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Abstract

We address a stochastic multi-period facility location problem with two customer
segments, each having distinct service requirements. While customers in one segment
receive preferred service, customers in the other segment accept delayed deliveries as
long as lateness does not exceed a pre-specified threshold. In this case, late shipments
incur additional tardiness penalty costs. The objective is to define a schedule for facility
deployment and capacity scalability that satisfies all customer demands at minimum
cost. Facilities can have their capacities adjusted over the planning horizon through
incrementally increasing or reducing the number of modular units they hold. These two
features, capacity expansion and capacity contraction, can help substantially improve the
flexibility in responding to demand changes. Future customer demands are assumed to be
unknown. We propose two different frameworks for the capacity scalability decisions and
present a two-stage stochastic model for each one of them. When demand uncertainty
is captured by a finite set of scenarios, each of which having some known probability
of occurrence, we develop the extensive forms of the associated stochastic programs.
Additional inequalities are derived to enhance the original formulations. An extensive
computational study with randomly generated instances that are solved with a general-
purpose optimization solver demonstrate the usefulness of the proposed enhancements.
Specifically, a considerably larger number of instances can be solved to optimality in
much shorter computing times. Useful insights are also provided on the impact of the
two different frameworks for planning capacity adjustments on the network configuration
and total cost.

Keywords: facility location, dynamic capacity adjustment, delivery lateness, stochastic
programming, valid inequalities

∗Corresponding author. E-mail address : isc@fct.unl.pt

1



1 Introduction

Location analysis provides a framework for simultaneously finding sites for facilities and assigning

spatially distributed demand points to these facilities in order to optimize some measurable

criterion (typically, minimization of cost or maximization of profit). Large costs associated

with property acquisition and facility construction make facility location projects long-term

investments. Decision makers must select sites that will not simply perform well according to

the current system state, but that will also continue to be effective as market conditions and

customer service requirements evolve over time. To deal with these challenges, the decision

process could also include the optimal time sequence for opening new facilities, in addition

to the determination of the best locations (Nickel and Saldanha da Gama [43]). Hence, the

ability to explicitly evaluate the impact of location decisions over the course of a multi-period

planning horizon represents an important step towards modeling real-world problems. In a

dynamic setting, capacity sizing decisions can also be considered in order to find the optimal

timing for capacity acquisition, expansion, and contraction at the selected locations. This

strategy increases the ability of firms to adapt to evolving economic contexts (e.g., fluctuations

in demand).

Generally, (multi-period) facility location research relies upon the assumption that future

conditions can be predicted with a reasonable degree of accuracy. This has given rise to

the development of deterministic models, which are by far the most common. Such models

have the advantage of often being amenable to mathematical analysis. The mathematical

clarity offered by deterministic models can, however, come at a cost of decreased realism.

In practice, many factors are uncertain, such as demands, prices, costs, and availability of

resources, thereby motivating the development of stochastic models (Correia and Saldanha da

Gama [16]). Ignoring uncertainty entails the risk that once the true nature of the uncertain

parameters reveals itself, adjustments in the facility network configuration may be necessary

that are time-consuming and require a prohibitively high expense. Although stochastic models

often raise questions of tractability, the stochastic dimension is becoming increasingly present

in facility location problems (Correia and Saldanha da Gama [16], Snyder [46]).

In this paper, we consider a variant of the multi-period capacitated facility location problem

in which some data are uncertain. We assume that there is a finite set of customers with

demand for a single product family over a multi-period finite planning horizon, and a finite set

of potential locations for the facilities that will offer the commodity. The goal is to choose facility
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locations, determine a schedule for facility opening and capacity adjustment (i.e., expansion and

contraction), and to decide which customers to serve and from which facilities. A distinctive

feature of our problem is that customers are sensitive to delivery lead times. This means that

some customers require their demands to be met on time (i.e., these customers impose a

zero delivery lead time), whereas the remaining customers accept delayed deliveries as long as

lateness does not exceed a pre-specified threshold. This form of customer segmentation can be

encountered in a variety of industries, such as retailing (Duran et al. [23], Li et al. [37]) and

aftermarket services (Alvarez et al. [7], Hung et al. [31], Wang et al. [48]). Future demands

are not known a priori. Instead, they are assumed to be described by a finite discrete random

vector, following a probability distribution that is known in advance (e.g., estimated using

historical data). Under the assumption that the decision maker follows a risk neutral strategy,

the objective is to minimize the total expected cost. The latter includes fixed costs for opening

and operating facilities, fixed costs for capacity scaling, and variable processing, distribution,

and tardiness penalty costs. We note that our problem arises in the context of facility sizing

decisions being reversible in the medium term. This is the case when space and equipment

can be rented or leased. Therefore, the three planning levels are integrated through considering

strategic decisions (involving facility location), tactical decisions (regarding capacity scalability),

and operational decisions (pertaining to demand allocation). Accordingly, facility location and

capacity sizing decisions can only be made at selected time periods, whereas demand allocation

decisions can be made at any time period of the planning horizon.

A variant of our problem has been studied by Correia and Melo [15], who have shown that

this is already a challenging NP-hard problem when all parameters are assumed to be known

with certainty. Our work is the first attempt to understand the additional complexity that arises

from incorporating stochasticity into the underlying difficult-to-solve deterministic location and

capacity scalability problem in a multi-period setting. For this reason, we focus on demand

uncertainty and defer the consideration of additional uncertain parameters. To the best of the

authors’ knowledge, this problem has not been previously addressed in the literature.

Different sources of uncertainty have been captured, either individually or simultaneously, in

the literature dedicated to stochastic facility location, with demand uncertainty being the most

often considered factor. Early contributions addressing uncertain demand include the works by

Louveaux [38] for the p-median and the simple plant location problems, and Laporte et al. [36]

for the capacitated facility location problem. Over the past decades, the stochastic dimension

in facility location modeling has evolved, also towards other areas, such as hub location (Alumur
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et al. [6], Contreras et al. [14]) and covering facility location (Berman and Wang [12]), among

others. Facility location also plays an important role in various application contexts and recent

advances in stochastic modeling have been reported, e.g., in humanitarian logistics (Döyen

et al. [22], Grass et al. [28], Kınay et al. [35]), supply chain network design (Govindan et al.

[27], Mohamed et al. [42]), and planning health care services (Beraldi and Bruni [11]).

