-pasting condition

Vi) £ 20 (20)

that requires the value function V at r to have the same slope as the exercise payoff
function V at r.3*

In addition to these two left boundary conditions, we introduce a right boundary
condition arguing that this is a natural assumption with respect to the calling-in option
valued at a very high natural rate of interest: We require that

lim V =0 (21)

r—00

and thus capture the intuition that the expected present value of the exercise payoff (and
therewith the value of the calling-in option) should be smaller the longer it will presumably
take until the natural rate hits the optimal exercise threshold r.3?

The value function must also satisfy the non-negativity constraint

V>0 (22)

which, trivially, just reflects that the central banker has the option to issue large notes
forever. Now, it is straightforward to use this condition together with the boundary
conditions to obtain a particular solution of (18). We have placed the single steps in the

appendix and summarize the results in the next proposition:

34For an application of the value-matching and smooth-pasting condition in the context of a currency
union’s optimal stopping problem of when to break up the union see Alvarez and Dixit (2014, p. 81).

3570 see this, consider equation (8) stating that V (r) = V(r)-exp(—6T*) for the case of ¢ = 0 and recall
that T increases in 7. See also Garlappi and Yan (2011, p. 819) who have an equivalent right boundary
condition.
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Proposition 1. A particular solution of the Bellman equation (18) that solves the

central banker’s optimal stopping problem (4) subject to (19), (20), (21), and (22) is given

by
<\c/7§ (r— 7’85)> , (23)

with

1 \/5'0

. 24
54025 g (24)

c1 =

and with r being implicitly defined by

1 Voo H_s (@.(Z_rssw
o+06 20 Hfl,g (?-(z—wﬂ) —

b
5+0

(& —7%), (25)

where H,(z) denotes a Hermite function (as defined, for instance, in Lebedev, 1965, p.
285). Thereby, the value function is defined piecewise: The value function V(r) is given
by (23) for all v € [r,00). For all v < r, immediate exercise of the calling-in option is

optimal such that the value function for all v < r is just defined as V(r) = V(r).

Proof. See appendix (note that since our main intention is to show that the central
banker’s problem of finding the optimal timing of calling in large banknotes has a structure
that is equivalent to the structure of an option valuation problem, we just prove the

existence and not the uniqueness of our solution). O

In the next section, we discuss the determinants of the optimal exercise threshold and
the value of the calling-in option in detail. In section 5, in order to obtain illustrative
results, we solve equation (25) numerically for specific parameter values and use the re-
sulting approximations of r to compute and analyze the value V of the calling-in option

in different scenarios.
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4 Determinants of Optimal Policy and Option Value

4.1 Option Value and Measures of the Central Banker’s Tendency to
Wait and See

In the following, we first make some preliminary remarks on the value of the calling-in
option and on different measures of the central banker’s tendency to wait and see. Subse-
quently, in sections 4.2 to 4.5, we discuss the determinants of the break-even threshold 7,
the optimal exercise threshold r, and the option value.

The value of the calling-in option consists of two components. Keeping the terminology
commonly used for financial options, we refer to these two components as ‘intrinsic’ and
‘time value’. The intrinsic value (IV) is the positive part of the payoff from immediately
making the calling-in move, that is, IV (r) = max{V(r),0}. The time value (TV), is
defined as TV (r) = V(r) — IV (r). The time value is a measure of the central banker’s
tendency to wait and see instead of calling in large banknotes at the first opportunity
where a non-negative exercise payoff could be realized.3¢

Two factors can add time value to the calling-in option: The first one is related to
the expected path of the natural rate. If the natural rate is expected to decrease as time
evolves, the central banker will expect the benefits from calling in large notes to increase
over time. If, additionally, the long-run benefits from calling in large notes are positive,

58 > 0, there can be a reason to delay the calling-in move until the short-run

ie., if u
benefits from removing large notes are sufficiently large — even if the immediate exercise of
the calling-in option yields a positive payoff (as illustrated in scenario A.I in section 3.1).
The second factor that adds time value to the calling-in option, of course, is uncertainty
over the future path of the natural rate. This uncertainty is reflected in Var(r;) for ¢t > 0
and thus depends on the volatility parameter ¢ and on the speed of mean-reversion 6
(recall, as noted in section 3.1, that Var(r;) = ‘2’—; - (1 — exp(—26t))).

The time value reflects the central banker’s tendency to wait and see and thus crucially

determines the optimal timing of the calling-in move. Below, we evaluate this tendency to

wait and see in different scenarios in terms of the option’s time value and with the following

368ee, for instance, Hull (2019, p. 284).
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other measures:3” The tendency to wait and see due to an expected decline of the natural
rate and thus due to increasing expected benefits from calling in large notes is reflected
in the difference between the break-even threshold 7 and the optimal threshold under
perfect foresight r|,—o. The tendency to wait due to uncertainty over the future path of
the natural rate is reflected in the difference between the optimal threshold under perfect
foresight and the actually optimal threshold r. And obviously, the ‘overall’ tendency to
wait and see is reflected in the length of the interval [r, 7]. So, in the following, we analyze
the variables (in that order) 7, r|,—o, r, and TV with respect to their dependency on o,
0, and u®*®. Note, that we use the variance of r; (conditional on 7y = r) as a measure of
uncertainty over the natural rate in period ¢ and use the terms ‘long-term uncertainty’ in
this respect for ‘large’ ¢t and ‘short-term uncertainty’ for ‘small’ ¢. With this classification,
uncertainty (over both short and long horizons) is increasing in the volatility parameter o

and decreasing the speed of mean-reversion 6.3%

4.2 Determinants of the Break-Even Threshold

Uncertainty The way in which we specify our model implies that the break-even thresh-
old7f=9g—w+ g (g—r¥—w)=9g—w+ %uss (as stated in (16)) does not depend on
the volatility parameter ¢ and is thus independent of uncertainty over the future path of
the natural rate. The advantage of this specification is that the effect of o on the optimal
exercise threshold r is — as intuition suggests — monotonic (we discuss this effect in section
4.4).39 To see that 7 is independent of o, recall that 7 is determined by the expected path
of period utility which, in turn, is a linear function of the expected path of the natural
rate. There is no link between 7 and o because the two expected paths are independent

of the volatility parameter o.