While static (or single-period) stochastic location problems have attracted increasing atten-

tion in the literature, there has been limited research on the dynamic (or multi-period) stochastic

counterpart. Albareda-Sambola et al. [4] studied a multi-period facility location problem with

various sources of uncertainty, such as demand, facility location and customer-assignment costs,

minimum number of customers to be serviced, and minimum number of facilities to be estab-

lished. Recently, Maŕın et al. [39] proposed a stochastic programming modeling framework

for a general class of covering location problems and developed a Lagrangian relaxation-based

heuristic to tackle large-scale instances. In the context of humanitarian logistics, Kim et al. [34]

investigated the problem of finding optimal locations for drone facilities over a planning horizon

taking into account that flight distance is uncertain due to battery consumption being affected

by weather conditions. Khodaparasti et al. [33] addressed the problem of designing a network

of nursing homes under a budget constraint on each time period. Chance-constraints are im-

posed that capture demand uncertainty. Marković et al. [40] developed a multi-stage stochastic

program for the problem of locating law enforcement facilities on a road network to intercept

stochastic vehicle flows that try to avoid these facilities. Since the facilities have a limited

lifespan, the optimal timing for their deployment over the planning horizon needs to be deter-

mined. Mohamed et al. [42] proposed a multi-stage stochastic program to locate intermediate

facilities in a two-echelon distribution network under uncertain demand. For tractability rea-

sons, the original formulation is approximated by two-stage stochastic models. In some works

(e.g., Baron et al. [10], Fattahi et al. [24], Georgiadis et al. [25]), facility location decisions

are planned and implemented at the beginning of the planning horizon and remain unchanged

thereafter, while customer allocation and other decisions are made in every time period taking

into account demand uncertainty.

Capacity planning decisions are often incorporated into facility location problems (Owen and

Daskin [45], Verter and Dincer [47]). In particular, the gradual adjustment of capacities over a

planning horizon is an important driver for improving flexibility within a facility network. While

excess capacity results in the loss of capital investment and opportunity costs, capacity shortage

leads to delivery performance deterioration, and as a consequence, lowers the revenue and
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market share of a firm. Ideally, the provision of capacity should be in line with actual demand

needs. Depending on the application context, different strategies can be adopted along the

planning horizon, such as capacity expansion (Correia et al. [17], Cortinhal et al. [19]), capacity

expansion combined with capacity reduction (Antunes and Peeters [8], Wilhelm et al. [49]),

relocation of capacities to different locations (Melo et al. [41]), and temporary facility closing

and reopening (Dias et al. [21], Jena et al. [32]). Among these strategies, capacity expansion

is the predominant policy in a stochastic setting. Early contributions in this area focus on

determining a schedule for capacity acquisition and expansion for a set of facilities already

operating at fixed locations (Ahmed and Garcia [2], Ahmed et al. [3]). Uncertain parameters

include demands and investment costs. Furthermore, any continuous amount of capacity can

be installed. In contrast, Alonso-Ayuso et al. [5] assume a finite set of capacity expansion levels

in a multi-commodity production system comprising suppliers, plants, and demand markets. For

a multi-echelon supply chain network, Aghezzaf [1] propose a decomposition-based algorithm

to determine a facility location and capacity expansion schedule that is robust to the uncertain

realization of customer demand. In the problem studied by Hernández et al. [30], the location

and size of new prisons in Chile are to be determined along with a schedule for capacity

upgrading at both existing and new facilities under stochastic demand. Recently, Correia et al.

[18] proposed a stochastic modeling framework for a multi-period hub location problem with

uncertain demand. In addition to finding the location of hub facilities and setting their initial

capacities, an expansion plan is also determined. This entails deciding on the time period and

the number of additional modular units to be installed in a hub facility. Even though modular

capacities are relevant in many contexts, e.g. to represent modular equipment (Delmelle et al.

[20], Gourdin and Klopfenstein [26]), they have been hardly considered in the literature. This

feature is captured by our work.

Uncertainty can be formalized in many different ways (Correia and Saldanha da Gama

[16]), among which the probabilistic interpretation of randomness seems to be the prevailing

approach in stochastic facility location research. Often, this leads to capturing uncertainty by

a finite set of scenarios with known probabilities, where each scenario specifies the complete

realization of all uncertain parameters. Due to the distinct nature of the decisions to be

made in a facility location problem, either a two-stage or a multi-stage stochastic modeling

framework is often adopted (Correia and Saldanha da Gama [16], Govindan et al. [27], Snyder

[46]). In this paper, we follow a scenario-based approach and propose two alternative modeling

strategies, both involving two-stage stochastic programming formulations. In both models, the
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first-stage problem determines the opening schedule for facilities and their initial capacities

over the entire planning horizon before uncertainty about demand is revealed. Additionally,

operational decisions are captured in the second-stage problem by specifying the commodity

flow between the selected locations and the customers. Hence, distribution decisions are made

after the demand uncertainty has been resolved. The proposed stochastic programming models

differ in the way capacity scalability decisions are treated. In the first model, we follow the

approach usually taken in the literature (Correia and Saldanha da Gama [16], Govindan et al.

[27], Snyder [46]), and assume that these decisions have a strategic nature. Hence, we include

them in the set of ex ante or first-stage decisions. In contrast, in the second model, decisions

on the timing and sizing of capacity adjustments are assumed to have a tactical nature. In

this case, they become ex post or second-stage decisions. To the best of our knowledge, only

one other study has addressed both capacity expansion and capacity reduction in a stochastic

facility location setting, namely Zhuge et al. [51]. These authors propose a two-stage stochastic

program for the problem of locating distribution centers (DCs) in a two-echelon network. First-

stage decisions include identifying the locations where to open DCs in the first time period and

selecting their initial capacities from a set of three options (small, medium, and large capacity

levels). The second-stage decisions define the timing for capacity expansions and contractions

as well as the flow of multiple products in the network. Uncertainty in future demand and the

budget available for replacing capacity levels is considered. Small-sized problems are solved by

a Lagrangian-based heuristic.

Furthermore, stochastic programs with second-stage capacity expansion decisions (but with-

out the option of planning for capacity contraction) are developed by Correia et al. [18] for a

hub location problem, and Heckmann [29] for a facility location problem with disruptive events.

To alleviate the capacity reduction caused by such events, suitable expansion plans are deter-

mined. Contrary to our work, decisions on opening and operating facilities are made once at

the beginning of the planning horizon.

The contributions of the present work are summarized as follows: (1) We propose two

alternative modeling strategies for a new multi-period facility location and capacity scalability

problem with uncertain demand; (2) For each strategy, we formulate the Deterministic Equiva-

lent Program and develop valid inequalities that significantly improve the polyhedral description

of the feasible region; (3) We evaluate the potential benefit obtained from solving the stochas-

tic programs instead of their deterministic counterparts by means of two measures, namely the

expected value of perfect information and the value of the stochastic solution; (4) We assess the
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validity of the proposed two-stage stochastic mixed-integer linear programming (MILP) models

by reporting and analyzing the results of an extensive computational study. In particular, we

provide insights on the impact of considering capacity scalability decisions as second-stage (tac-

tical) decisions as opposed to the typical approach of treating them as first-stage (strategic)

decisions.

The remainder of this paper is organized as follows. In Section 2, we formally describe

our problem and present two different stochastic programs along with the corresponding de-

terministic equivalent forms. Several sets of valid inequalities are developed in Section 3 to

enhance the original formulations and therefore make them more amenable to standard off-the-

shelf optimization software. Computational results are reported in Section 4 and the proposed

formulations are compared using various metrics. Finally, Section 5 includes a summary of our

findings and gives directions for future research.

2 Problem statement and stochastic formulations

The stochastic multi-period facility location and capacity scalability problem addressed in this

paper builds upon a deterministic variant studied by Correia and Melo [15]. For convenience,

we restate the assumptions that are common to the deterministic and stochastic settings,

and introduce additional information pertaining to the stochastic problem. Subsequently, two

stochastic formulations are proposed that differ in the framework under which capacity scalability

decisions can be made.

A planning horizon comprising a finite number of time periods is considered along with a set

of customers with demands for a single commodity in each period. Customers are differentiated

according to their service requirements. Specifically, some customers require their demands to

be met on time, whereas the remaining customers accept delayed deliveries as long as lateness

does not exceed a pre-specified threshold. In this case, an order can be split over multiple time

periods for the same customer. Typically, customers belonging to the first segment are willing to

pay higher prices in order to have their demands satisfied in the same period in which they occur.

To customers in the second segment, discount prices are often offered in exchange for longer

response times. In our modeling framework, this scheme is translated into a tardiness penalty

cost that is incurred per unit of backorder and per period. Customer service-differentiation

offers greater flexibility to a firm in designing and managing its facility network.

A set of potential locations where facilities can be established is assumed to be available.
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When a facility is opened, its initial capacity level must also be specified. The latter is expressed

by the number of modular units that are installed, all having the same size. The adoption of

a base modular unit is common in different application areas, such as in the public sector

(Delmelle et al. [20]) and in telecommunications (Gourdin and Klopfenstein [26]). Over the

planning horizon, the capacity of an operating facility can be adjusted to increase responsiveness

to changes in the level of customer demand. Two forms of capacity scalability are considered:

capacity expansion and capacity contraction. This means that one or several modular units

can be added to or removed from a facility. Naturally, these options are mutually exclusive

for the same facility at the same time period. A limit on the total number of modular units

that a facility can hold at any time is pre-specified. Due to the sizeable investment associated

with opening facilities, locations cannot be temporarily closed and reopened. Therefore, once

a facility is established, it must remain open until the end of the planning horizon.

The objective is to find a schedule for the deployment of facilities and the expansion and

contraction of their capacities in order to satisfy customer demands at minimal total cost. Dif-

ferent time scales are considered for decision-making. The capital-intensive decisions involving

facility location and capacity scalability decisions can be made at the beginning of selected time

periods, hereafter termed design periods. All other decisions concerning the processing of the

commodity at the open facilities and the allocation of customer demands can be made at any

time period. This setting is also adopted by other authors, e.g. Mohamed et al. [42].

In the problem addressed in the companion paper [15], all relevant data (i.e., costs, customer

demands, and other parameters) are assumed to be known in advance. In the present work,

this assumption is relaxed through considering that future customer demands are uncertain.

Uncertainty is described by a finite random vector whose joint probability distribution is assumed

to be foreknown, e.g. using historical data. The finitely many possible realizations of this random

vector are called scenarios. Specifically, each scenario describes all customer demands over all

periods of the planning horizon.

Before detailing the two stochastic programming models that we propose, we first introduce

the notation that is common to both formulations.

2.1 Notation

Sets:

T Set of time periods along the planning horizon.
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TL Subset of design time periods at which location and capacity scalability decisions

can be made (TL ⊂ T ).

I Set of potential facility sites.

J0 Set of customers requiring timely deliveries (i.e., their demands must be satisfied in

the same time periods in which they occur).

J1 Set of customers that tolerate delayed demand fulfillment.

J Set of all customers (J = J0 ∪ J1; J0 ∩ J1 = ∅).

Let ℓ = 1, resp. ℓmax = max{ℓ ∈ TL}, be the first, resp. last, design time period in which

decisions can be made on opening facilities in potential locations and adjusting their capacities

through adding or removing modular units. The size of a facility at time period ℓ ∈ TL is the

outcome of the design and scalability decisions taken until that period. For ℓ < ℓmax, this size

remains unchanged over all intermediate periods between two consecutive design periods, ℓ and

ℓ′ (ℓ < ℓ′). For ℓ = ℓmax, the capacity of the facility is maintained until the last period of the

planning horizon. Let φ(ℓ) denote the last time period between two consecutive design periods

ℓ and ℓ′. It follows that

φ(ℓ) =

{
max{t ∈ T : t < ℓ′} if ℓ < ℓmax,

|T | if ℓ = ℓmax.
(1)

Deterministic parameters:

Q Capacity of a single modular unit.

ni Maximum number of modular units that can be available at location i at any time

period (i ∈ I).

ρj Maximum allowed delay (expressed by the total number of time periods) to satisfy

the demand of customer j (j ∈ J1).

FOℓ
ik Fixed cost of opening facility i with k modular units at design time period ℓ (i ∈

I; k = 1, . . . , ni; ℓ ∈ TL).

FEℓ
ik Fixed cost of expanding the capacity of facility i with k modular units at design time

period ℓ (i ∈ I; k = 1, . . . , ni − 1; ℓ ∈ TL \ {1}).
FRℓ

ik Fixed cost of removing k modular units from facility i at design time period ℓ

(i ∈ I; k = 1, . . . , ni − 1; ℓ ∈ TL \ {1}).
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M t
ik Fixed cost of operating facility i with k modular units at time period t (i ∈ I; k =

1, . . . , ni; t ∈ T ).

otik Unit processing cost charged by facility i operating with k modular units at time

period t (i ∈ I; k = 1, . . . , ni; t ∈ T ).

ctij Unit distribution cost from facility i to customer j at time period t (i ∈ I; j ∈
J ; t ∈ T ).

ptt
′

j Unit tardiness penalty cost for satisfying demand of customer j in period t′ that was

originally placed in period t (j ∈ J1; t ∈ T ; t′ = t, t+ 1, . . . ,min{t + ρj , |T |}); in
particular, ptt

′

j = 0 for t′ = t.