37See Alvarez and Dixit (2014, pp. 85-86) for a discussion of different measures of option value.

3¥While it is obvious that BVZ;;G(”) > 0, it is not immediately clear why the second statement that
2

%ra(”) < 0 holds. To see why it holds, consider ‘W%;G(”) = 557 - (exp(—=2t0) - (2t6 4- 1) — 1). To show that
this expression is less than zero, it is sufficient to show that exp(—2t0) - (2t6 + 1) < 1. Taking the In(-),
rearranging and using the substitution x = 2t0 the last inequality can be transformed to in(z + 1) < z
which, in turn, can easily be proved.

39For instance, a non-monotonic effect of volatility on a respective optimal threshold is described in

Alvarez and Dixit (2014).
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Steady-State Utility In a world where the central banker would lack the flexibility to
time the calling-in move freely being in a situation where she would have to choose between
making the move immediately or issuing large notes forever, a relatively high steady state
of utility (i.e., the prospect of large eternal long-run benefits from calling in large notes)
could make her willing to call in large notes even if she had to accept losses in the short run.
Thus, under special circumstances, a central banker who would have to make the decision
whether to call in large notes now or never while expecting large long-run benefits from
calling in large notes would be willing to make the move already and even at a relatively
high natural rate which would involve short-run losses. Thus, the break-even threshold 7
(being the relevant threshold for a central banker in a hypothetical now-or-never situation)
is higher the higher the steady-state utility is. Formally, this relationship is captured by
(16) which illustrates that a positive steady-state utility induces a markup over the level

g —w which is the threshold below which natural rates result in a positive period utility.%"

Speed of Mean-Reversion In the following, we consider a world where the central
banker lacks the flexibility to time the calling-in move freely. Concretely, we assume that
the central banker can choose between making the calling-in move immediately or issuing
large notes forever. We consider two scenarios in this ‘now-or-never’ world to illustrate that
a higher speed of mean-reversion either increases or decreases 7, dependent on whether
utility has a positive or a negative steady state (which, formally, is immediately clear with
P =(1+%) u** +r%). Since # does not depend on o (see above), we let, without loss of
generality, ¢ = 0 in the following two scenarios and assume perfect foresight with respect
to the future path of the natural rate of interest. The scenarios differ in the steady state
of utility with the first scenario characterized by u** < 0 and the second by u*® > 0. The
present in both scenarios is ¢t = 0 with the natural rate at this point in time just having
hit the break-even level, i.e., ro =7 = 7.

So, consider the first scenario where period utility has a negative steady state while

ro = r = 7 which implies that the natural rate reverts to its steady state from below.

49The break-even threshold can also be written as a weighted sum of steady-state utility and the steady-
state natural rate which acts as a level parameter such that # = (1 4 %) -u®® + 7. This makes clear that
the exercise of the calling-in option in a now-or-never situation in a u*® < 0-scenario can only be optimal
at natural rates that are strictly below their steady-state level.
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With respect to the anticipated path of period utility, the future from a ¢t = 0 perspective
can be partitioned into two consecutive phases: the first phase is one of relatively low
natural rates (since 7 < r*%) and thus a phase where the calling-in of large banknotes is
beneficial to the central banker (period utility is positive during this phase because the
ELB-constraint is relevant). The second phase features relatively high natural rates such
that (due to the irrelevance of the ELB-constraint) having stopped issuing large notes
now involves losses for the central banker (due to forgone seignorage revenues), i.e., period
utility is negative during the second phase. It is clear that making the calling-in move is
only optimal if the short-run benefits from calling in large notes outweigh the long-run
losses. That is, the move is only optimal if the first phase with positive period utilities
is sufficiently long and/or if the period utilities during this phase are sufficiently high.
However, the first phase is shorter the higher the speed of mean-reversion 6 is. So, the
higher 6, the higher are the short-run benefits the central banker requires to make the
calling-in move and thus the lower the break-even threshold 7 (see the red lines in figure
1(a) for an illustration).

Consider now the second scenario with period utility having a positive steady state.
Again, the time after the calling-in move is made can also be partitioned into two con-
secutive phases, a phase of negative period utilities followed by a phase of positive period
utilities (recall that 7 > g — w > r* implying that the natural rate reverts to its steady
state from above in that case). Now, with the prospect of eternal long-run benefits from
calling in large notes (that will be received once the natural rate has fallen below the level
g — w, i.e., when ELB-issues outweigh seignorage losses), the central banker will accept
making short-run losses, that is, she will accept negative period utilities during the first
phase of relatively high natural rates. The cumulative short-run losses are smaller the
shorter the first phase is, that is, the higher the speed of mean-reversion is. Conversely,
the shorter the first phase is, the higher the period losses the central banker accepts during
the first phase. Thus, the higher 0, the higher the break-even threshold 7 (see the red lines

in figure 1(b) for an illustration).
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4.3 Determinants of the Optimal Threshold under Perfect Foresight

In this section, we analyze the optimal threshold r in the absence of uncertainty over the
natural rate in order to focus on the non-stochastic determinants of the central banker’s

optimal timing and a potential tendency to wait and see. So, let ¢ = 0 in the following.