The customer-specified time lag for demand satisfaction ρj (j ∈ J1) imposes that an order

placed by customer j for time period t (t ∈ T ) must be filled over periods t, t + 1, . . . , t + ρj .

In case t + ρj > |T |, then the last delivery must occur at period |T |. This condition ensures

that demand cannot be carried over to periods beyond the planning horizon. If ρj = 0 for

every customer j ∈ J1 then our problem reduces to the classical setting in multi-period facility

location.

We note that some cost parameters capture economies of scale, namely in all fixed costs

(FOℓ
ik, FEℓ

ik, FRℓ
ik, M

t
ik) and in the variable processing costs (otik).

Stochastic parameters:

dtj(ξ) Random variable representing the demand of customer j at time period t (j ∈ J ; t ∈
T ).

Ξ Finite discrete random vector with Ξ =
(
(dtj)j∈J ; t∈T

)
and Ξ ⊂ R

|J |×|T |
+ .

It is assumed that the joint probability distribution of the random vector Ξ is foreknown.

2.2 A stochastic formulation

Given the problem assumptions, a natural approach to the decision-making process is to develop

a two-stage stochastic programming model, where the facility location and capacity scalability

decisions are made in the first stage, and the remaining processing and distribution decisions

are deferred to the second stage. In other words, the first-stage (or ex ante) decisions are

associated with the definition of a schedule for location, capacity acquisition, and capacity

adjustment to be implemented over the entire planning horizon, before a realization of the
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demand becomes known. This results from the strategic nature assumed for these decisions as

they have a long-term impact. The following binary variables represent the first-stage decisions.

zℓik = 1 if a new facility is established with k modular units at potential location i

at time period ℓ, 0 otherwise (i ∈ I; k = 1, . . . , ni; ℓ ∈ TL). (2)

eℓik = 1 if the capacity of a facility in location i is expanded with k modular units at

time period ℓ, 0 otherwise (i ∈ I; k = 1, . . . , ni − 1; ℓ ∈ TL \ {1}). (3)

rℓik = 1 if the capacity of a facility in location i is reduced by removing k modular

units at time period ℓ, 0 otherwise (i ∈ I; k = 1, . . . , ni − 1; ℓ ∈ TL \ {1}). (4)

vℓik = 1 if a facility is operated at location i with k modular units at time period

ℓ, 0 otherwise (i ∈ I; k = 1, . . . , ni; ℓ ∈ TL). (5)

After customer demand is observed, operational decisions are made by specifying the quantities

of product to be processed at operating facilities and distributed to customers over the plan-

ning horizon. Therefore, second-stage (or ex post) decisions are represented by the following

continuous variables:

xt
ij(ξ) : Amount of product distributed from facility i to customer j at time period

t (i ∈ I; j ∈ J0; t ∈ T ). (6)

ytt
′

ij (ξ) : Amount of product distributed from facility i to customer j at time period

t′ to (partially) satisfy demand of period t (i ∈ I; j ∈ J1; t ∈ T ; t′ = t,

t+ 1, . . . ,min{t+ ρj , |T |}). (7)

wt
ik(ξ) : Total quantity of product handled by facility i operating with k modular

units at time period t (i ∈ I; k = 1, . . . , ni; t ∈ T ). (8)

Thus, the implicit representation of the two-stage stochastic program is

Min
∑

ℓ∈TL

∑

i∈I

ni∑

k=1

FOℓ
ik z

ℓ
ik +

∑

ℓ∈TL\{1}

∑

i∈I

ni−1∑

k=1

FEℓ
ik e

ℓ
ik +

∑

ℓ∈TL\{1}

∑

i∈I

ni−1∑

k=1

FRℓ
ik r

ℓ
ik +

∑

ℓ∈TL

∑

i∈I

ni∑

k=1

vℓik

φ(ℓ)∑

t=ℓ

M t
ik + EΞ [Q(z, e, r, v, ξ)] (9)
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subject to

∑

ℓ∈TL

ni∑

k=1

zℓik ≤ 1 i ∈ I (10)

ni∑

k=1

vℓik =
∑

ℓ′∈TL: ℓ′≤ℓ

ni∑

k=1

zℓ
′

ik i ∈ I, ℓ ∈ TL (11)

ni−1∑

k=1

eℓik +

ni−1∑

k=1

rℓik ≤
∑

ℓ′∈TL: ℓ′<ℓ

ni∑

k=1

zℓ
′

ik i ∈ I, ℓ ∈ TL \ {1} (12)

ni∑

k=1

k vℓik =
∑

ℓ′∈TL: ℓ′≤ℓ

ni∑

k=1

k zℓ
′

ik +

∑

ℓ′∈TL\{1}: ℓ′≤ℓ

ni−1∑

k=1

k
(
eℓ

′

ik − rℓ
′

ik

)
i ∈ I, ℓ ∈ TL (13)

zℓik ∈ {0, 1} i ∈ I, k = 1, . . . , ni, ℓ ∈ TL (14)

vℓik ∈ {0, 1} i ∈ I, k = 1, . . . , ni, ℓ ∈ TL (15)

eℓik, r
ℓ
ik ∈ {0, 1} i ∈ I, k = 1, . . . , ni − 1,

ℓ ∈ TL \ {1} (16)

with EΞ [Q(z, e, r, v, ξ)] denoting the recourse function, which represents the expected value of

the second-stage problem. The optimal value of this problem, Q(z, e, r, v, ξ), is given by

Q(z, e, r, v, ξ) =Min
∑

t∈T

∑

i∈I

ni∑

k=1

otik w
t
ik(ξ) +

∑

t∈T

∑

i∈I

∑

j∈J0

ctij x
t
ij(ξ)+

∑

t∈T

∑

i∈I

∑

j∈J1

min{t+ρj , |T |}∑

t′=t

(
ct

′

ij + ptt
′

j

)
ytt

′

ij (ξ) (17)

subject to
∑

i∈I

xtij(ξ) = dtj(ξ) j ∈ J0, t ∈ T (18)

∑

i∈I

min{t+ρj , |T |}∑

t′=t

ytt
′

ij (ξ) = dtj(ξ) j ∈ J1, t ∈ T (19)

wt
ik(ξ) ≤ kQvℓik i ∈ I, k = 1, . . . , ni, t ∈ T,

ℓ = max{ℓ′ ∈ TL : ℓ′ ≤ t} (20)

12



ni∑

k=1

wt
ik(ξ) =

∑

j∈J0

xtij(ξ)+

∑

j∈J1

t∑

t′=max{1, t−ρj}

yt
′t
ij (ξ) i ∈ I, t ∈ T (21)

xtij(ξ) ≥ 0 i ∈ I, j ∈ J0, t ∈ T (22)

ytt
′

ij (ξ) ≥ 0 i ∈ I, j ∈ J1, t ∈ T,

t′ = t, . . . ,min{t+ ρj, |T |} (23)

wt
ik(ξ) ≥ 0 i ∈ I, k = 1, . . . , ni, t ∈ T (24)

In the first-stage problem (9)–(16), the objective is to minimize the sum of fixed costs and

expected processing and demand allocation costs. The fixed costs account for facility location,

capacity expansion, capacity contraction, and facility operating costs. By including the expected

total cost in (9), a neutral approach to risk is assumed, which is a common criterion to address

risk in decision-making problems, often leading to computationally tractable models (Birge and

Louveaux [13]). Constraints (10) ensure that at most one facility can be opened at a potential

location over the planning horizon. Equalities (11) impose that facilities can only be operated

provided they have previously been established. Constraints (12) guarantee that an open facility

can be subjected to at most one type of capacity adjustment (either expansion or contraction)

at each design period. The number of available modular units at open facilities is defined by

equalities (13) for each design period. This number is the outcome of the sizing choice made

when the facility was opened, and the number of modular units that were added or removed

afterward. Finally, constraints (14)–(16) set the binary conditions on the first-stage (strategic)

variables.

Every particular realization of customer demand ξ of Ξ yields a second-stage LP-model

(17)–(24). Observe that in this model, the design variables zℓik, v
ℓ
ik, e

ℓ
ik, and rℓik take on fixed

values. The objective function (17) minimizes the sum of processing costs at operating facilities,

distribution costs to customers, and tardiness penalty costs for orders delivered with delay to

customer segment J1. Demand satisfaction is imposed by constraints (18) and (19). Capacity

constraints are enforced by inequalities (20). Equalities (21) state that the outgoing flow from a

facility at a given time period is split into deliveries to priority customers and to customers that

receive late shipments. Non-negativity conditions on the second-stage (operational) variables

13



are set by constraints (22)–(24). Observe that we are facing a stochastic problem with fixed

recourse, since the coefficients of the second-stage variables (i.e., the unit cost parameters in

(17) and the capacity of a modular unit in (20)) are all known in advance.

Recall that we assume that the random variable ξ has a finite support, i.e., ξ is defined by a

finite probability distribution. Accordingly, let s ∈ S be the index of the possible realizations of

ξ (called scenarios), where S is a finite set, and let πs represent the associated (positive) proba-

bilities such that
∑

s∈S πs = 1. In this case, EΞ [Q(z, e, r, v, ξ)] =
∑

s∈S πs Q(z, e, r, v, ξs). It

follows that we can rewrite formulation (9)–(16) as a MILP model by defining scenario-indexed

demands and recourse variables. The former are given by dtjs (t ∈ T ; j ∈ J ; s ∈ S), while the

latter replace the second-stage variables (6)–(8) and are represented by:

xt
ijs : Amount of product distributed from facility i to customer j at time period

t under scenario s (i ∈ I; j ∈ J0; t ∈ T ; s ∈ S). (25)

ytt
′

ijs : Amount of product distributed from facility i to customer j at time period

t′ to (partially) satisfy demand of period t under scenario s (i ∈ I; j ∈ J1;

t ∈ T ; t′ = t, t+ 1, . . . ,min{t+ ρj , |T |}; s ∈ S). (26)

wt
iks : Total quantity of product handled by facility i operating with k modular

units at time period t under scenario s (i ∈ I; k = 1, . . . , ni; t ∈ T ;

s ∈ S). (27)

Using the above redefinition of the recourse variables, we obtain the so-called deterministic

equivalent MILP model, or extensive form, hereafter denoted (PDE−1).

Min
∑

ℓ∈TL

∑

i∈I

ni∑

k=1

FOℓ
ik z

ℓ
ik +

∑

ℓ∈TL\{1}

∑

i∈I

ni−1∑

k=1

FEℓ
ik e

ℓ
ik +

∑

ℓ∈TL\{1}

∑

i∈I

ni−1∑

k=1

FRℓ
ik r

ℓ
ik +

∑

ℓ∈TL

∑

i∈I

ni∑

k=1

vℓik

φ(ℓ)∑

t=ℓ

M t
ik +

∑

s∈S

πs


∑

t∈T

∑

i∈I

ni∑

k=1

otik w
t
iks +

∑

t∈T

∑

i∈I

∑

j∈J0

ctij x
t
ijs+

∑

t∈T

∑

i∈I

∑

j∈J1

min{t+ρj , |T |}∑

t′=t

(
ct

′

ij + ptt
′

j

)
ytt

′

ijs


 (28)
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subject to

(10) − (16)
∑

i∈I

xtijs = dtjs j ∈ J0, t ∈ T, s ∈ S (29)

∑

i∈I

min{t+ρj , |T |}∑

t′=t

ytt
′

ijs = dtjs j ∈ J1, t ∈ T, s ∈ S (30)

wt
iks ≤ kQvℓik i ∈ I, k = 1, . . . , ni, t ∈ T,

ℓ = max{ℓ′ ∈ TL : ℓ′ ≤ t}, s ∈ S (31)

ni∑

k=1

wt
iks =

∑

j∈J0

xtijs +
∑

j∈J1

t∑

t′=max{1, t−ρj}

yt
′t
ijs i ∈ I, t ∈ T, s ∈ S (32)

xtijs ≥ 0 i ∈ I, j ∈ J0, t ∈ T, s ∈ S (33)

ytt
′

ijs ≥ 0 i ∈ I, j ∈ J1, t ∈ T,

t′ = t, . . . ,min{t+ ρj , |T |}, s ∈ S (34)

wt
iks ≥ 0 i ∈ I, k = 1, . . . , ni, t ∈ T, s ∈ S (35)

We note that the extensive form of the stochastic program becomes quite large even when

the random variable ξ has a moderate number of possible realizations. Since all the strategic

decisions made in the first stage do not depend on the realization of the random demand process,

and so the location and capacity scalability schedule determined for the entire planning horizon

is the same for all scenarios, formulation (PDE−1) satisfies the non-anticipativity principle. For

this reason, (PDE−1) will be called the scenario-independent location and capacity scalability

model.