Steady-State Utility First, we discuss the relationship between the optimal threshold
given 0 = 0 and the steady-state utility and show why it depends on the sign of ©*® in the

following way (see also the illustrative scenarios in section 3.1):

g—w—i—%-uss(: 7), ifu® <0
Tlo=0 = (26)
g— w, if u®® > 0.

In principle, optimal timing under perfect foresight does only depend on the anticipated
path of period utility and thus on the anticipated path of the natural rate. With regard to
the dependence of the optimal threshold given o = 0 on the steady state of period utility,
there are basically two scenarios of interest: one where the natural rate is initially below,
and one where it is initially above its steady state:

Consider first the scenario where the natural rate is initially below its steady state,
i.e., where rg = r < r**, and where period utility thus decreases in time. In this case,
the calling-in move is either made immediately or never — there is nothing to wait for (as
discussed in section 3.1). Clearly, it is optimal to never make the move if » > 7 which
in a world where the natural rate is below its steady state can only occur if utility has a
negative steady state.*! However, it is optimal to make the move immediately if r < #. If
r¢ is increasing and u; thus decreasing in time waiting would involve the loss of potential
benefits. In this case, the present value of the stream of period utilities given that the
option is exercised in some future period t, F(ro = r,T = t), is a decreasing function
of time. Thus, if the natural rate is below its steady state, it is optimal to exercise the
calling-in option immediately if » < 7 and thus if the exercise payoff V(r) is non-negative

— regardless of whether the utility has a positive or a negative steady state.

“IRecall that if utility has a positive steady state r > # = (1 + %)uss + %% would require that r > r°°.
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A calling-in move at a natural rate above its steady state will generally only be made
if u®® > 0. In this case, the break-even threshold 7 is relatively high which reflects that
the central banker would in principle accept short-run losses, i.e., negative period utilities,
during some first phase and make the calling-in move at any rg < 7 if she lacked the
flexibility to time the move freely.*? If the flexibility to choose the optimal timing exists,
those potentially acceptable losses can be avoided by deferring the calling-in move until
the natural rate is sufficiently low such that positive period utilities will be realized. This
is the case once the natural rate has fallen below the threshold g — w. So, if utility has a

positive steady state, r|,—0 = g — w.

Speed of Mean-Reversion Equation (26) shows that the optimal threshold given o =
0 only depends on the speed of mean-reversion @ if utility has a negative steady state such
that r|,—o = 7. However, as argued above, the threshold 7 is lower the faster the natural
rate reverts to its steady state and thus the shorter the first phase is of the positive period
utilities the central banker receives after the calling-in move. So, in order to accept such a
shorter initial phase the central banker requires higher period utilities during that phase
and thus a lower natural rate at the exercise of the calling-in option. Hence, as the origins
of the blue lines in figure 1(a) for u** < 0 show, the optimal threshold is decreasing in 6.

The origins of the blue lines in figure 1(b) shows that the optimal threshold is inde-
pendent of 6 if the utility has a positive steady state. If u** > 0, a central banker with the
ability to choose the timing of the calling-in move freely will wait until the natural rate
hits the level g —w below which natural rates imply positive period utilities.*> Obviously,

g — w is independent of 6.

4.4 Determinants of the Optimal Threshold under Uncertainty

In the following, we remove the previous section’s restriction and assume that ¢ > 0
to discuss the effects of uncertainty over the natural rate on the optimal threshold r.
Essentially, uncertainty over the future path of the natural rate and thus about the future

utility of making the calling-in move adds value to the flexibility to time the move freely

12Recall that if 7 > r*° period utility will increase as time evolves.
43Recall that g —w > r® if u*® > 0. So, expected period utility is monotonically increasing in time for
natural rates above their steady state.

26



and thus, in general, increases the central banker’s tendency to wait and see. Intuition
suggests that a higher tendency to wait and see from uncertainty due to a volatile natural
rate will be reflected in a larger difference between the exercise threshold that would be
optimal under perfect foresight and the generally optimal threshold. That is, intuition
suggests that the length of the interval [r,r|,—o] will be increasing in 0. We confirm this
intuition for specific sets of parameter values numerically in section 5. In the following,
we refer to the effect of uncertainty on the length of the interval above as ‘variance effect’
(the variance, in turn, is increasing in o and decreasing in 6).

However, the relationship between the absolute level of the optimal threshold r and
uncertainty measured in terms of Var(r;) (for some fixed t), can be non-monotonic if utility
has a negative steady state. The blue lines in figure 1(a) show this property and it is the
speed of mean-reversion 6 that accounts for this non-monotonicity. The reason is that 6
affects two variables: the optimal threshold under perfect foresight (r|s=0,uss<o = ) and
the tendency to wait and see. So, in addition to a variance effect, 6 has a level effect
through its impact on 7 which in turn determines the optimal threshold under perfect
foresight if utility has a negative steady state. Since these two effects are of opposite
signs, the overall effect of # on r depends on the relative size of the level effect compared
with the variance effect. With a parameter specification as in figure 1(a), the level effect
will dominate for small o whereas the variance effect will dominate if o is large. If utility
has a positive steady state, there will be no level effect, as shown by the blue lines in figure
1(b) where the optimal threshold is always increasing in 6 for all o > 0.

As opposed to this ambiguous relationship between the speed of mean-reversion and the
optimal threshold, we show numerically for specific parameter constellations in the next
section that a higher volatility parameter o will reduce the level of r in these scenarios,
regardless of whether 6 is small or large.** The reason is that the exercise payoff the central
banker requires in order to be willing to make the calling-in move under uncertainty is
higher, the higher the extent of uncertainty is.*> While the extent of uncertainty, in turn,

is increasing in o, the exercise payoff is larger, the lower the natural rate is at which large

44 Alvarez and Dixit (2014) describe a non-monotonic relationship between a volatility parameter and
a respective optimal threshold in a currency union’s optimal stopping problem of breaking-up the union.

45Obviously, the requirement of a higher exercise payoff with increasing uncertainty is a main charac-
teristic feature of equivalent financial/real option exercise problems (see, for instance, Dixit and Pindyck
(1994, p. 153) in this regard).
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notes will be called in (and thus the more relevant ELB-issues are compared to forgone

seignorage revenues at a low natural-rate level).

4.5 Determinants of the Time Value of the Calling-In Option

In the following, we shed light on the time value of the calling-in option in different
scenarios and its dependence on the parameters of the stochastic process that governs
the natural rate: the volatility parameter ¢ and the speed of mean reversion . From a
policy point of view, the question is simply: When is the time value large and thus the
central banker’s tendency to wait and see strong? Our statements in the following hold
for the numerical examples we provide in section 5 but intuition suggests that they can
be generalized to arbitrary parameter constellations. To obtain comparable results, we
consider the value of the calling-in option measured at r = 7 in the different scenarios.
At this point, the option has no intrinsic but just time value (V(7#) = 0 implies that

V(r) =TV (7)).

Short-Term Natural Rate Volatility In the next section, we present some numerical
illustrations for different scenarios to show that a higher volatility parameter o adds time
value to the calling-in option (see the blue lines in figure 2). The reason for this positive
relationship between o and T'V is that a higher ¢ increases the probability that the natural
rate will reach ‘exceptionally’ low levels in the future. At such ‘exceptionally’ low natural
rate levels, ELB-issues will be highly relevant such that the central banker’s benefits from
calling in large banknotes will be ‘exceptionally’ large (for instance, because a very low
natural rate level can imply that unconstrained optimal monetary policy rates lie far below
the ELB). Exceptionally large benefits, in turn, are reflected by a relatively high exercise
payoff V(r) and thus by a relatively high time value the calling-in option has at natural

rates that lie above the optimal threshold r.

Speed of Mean Reversion The speed of mean reversion 6 affects the calling-in option’s
time value through two channels: through a mean-reversion channel and through an un-
certainty channel. The uncertainty channel describes the impact € has on the TV through

its effect on the variance of the natural rate in future periods and thus on uncertainty over
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the future path of the natural rate. For ¢ > 0, the variance of r; is a decreasing function of
6 (as already noted in section 4.1). Analogously to the effect of o on the TV, a lower speed
of mean reversion 6 and thus higher uncertainty over the future path of the natural rate
adds time value to the calling-in option. However, the speed of mean-reversion also has a
negative effect on the time value through the mean-reversion channel such that the overall
effect of 8 on the T'V depends on whether it is the uncertainty or the mean-reversion effect
that dominates.

In what follows, we want to isolate the mean-reversion channel and point out how
exactly 6 affects the TV at r = 7 through this channel. For this purpose we assume,
for the moment, perfect foresight and let 0 = 0: Whether the calling-in option has time
value due to mean-reversion or not in a ¢ = 0-setting depends on whether the natural rate
reverts to its steady state from above or from below. As argued above, if rg = r < 759,
there will be nothing to wait for the central banker. In this case, the path of period
utility is decreasing in time and thus optimality requires the central banker to make the
calling-in move either immediately (if » < ) or never (otherwise). If we consider r = 7,
the existence of time value at this point will just depend on whether 7 < r*. With
F=g—w-+ %(g —r¥—w)=g—-—w+ %uss =(1+ %)uss + 7% showing that 7 is greater
(less) than r°% if utility has a positive (negative) steady state, it is clear that the calling-
in option will have time value at » = 7 due to mean reversion only if ©* > 0 (where
Tlyss>0 < Flyss>0). Moreover, and obviously, if there is time value at 7 it will be increasing
in the steady state utility.

Since the mean-reversion channel will be relevant only if utility has a positive steady
state, as argued above, it is sufficient to consider a perfect-foresight scenario where u*® > 0:
In such a scenario, the calling-in option’s time value at # is increasing in 6. Two effects
of a large 6 contribute to a larger time value: Firstly, a higher speed of mean reversion
shortens the time it takes for the natural rate to decline from 7 to r (although # increases

in 6).46 And secondly, a large 6 increases the payoff from exercising the calling-in option

46T see this, consider T = % In (Lrssu)) which forrg = # = (1—&—%)11“’3-1-7“3S becomes T = %-111 (‘H‘Tg).

i
¢ ot 1 n(%52)
90— 6(5+0) 02
the mean value theorem to show that 1 — £ < In(z) for all z > 1.