2.3 A stochastic formulation for an alternative strategy

Discrepancies between the capacity of a firm and the demands of its customers result in ineffi-

ciency, either in underutilised resources or dissatisfied customers. The ability of a firm to adjust

the capacity of its resources in response to varying customer demand is one of the key fac-

tors in decreasing these discrepancies and achieving competitiveness. Therefore, an alternative

strategy to the settings considered in the previous section is to assume that capacity adjust-

ment decisions have a tactical nature, and thus can be deferred to the second-stage problem.
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In this strategy, the first-stage problem consists of defining a schedule for locating facilities

and setting their initial capacities for the entire planning horizon. Accordingly, the strategic

facility location decisions are the here-and-now decisions. The second-stage problem addresses

the wait-and-see (tactical and operational) decisions by prescribing a scheme for adjusting the

capacities of operating facilities (through expansion or contraction), and specifying the product

flows from facilities to customers over all time periods. In contrast to the approach presented in

Section 2.2, the capacity adjustment measures depend now on the realization of the uncertain

customer demand. As mentioned earlier, the resulting two-stage stochastic program is suitable

for those cases in which sizing decisions can be reverted in the medium-term. This arises, for

example, in the context of leasing or renting space and equipment. Furthermore, subcontracting

and adjusting labor (e.g., using temporary workers or furlough) are also measures that can be

implemented in medium-range capacity planning.

To formulate a two-stage stochastic program for this alternative strategy, the binary location

variables (2) and the continuous flow variables (6), (7), and (8) are used. Moreover, the binary

variables associated with the sizing decisions, i.e., (3), (4), and (5), are replaced by ẽ ℓ
ik(ξ),

r̃ ℓ
ik(ξ), and ṽ ℓ

ik(ξ), respectively. Each one of these new variables depends on the random

vector ξ ruling future customer demands. The total expected cost to be minimized is given

by
∑

ℓ∈TL

∑
i∈I

∑ni

k=1 FOℓ
ik z

ℓ
ik + EΞ[Q

′(z, ξ)] under constraints (10) and (14). The optimal

value Q′(z, ξ) of the second-stage problem is determined by

Q′(z, ξ) =Min
∑

ℓ∈TL\{1}

∑

i∈I

ni−1∑

k=1

FEℓ
ik ẽ

ℓ
ik(ξ) +

∑

ℓ∈TL\{1}

∑

i∈I

ni−1∑

k=1

FRℓ
ik r̃

ℓ
ik(ξ)+

∑

ℓ∈TL

∑

i∈I

ni∑

k=1

ṽ ℓ
ik(ξ)

φ(ℓ)∑

t=ℓ

M t
ik +

∑

t∈T

∑

i∈I

ni∑

k=1

otik w
t
ik(ξ)+

∑

t∈T

∑

i∈I

∑

j∈J0

ctij x
t
ij(ξ) +

∑

t∈T

∑

i∈I

∑

j∈J1

min{t+ρj , |T |}∑

t′=t

(
ct

′

ij + ptt
′

j

)
ytt

′

ij (ξ) (36)

subject to

(18), (19), (21) − (24)

ni∑

k=1

ṽ ℓ
ik(ξ) =

∑

ℓ′∈TL: ℓ′≤ℓ

ni∑

k=1

zℓ
′

ik i ∈ I, ℓ ∈ TL (37)

ni−1∑

k=1

ẽ ℓ
ik(ξ) +

ni−1∑

k=1

r̃ ℓ
ik(ξ) ≤

∑

ℓ′∈TL: ℓ′<ℓ

ni∑

k=1

zℓ
′

ik i ∈ I, ℓ ∈ TL \ {1} (38)
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ni∑

k=1

k ṽ ℓ
ik(ξ) =

∑

ℓ′∈TL: ℓ′≤ℓ

ni∑

k=1

k zℓ
′

ik +

∑

ℓ′∈TL\{1}: ℓ′≤ℓ

ni−1∑

k=1

k
(
ẽ ℓ′

ik(ξ) − r̃ ℓ′

ik(ξ)
)

i ∈ I, ℓ ∈ TL (39)

wt
ik(ξ) ≤ kQ ṽ ℓ

ik(ξ) i ∈ I, k = 1, . . . , ni, t ∈ T,

ℓ = max{ℓ′ ∈ TL : ℓ′ ≤ t} (40)

ṽ ℓ
ik(ξ) ∈ {0, 1} i ∈ I, k = 1, . . . , ni, ℓ ∈ TL (41)

ẽ ℓ
ik(ξ), r̃

ℓ
ik(ξ) ∈ {0, 1} i ∈ I, k = 1, . . . , ni − 1,

ℓ ∈ TL \ {1} (42)

Due to capacity adjustment decisions being now recourse decisions, the new constraints

(37)–(39) are the counterpart of constraints (11)–(13). Likewise, the capacity constraints (40)

replace inequalities (20).

By imposing the same conditions on the random demand vector ξ as in Section 2.2, we can

rewrite the recourse function as a function of all scenarios, i.e., EΞ[Q
′(z, ξ)] =

∑
s∈S πsQ

′(z, ξs).

Accordingly, the set of scenario-dependent flow variables (25)–(27) is extended with the new

scenario-indexed capacity scalability variables, ṽ ℓ
iks, ẽ

ℓ
iks, and r̃ ℓ

iks. The definition of these vari-

ables and the resulting deterministic equivalent MILP formulation, hereafter denoted (PDE−2),

are detailed in Appendix A. Since all capacity adjustment decisions depend on the realizations

of the random parameters, (PDE−2) will be called the scenario-dependent capacity scalability

model. (PDE−2) defines a large-scale MILP model with a significant number of binary variables

and constraints, even for a small-sized scenario set.

3 Additional inequalities

In an attempt to improve the polyhedral description of the set of feasible solutions of models

(PDE−1) and (PDE−2), we develop in this section several sets of additional inequalities. The

proposed enhancements may contribute to more problem instances and with larger sizes be-

ing solved to (near-)optimality with off-the-shelf, general-purpose optimization software within

reasonable computing time.
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3.1 Inequalities for model (PDE−1)

Recall from (28)–(35) that in the extensive form of the deterministic equivalent model (PDE−1),

all facility location and capacity-related decisions are made in the first stage, before uncertainty

about future demand is disclosed. Next, we successively show how the information conveyed

by the various scenarios can be used in this case to derive a lower bound on the total number

of facilities that must be open at a particular design period.

Let us assume, without loss of generality, that the length of the planning horizon is a multiple

of the number of design periods, and let us define σ = |T |/|TL|. Hence, parameter σ is integer-

valued and gives the total number of periods between two consecutive design periods. Since all

demand requirements of the preferred customer segment J0 must be serviced without delay in

every scenario, they are used to set minimum capacity requirements between two consecutive

design periods. The latter are given by

Dℓ = max




∑

j∈J0

dtjs : s ∈ S; t = ℓ, . . . , φ(ℓ)



 ,

for every ℓ ∈ TL and φ(ℓ) defined in (1). Hence, the following inequalities must hold for every

design period:

Q
∑

i∈I

ni∑

k=1

k vℓik ≥ Dℓ, ℓ ∈ TL.