It is easy to show tha < 0 by making the substitution x = % and then using
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at 747 With V(#) = F(#,T*) = V(r) - exp(—0T*) = TV (#) it is clear that a larger 6 (in a
o = 0-scenario) increases the calling-in option’s time value at 7 through its effects on the
optimal exercise time and the exercise payoff.

To conclude, if utility has a positive steady state, the sign of the overall effect of
on the TV, in general, will depend on the extent of the short-term volatility as captured
by o. In the next section, we show numerically for specific parameter values that while
the effect of 6 through the mean-reversion channel will dominate for small values of o,
the effect of 6 through the uncertainty channel will dominate for large values of o. The
blue lines in figure 2(b) illustrate for a specific set of parameter values in a world where
utility has a positive steady state, i.e., where 4 > 0, that the time value of the calling-in
option is increasing in 6 for small o while it is decreasing in 6 for large o. In contrast,
if utility has a negative steady state which implies that only the uncertainty channel will
be effective, the overall effect of an increase in 6 will be to decrease the calling-in option’s

time value, as illustrated by the blue lines in figure 2(a).

5 Numerical Illustrations

In what follows, we present and discuss several numerical examples for the central banker’s
wait-and-see tendency in different scenarios, i.e., for specific parameter values. Our claim
is that the length of the wait-and-see region [r, ] together with the time value of the
calling-in option at some r € [r,7] in the single scenarios can be used to assess the rel-
ative likelihoods that wait-and-see behavior might actually be observed in corresponding
scenarios in practice. The results in figures 1 to 3, and tables 1 and 2 have been obtained
with the computer algebra system Mathematica by solving equation (25) for r and using
(24) to evaluate V(r) as defined in (23). Figure 1 shows how the break-even threshold
7 and the optimal threshold r depend on the steady-state utility u®®, on the speed of

mean-reversion 6, and on the volatility parameter o. Figure 2 shows how the value V' of

47To see this, note that at the point in time when the calling-in option is optimally exercised (which
for o = 0 is reached when r = g — w), the natural rate rate will be still above its steady state. So, period
utility from that point on is reverting to its steady state from below. The faster this reversion, the larger
the present value of the stream of future period utilities. Hence, the exercise payoff at r is increasing in 6.
Formally, this is obvious with V(r) = F(r = g—w,T =0) = (g —r** —w) — H%(g —r% —w) = ﬁuss

NV(r) _ 1 ss
g = @repd >0

and
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the calling-in option measured at r = 7 (compared to the exercise payoff V) depends on
u®®, 0, and 0. Figure 3 shows how the exercise payoff of the calling-in option evaluated
at 7 = r where V(r) = V(r) depends on these parameters. For the sake of clarity, tables

1 and 2 show some values of V' (#) and V(r) for selected parameter constellations.

Scenarios with Negative Steady-State Utility For the regions of the parameter
space specified below we show numerically that the length of the interval [r,#], the time
value of the calling-in option at 7, as well as the exercise payoff at r will increase in o and
decrease in 6 if utility has a negative steady state (see also the argumentation in section
4). So there will be little room for wait-and-see behavior if uncertainty over the future
path of the natural rate is relatively low. This implies that the natural rate of interest
does not have to be at levels that are far below the break-even threshold to induce the
central banker to make the calling-in move. In the numerical examples given in tables 1
and 2 such scenarios (i.e., scenarios with relatively low uncertainty over the future path
of the natural rate in a world where calling in large notes involves long-run losses for the
central banker) are described for u®* < 0, o € {0.01, 0.5}, and 6 € {0.5, 1}. While table
1 shows that the time value of the calling-in option measured at the break-even threshold
will be relatively small in the aforementioned scenarios, table 2 shows that the net benefits
the central banker will require to make the calling-in move in these scenarios are close to
or just slightly above zero. Thus, in corresponding scenarios in practice, the move could
be made as soon as the natural rate is so low that eliminating large banknotes will have
net benefits that are just slightly above zero. A severe ELB-episode during or in the
aftermath of a large-scale financial or economic crisis could be such a situation. Calling
in large banknotes would be rational in such a scenario if the short-run benefits exceeded

the long-run losses and waiting to make the move implied losing short-run benefits.

Scenarios with Positive Steady-State Utility In section 4, we discuss the non-
monotonic relationship between uncertainty over the future path of the natural rate of
interest (as reflected in Var(r;)) and the time value of the calling-in option in a world where
the utility from calling in large notes has a positive steady state. We also describe the

behavior of the break-even threshold and the optimal threshold which will both increase in
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Figure 1: Break-even threshold 7 (red lines) and optimal threshold r (blue lines) for
high (solid lines) and low (dotted lines) speed of mean reversion (parameter values (a):
% =0, g—w = —0.1, 6 = 0.1; parameter values (b): r** =0, g —w = 0.1, § = 0.1; solid
lines: 6 = 1, dotted lines: 6 = 0.5).

Time value of calling-in option
at break-even threshold V (7) = TV (7)
o =0.01 oc=0.5 o=1

u*¥ 0=05 0=1 6=05 6=1 0=05 0=1
-0.2 ~0 ~0 0.148 0.019 0.654 0.084
-0.1 ~ 0 ~0 0.327 0.042 0.953  0.25

0 0.013 0.007 0.658 0.335 1.317  0.67
0.1 0.583 0.715 1.089 0.924 1.73  1.228
0.2 1.165 1.431 1.573  1.582 2.178 1.847

Table 1: Numerical solutions of the calling-in option’s value at r = 7 for different values
of the steady-state utility ©**, the volatility parameter o, and the speed of mean-reversion
0 with r** =0 and § = 0.1. All values are rounded to three decimal places.

Exercise payoff at optimal threshold V(r)
o =0.01 oc=20.5 oc=1

u*¥ U 0=05 6=1 6=05 =1 0=05 0=1
-0.2 -2 ~0 ~ 0 0.356  0.052 1.324 0.212
-0.1 -1 ~ 0 ~ 0 0.662 0.106 1.787 0.487
0 O 0.023 0.011 1.164  0.53 2.328 1.061
1
2

0.1 0.835 091 1.784  1.28 2.926 1.778
0.2 1.668 1.818 2.469 2.107 3.567  2.56

Table 2: Numerical solutions of the exercise payoff at r = r for different values of the
steady-state utility u** (with U being defined as U = [;° u®* - exp(—6t)dt = $u®), the
volatility parameter o, and the speed of mean-reversion 6 with r** = 0 and § = 0.1. All
values are rounded to three decimal places.

the speed of mean-reversion 6 if u** > 0 — this means that the overall effect of a change in 6

on the length of the wait-and-see region [r, 7] depends on which bound of the interval reacts
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Figure 2: Exercise payoff V() (red lines) and option value V(7) (blue lines) for high
(solid lines) and low (dotted lines) speed of mean reversion (parameter values (a): r% =
0, g —w = —0.1, § = 0.1; parameter values (b): 7% =0, g —w = 0.1, § = 0.1; solid lines:

6 =1, dotted lines: 6 = 0.5).
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Figure 3: Exercise payoff V(r) for high (solid lines) and low (dotted lines) speed of mean
reversion (parameter values (a): 7*°* =0, g —w = —0.1, § = 0.1; parameter values (b):
r* =0, g—w =0.1, 6 =0.1; solid lines: 8 = 1, dotted lines: § = 0.5).
more sensitively to a change in . Taken all together, these properties imply that under
special circumstances there will be more room for wait-and-see behavior if uncertainty
over the natural rate is low (and not high, as intuition suggests). The numerical examples
given in figure 1(b) and tables 1 and 2 for u** > 0 and o = 0.01 show this case: the length
of [r, 7], the time value at 7 and the exercise payoff at r are all greater the lower the
uncertainty over the natural rate is (recall that Var(r;)|,=0.01, 6=0.5 > Var(re)|e=0.01, 6=1)-
But beyond that, the numerical examples primarily illustrate that the room for wait-
and-see behavior will in general be relatively large if utility has a positive steady state.

Table 2 shows for 4® > 0 that the net benefit the central banker will require to make the
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calling-in move under relatively high levels of uncertainty (o > 0.5) is significantly greater
than zero and even a multiple of the present value of the infinite stream of steady-state
utility, U, defined as U = fooo u®® - exp(—dt)dt. For u*® = 0.1, 0 = 1, and § = 0.5 the
exercise payoff at the optimal threshold r is almost three times larger than the present
value U of the infinite stream of steady-state utility. In practice, central banks could keep
issuing large banknotes for a long time in a corresponding scenario even though it may

already be beneficial to eliminate them immediately.

6 Conclusion

The goal of this paper is to stimulate research on optimal timing issues associated with any
plans to phase out large-denomination banknotes. This research is essential because the
debate on such plans is incomplete if it is only concerned with the costs and benefits while
any timing aspects and a potential wait-and-see component of an optimal timing strategy
in an uncertain economic environment are ignored. We condense the stochastic state of
the economy into the natural rate and employ an optimal stopping model as a framework
to explore such timing issues and to rationalize a central banker’s wait-and-see tendency.
The purpose of this approach is not to determine the exact empirical magnitudes of our
results but to make clear that the stochastic properties and the expected path of the
natural rate can be used as a first rough indicator of wait-and-see behavior in practice. In
concrete terms, this means that the volatility and the expected path of the natural rate
can be used to gauge whether the issuance of large notes could (in a positive dimension)
or should (in a normative dimension) continue for years or decades even if the expected
net benefits from calling them in right now were already greater than zero.

We use several numerical examples to illustrate states of the world where an optimal
timing strategy to call in large notes involves or, on the other hand, does not involve
a wait-and-see component. The central banker’s tendency to wait and see is largest in
scenarios with three key features. In particular, these are scenarios where 1) the long-run
net benefits from calling in large banknotes are greater than zero which is the case if, in
the long run, ELB-issues outweigh lost seignorage revenues; 2) the expected path of the

natural rate is decreasing, implying that ELB-issues will become more and more relevant
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as time evolves; 3) the natural rate is highly volatile such that there is much uncertainty
over the occurrence and duration of ELB-episodes in the near future. For corresponding
scenarios, our findings indicate that the net benefits a central banker requires to be willing
to call in large notes will by far be greater than zero. This can imply that the option to call
in large banknotes will not be exercised until the natural rate has fallen to an exceptionally
low level.

On the other hand, an optimal timing strategy involves no or only a small wait-and-
see component in scenarios where 1) the long-run benefits from calling in large notes are
negative; 2) the natural rate is expected to follow an increasing path; 3) its volatility
is relatively low, so that the near future is less uncertain. Such states of the world are
scenarios where ELB-issues become less and less relevant relative to considerations on
seignorage losses as time evolves. Large banknotes will thus only be called in in times of
extremely low natural rates implying a severe ELB-episode. Such situations could emerge
in the course of pronounced recessions or in the aftermath of large-scale economic crises
where monetary policy remains stuck at the ELB.