Dividing the above inequalities by the size of a modular unit, Q, and taking into account that

the left-hand side must be integer-valued, it follows that

∑
i∈I

ni∑
k=1

k vℓik ≥
⌈
Dℓ

Q

⌉
, ℓ ∈ TL. (43)

Furthermore, for a particular design period ℓ (ℓ ∈ TL), let D̃ℓ denote the largest minimum

demand quantity over all scenarios that has to be covered from period ℓ through period φ(ℓ).

D̃ℓ =





max
s∈S

{
∑
j∈J0

φ(ℓ)∑
t=ℓ

dtjs +
∑
j∈J1

φ(ℓ)−ρj∑
t=ℓ

dtjs

}
if ℓ < ℓmax,

max
s∈S

{
∑
j∈J

|T |∑
t=ℓ

dtjs

}
if ℓ = ℓmax.
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The above expression includes all orders from customer segment J0 as well as the minimum

quantity of demand that must be delivered to customers J1 accepting late shipments. Since

demand cannot be lost, in the last time interval (comprising all time periods from ℓmax through

|T |), the orders of both customer segments must be completely satisfied. Accordingly, the

following inequalities impose that facilities open at time period ℓ (and therefore at all subsequent

periods up to period φ(ℓ)) must have sufficient capacity to serve the demand D̃ℓ:

σQ
∑

i∈I

ni∑

k=1

k vℓik ≥ D̃ℓ, ℓ ∈ TL.

Dividing these inequalities, first by Q and then by the time lag σ, we obtain

∑
i∈I

ni∑
k=1

k vℓik ≥
⌈⌈

D̃ℓ

Q

⌉

σ

⌉
, ℓ ∈ TL. (44)

Combining inequalities (43) and (44), and defining

M ℓ = max





⌈
Dℓ

Q

⌉
,




⌈
D̃ℓ

Q

⌉

σ








yields

∑
i∈I

ni∑
k=1

k vℓik ≥ M ℓ, ℓ ∈ TL.

By applying the Chvátal-Gomory rounding procedure a finite number of times p (p ≥ 1) to the

above inequalities (Wolsey [50]), we obtain

∑
i∈I

ni∑
k=1

⌈
k
p

⌉
vℓik ≥

⌈
Mℓ

p

⌉
, ℓ ∈ TL, p = 1, . . . ,max

i∈I
{ni}, (45)

The reasoning followed to derive (45) is itself a proof for the following result:

Proposition 1. The set of inequalities (45) is valid for formulation (PDE−1).

The enhanced formulation is called hereafter (P+
DE−1) for the scenario-independent location

and capacity scalability model.
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3.2 Inequalities for model (PDE−2)

For the extensive form of the deterministic model given by (52)–(58) (see Appendix A), we

develop additional inequalities that serve a purpose similar to (45). In this case, the variables ṽ ℓ
iks

(cf. (51)) representing the number of modular units available in a location at time period ℓ

(ℓ ∈ TL) are scenario-indexed. Hence, the minimum quantity of demand that must be satisfied

in each period between two consecutive design periods is scenario-dependent and defined by

∆ℓ
s = max




∑

j∈J0

dtjs : t = ℓ, . . . , φ(ℓ)



 , ℓ ∈ TL, s ∈ S.

Given a scenario s and a design period ℓ, it follows that the minimum number of open facilities

must satisfy the following conditions:

∑
i∈I

ni∑
k=1

k ṽ ℓ
iks ≥

⌈
∆ℓ

s

Q

⌉
, ℓ ∈ TL, s ∈ S. (46)

The above inequalities are the counterpart of (43) for the scenario-dependent capacity scalability

model.

Additionally, let ∆̃ ℓ
s denote the minimum total demand requirements to be satisfied in

scenario s for all periods from ℓ through φ(ℓ), with ℓ ∈ TL.

∆̃ℓ
s =





∑
j∈J0

φ(ℓ)∑
t=ℓ

dtjs +
∑
j∈J1

φ(ℓ)−ρj∑
t=ℓ

dtjs if ℓ < ℓmax,

∑
j∈J

|T |∑
t=ℓ

dtjs if ℓ = ℓmax.

Therefore, the following inequalities must also hold

∑
i∈I

ni∑
k=1

k ṽ ℓ
iks ≥

⌈⌈
∆̃ℓ

s
Q

⌉

σ

⌉
, ℓ ∈ TL, s ∈ S. (47)

Using inequalities (46) and (47) yields the following relations

∑
i∈I

ni∑
k=1

k ṽ ℓ
iks ≥ M̃ ℓ

s , ℓ ∈ TL, s ∈ S,
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where the lower bound M̃ ℓ
s is defined as the maximum of the two parameters on the right-hand

sides of inequalities (46) and (47). Finally, we apply once again the Chvátal-Gomory rounding

method to the above inequalities and obtain the following result:

Proposition 2. The set of inequalities

∑
i∈I

ni∑
k=1

⌈
k
p

⌉
ṽ ℓ
iks ≥

⌈
M̃ℓ

s

p

⌉
, ℓ ∈ TL, s ∈ S, p = 1, . . . ,max

i∈I
{ni} (48)

is valid for formulation (PDE−2).

The steps presented above serve as proof for this proposition. If for a particular design

period ℓ and scenario s there exist several inequalities (48), all having the same right-hand

side for different values of p, then we only need to consider the inequality with the strongest

left-hand side. A similar remark also applies to (45). The enhanced formulation for the scenario-

dependent capacity scalability case is called hereafter (P+
DE−2).

4 Computational results

In this section, we present the results of our numerical tests. The computational experiments

were guided by five objectives, namely: (i) to evaluate the usefulness of using a standard off-

the-shelf MILP solver to identify optimal or near-optimal solutions to the original deterministic

equivalent models within reasonable computing time; (ii) to analyze the effectiveness of the

proposed additional inequalities; (iii) to compare the two strategies for deciding on the timing

and sizing of capacity adjustments; (iv) to discuss relevant insights into the characteristics

of the (near-)optimal solutions identified; and (v) to assess the benefits of using a stochastic

programming approach for the problem under study.