On the basis of our simple model, a guesstimate of the ECB’s stance on plans to stop
the issuance of the 200- or the 100-euro note is not difficult to divine: It is natural to
assume that the ECB — if ever — will only make such a move during a severe ELB-episode.
Of course, this speculation is highly sensitive to the assumptions we make. Any serious
forecast in this regard will require at least a large-scale macro model as a framework
to analyze timing issues associated with calling-in plans. Our model is highly stylized
and has left out a number of factors that could change our results. For instance, the
specification with the mean-reverting Ornstein-Uhlenbeck process we chose can easily be
extended by assuming that the natural rate follows a jump diffusion. This could account
for the hypothesis that large-scale economic or financial crises can lead to exceptional drops
in the natural rate in their immediate aftermath (as indicated by the findings of Holston,
Laubach, and Williams (2017) for the global financial crisis). We have also ignored that
there is far more than one dimension of uncertainty. It is not only the future path of
the natural rate that is unknown, but also the natural rate itself and its historic path.

The reason is that the natural rate must be estimated and cannot be measured directly.*

48Gee, for instance, Weber, Lemke, and Worms (2008, section 5).

35



Moreover, there is also much uncertainty regarding the costs and benefits from calling in
large notes. It could be hard to quantify them precisely. Another crucial assumption we
make is that the central banker has full flexibility to time a calling-in move freely. A central
banker approaching the end of her term in office (or a central bank’s decision-making body
shortly before its members change) could be driven by a precautionary motive from the
fear that her successor will have a different objective function (another issue is a potential
intervention of the government which could be driven by its own objective function and
could try to change the denominational structure of banknotes by law). A number of
further research questions will arise from allowing for the possibility of making sequential
calling-in moves (e.g., to stop the issuance of the 100-euro note at a later date than the
issuance of the 200-euro note) as well as from considering strategic interactions between
central bankers in a multi-country setting. We leave the analysis along these dimensions

for further research.

Appendix

A Detailed Solution of the Central Banker’s Optimal Stop-

ping Problem

A.1 Derivation of the Bellman Equation written as Ordinary Differential

Equation

We show how to derive the Bellman ordinary differential equation (18) starting from
equation (17). In technical regards, we refer to Dixit and Pindyck (1994, pp. 140-141)
where the single steps we have to take are pointed out (note, that the differential equation
in Dixit and Pindyck (1994, p. 140, equation (8)) results from geometric Brownian motion
and thus, obviously, differs from (18)).

For the derivation of (18) that follows we use that

(dr)? = (dry) - (dry) (27)

= 02(r® — ry)2(dt)* 4+ 2 0(r®* — 1y)dt - 0d By + 0*(dBy)? (28)
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= o?dt, (29)

which is obtained by using the rules dt-dt = dt-dBy = dB;-dt = 0 and dB;-dB; = dt (recall
that dr; describes the dynamics of the mean-reverting Ornstein-Uhlenbeck process that
governs the natural rate of interest with dr, = 60(r** — r;)dt + odB; where B; is Brownian
motion and 6 € Rsg, 7% € R, and o € R~ are known constants).*’

Now, let V' : R — R be a twice-differentiable function for the value of the calling-in
option dependent on the natural rate of interest r. Applying the It6 formula, using (3)

and (29), we obtain

1
dV = V'dr, + SV"(dr,)? (30)
1
=V (0(r*® — ry)dt + odBy) + §V” -oldt (31)
with
1
EldV|ry =7 =00 —r)-V'dt + 502 -Vt (32)

which is implied by E[dB;] = 0.5° The Bellman ordinary differential equation (18) can

now be obtained by using (32) to replace the right-hand side of (17).

A.2 Proof of Proposition 1

In section A.3 of this appendix, we point out how the solution of (18) can be obtained.
In this section, we just prove proposition 1 and show first, that (23) solves the Bellman
ODE (18), second, that this solution satisfies the right boundary condition and the non-
negativity constraint, third, how to obtain ¢; in (24), and fourth, how to obtain the implicit
definition of r in (25).

The first part of the proof is thus to show that

1
502V” +0(r*s —r)V =6V =0 (33)

“For the rules used to compute (dr:)? see, for instance, @ksendal (2013, p. 45, equation (4.1.8)).

%ONote that the Ité formula with the notation used here is given in Dixit and Pindyck (1994, pp. 79-81,
140). A discussion of the It6 formula in greater depth and in a general context is given, for instance, in
QOksendal (2013, p. 44).
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for

Vir)y=c - H_g < - (r—1r®%) (34)

where H,(z) denotes a Hermite function (see, for instance, Lebedev, 1965, p. 285).
We use the following representations of the first and second derivative of the Hermite

function as given in Lebedev (1965, p. 289) with

H,(z) = 3H,,Z(z) =2vH, (2), (35)
’H, (2

m(z) = o < o 2), (30

to obtain
V/(T) - 8‘g£r) =c-2- <_g> . ]l]_%_1 <\£§ . (7“ _ TSS)> . \gé (37)

) 0
— —2010\/§H_%_1 ({ . (’r‘ - 7~85)> (38)
and
2V (r

V//(r) ::aavrg):—chgée 'Hl_%—l (?.(r—783)> .\gg (39)
= —201%Hl_g_1 (ig (r— TSS)) . (40)

Now, we can use (34), (38), and (40) to reformulate the left-hand side of the Bellman

ODE (33) and then show that this expression is in fact zero by making the following

transformations:
1 5o, Vo . o 5 Y 55
502 ) (_2)0102H—§—1 <0(r -7 )) +0(r** —7r) - (=2)c; U\/aH_g_l <U(r —r ))
— b H s (?(T—rss)> —0 ‘Cll (41)
! \/é SS SS 5 \/g SS
& _5H—§—1 <O_(T—T )) —20(r _T)g\/éH*g*1 <O_(T—T ))
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~GH_ (*C/f(r _ rss)> _0 ‘ . % (42)

o
+ 2§H_§ <\/§(r - rss)> substituting v = 9 and z == @(r — %) (43)

o\ o 0 o
& 2vH,, | (2) =2zH), (2) — 2vH, (2) (44)

where the last transformation is obtained by applying (35) to the first term on the right-
hand side of (43). As shown in Lebedev (1965, p. 289, equation (10.4.5)), equation (44) is
true — thus (41) is true, too. This proves that (23) is a solution of the Bellman ODE (18).

Let us now show that (23) satisfies the right boundary condition (21) and the non-
negativity constraint (22). To see that the non-negativity constraint is satisfied, consider
the integral representation of the Hermite function for Re v < 0 as given in Lebedev (1965,

p. 290, equation (10.5.2)) with

1

H.() = 5525

/ exp(—t? — 2tz)tV " at, (45)
0

where I'(+) is the Gamma function as defined in Lebedev (1965, p. 1). With v = —g €Roo
and therefore I'(—v) € R~ it becomes immediately clear that H,(z) > 0 for all z € R,
and thus that (23) is non-negative for all ¢; € Rs¢ and for all g > 0. That ¢; as defined
in (24) is in fact greater than zero is easy to see with the same argument.

To see that the right boundary condition is satisfied, consider the asymptotic repre-
sentation of H,(z) for large |z| as given in Lebedev (1965, p. 292, equation (10.6.6)) for

the special case of z € R with

Hy(z) = (22)" o (Fak(22) 7+ 07| (46)
k=0
where (—v)g =1 and (—v)g, = w =(—v)(—v+1)---(—v + 2k — 1) (see Lebedev,

1965, p. 291). That (23) satisfies the right boundary condition for all ¢; € Rsg and
g > 0 follows directly from (46) for v < 0 (to see this, let n = 0 and consider H,(z) =

(22)" [1 + O(|z|72)] for v < 0).
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To see how c¢; as defined in (24) is obtained, consider the smooth-pasting condition
(20) which requires that V'(r) = ag—g). Using (38) and
oV(r) 1

o o460 47)

(which is obtained by differentiating V as defined in (10)), the smooth-pasting condition
can be rearranged to obtain ¢; as in (24).

To see how the implicit definition of r in (25) is obtained, consider the value-matching
condition (19) requiring that V (r) = V(r). The left-hand side of equation (25) is directly
obtained by using (23) for V' with ¢; in the representation given by (24). The right-hand

side of equation (25) is just the exercise payoff as defined in (10) evaluated at r. O

A.3 Solution of the Bellman Ordinary Differential Equation

Let us now outline how we obtained a solution of the central banker’s optimal stopping
problem and thus of the free boundary problem of solving the Bellman ODE (18) and
finding r. As a first step, we used the computer algebra system Mathematica (see Wolfram
Research, Inc., 2015) to obtain a solution of (18) by using the Mathematica-function
DSolve. Mathematica returned two linearly independent solutions — one of them being
(23), the other one being a Kummer confluent hypergeometric function. After having
proved that (23) solves (18) as outlined in section A.2 of this appendix, and since we do
not need to prove uniqueness of our solution, we chose (23) to solve the central banker’s
optimal stopping problem.

To see that this solution is in fact correct, we can use the argument ? - (r —r®) of
the Hermite function returned by Mathematica in order to transform (18) into a canonical
form and then look up in Lebedev (1965) for the solution of this differential equation.®!
To transform (18), we use the technique outlined by Dixit and Pindyck (1994, p. 163) and

accordingly introduce

P1See, for instance, Suzuki (2016, p. 35, equation (2)) for an equivalent substitution.
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and use a function w(z) to substitute

V(r) = w(z) with V'(r) = w'(2(r)) - 2'(r) = @w'(z) and V' (r) = %w”(z). (49)

g g

Therewith, and with r = %z + 7%, equation (18) can be transformed into
z+ rss)> @w’(z) —dw(z) =0, (50)
which can be simplified to

w” — 220" + 2vw = 0, (51)

where v == —g < 0. Now, this differential equation, its solutions, and the Hermite function
are discussed in great detail in Lebedev (1965, pp. 283-299).
The general solution of (51) is stated by Lebedev (1965, p. 286, equation (10.2.17))

and reads
w= MH,(z) + Nexp(z?)H_,_1(i2), (52)

where M, N are constants, 1> = —1, and H,(z) is a Hermite function (the definition of a

Hermite function is given by Lebedev

—~

1965, p. 285)).

IS

Re-substituting with w =V, z = ¥*(r — r**) and v = —g, the general solution of the

Bellman equation (18) can be written as
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where ¢1, ¢o are constants. As argued above, we now let ¢o = 0.5 This yields a particular
solution that satisfies the right boundary condition (21) and the non-negativity constraint

(22). As also shown above, (19) and (20) can now be used to determine ¢; and r.
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