4.1 Characteristics of test instances

Since benchmark data sets are not available for the problem at hand, we have generated a set

of test instances. The size of each instance is mainly dictated by the length of the planning

horizon and the total number of customers according to the choices specified in Table 1. We

have considered planning horizons with 12 and 24 time periods. In both cases, there are three

design periods for making location and capacity scalability decisions. Specifically, for |T | = 12
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(resp. |T | = 24), these opportunities occur at the beginning of periods 1, 5, and 9 (resp. 1, 9,

and 17). Three different sizes for the customer set are assumed and three different partitions

of J are considered. For example, a set of 60 customers can be partitioned into |J0| = 15 and

|J1| = 45, |J0| = |J1| = 30, and |J0| = 45 and |J1| = 15. In all cases, customers in segment

J1 specify the same maximum number of periods for late deliveries, i.e., ρj = ρ for all j ∈ J1.

Instances with ρ = 1, ρ = 2, and ρ = 3 were generated.

Parameter Value Parameter Value
|T | 12, 24 |TL| 3
|J | 20, 40, 60 |J0| βJ |J | with βJ ∈ {0.25, 0.5, 0.75}
|I| 0.25 |J | ρ 1, 2, 3
|S| 3 πs 1/3 (s ∈ S)

Table 1: Parameter values.

In the deterministic variant of our problem [15], three different patterns of demand fluctu-

ation over the planning horizon were considered. In the present work, we follow this setting by

assuming three different demand scenarios, an approach that is also followed in other works, e.g.

Maŕın et al. [39]. In addition, equal probabilities are assigned to the scenarios. In all scenarios,

the demand of each customer for the first time period is selected at random from the interval

[20, 500] according to a continuous uniform distribution. In scenario 1, and at each subsequent

period, demands exhibit fluctuations ranging from −20% to +20% compared to the previous

period. Therefore, this scenario represents an irregular demand pattern. In scenarios 2 and

3, demand variations go through three phases, showing a trapezoidal shape. Specifically, sce-

nario 2 starts with a demand growth phase, followed by a maturity phase with small fluctuations

(i.e., ±1%), and ends with a decline phase. Scenario 3 has the opposite demand pattern; the

associated inverted trapezoidal structure depicts demand contraction, recession, and gradual

recovery. Table 11 in Appendix B details the three scenarios. These scenarios differ significantly

from each other with respect to demand variations, making them a suitable choice in a setting

with uncertain demand.

The capacity of a modular unit is defined as a function of the demand scenarios, namely

Q = 1
ni |I|

U [3, 4]
∑

j∈J

∑
t∈T maxs∈S dtjs
|T |

, where U [3, 4] denotes a continuous uniform distribution

in [3, 4] and ni = 4 for every i ∈ I. Appendix B provides further details on the procedure

for randomly generating all cost parameters. Five instances were randomly generated for each

combination of parameters shown in Table 1, giving rise to a total of 270 different instances.
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4.2 Numerical results

Formulations (PDE−1) and (PDE−2) along with their enhancements were coded in C++ using

IBM ILOG Concert Technology and run with IBM ILOG CPLEX 12.6. All experiments were

performed on a workstation with a multi-core Intel Xeon E5-2650V3 processor (2.3 GHz, 10

cores), 32 GB RAM, and running the Ubuntu operating system (64-bit). Due to the strategic

nature of the problem that we study, fast solution times are not of paramount importance.

Therefore, a limit of 10 hours of CPU time was set for each solver run. Furthermore, CPLEX

was used with default settings under a deterministic parallel mode.

Regarding goal (i) listed at the beginning of Section 4, we evaluate the effectiveness of

using CPLEX to identify (near-)optimal solutions to the test instances for the proposed origi-

nal formulations, (PDE−1) and (PDE−2). To do so, we compare the optimality gaps and the

computing times reported by the optimization solver. Table 2 summarizes the relevant infor-

mation for the different sizes of the customer set, while Table 3 provides information from a

different perspective, namely for varying values for the maximum delivery delay tolerated by

customer segment J1. Column 1 gives the parameter selected (|J | in Table 2 and ρ in Table 3).

Columns 2–5 report the number of instances solved to optimality (# opt sol.) and the number

of instances not solved to proven optimality within the specified time limit (# non-opt sol.)

for all models (i.e., the original formulations and their enhancements). For those instances not

solved optimally, the minimum, average, and maximum optimality gaps achieved by CPLEX

after 10 h of computing time are given for each formulation in columns 7–10 (MIP gap (%) =

(zUB − zLB)/zUB × 100%, with zUB denoting the objective value of the best feasible solution

available and zLB representing the objective value of the best lower bound identified during

the branch-and-cut procedure). Columns 11–14 display the minimum, average, and maximum

computing times, in seconds (MIP CPU (sec.)). The last row refers to all 270 instances. The

best (average) values with respect to the evaluation criteria are given in boldface.

Table 2 shows that the capability of CPLEX to identify an optimal solution within the given

time limit is affected by the formulation that is used. Regarding formulations (PDE−1) and

(PDE−2), optimality is achieved in all test instances with 20 customers, but gradually decreases

as the total number of customers grows. Not surprisingly, the even larger formulation (PDE−2)

poses an additional challenge to CPLEX. In particular, for this formulation, optimal solutions are

only available for less than half of the instances with 60 customers (44% or 40/90), whereas 74%

(67/90) of the instances with the same number of customers could be solved to optimality with
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|J | # opt sol./# non-opt sol. MIP gap (%)∗ MIP CPU (sec.)

(PDE−1) (P+
DE−1

) (PDE−2) (P+
DE−2

) (PDE−1) (P+
DE−1

) (PDE−2) (P+
DE−2

) (PDE−1) (P+
DE−1

) (PDE−2) (P+
DE−2

)

20 90/0 90/0 90/0 90/0 min - - - - 5.7 2.5 7.1 2.3
avg - - - - 27.7 13.9 68.0 32.0
max - - - - 201.1 46.2 477.6 140.3

40 87/3 90/0 71/19 84/6 min 0.89 - 1.15 1.59 22.9 16.5 105.5 46.7
avg 3.26 - 4.04 4.43 3462.4 1198.5 11333.7 6615.7
max 5.32 - 7.12 6.69 ∗∗ 30074.9 ∗∗ ∗∗

60 67/23 75/15 40/50 51/39 min 1.47 0.27 0.62 0.32 70.0 61.2 111.4 71.4
avg 2.43 2.28 2.29 2.04 13072.2 10699.9 24198.9 20359.2
max 3.41 4.26 4.81 5.31 ∗∗ ∗∗ ∗∗ ∗∗

All 244/26 255/15 201/69 225/45 avg 2.53 2.28 2.77 2.36 5520.8 3970.8 11866.9 9002.3

Table 2: Optimality gaps and CPU times for all formulations according to the total number of customers; ∗MIP gap for
instances not solved to optimality within 10 h; ∗∗time limit (10 h) reached.

ρ # opt sol./# non-opt sol. MIP gap (%)∗ MIP CPU (sec.)

(PDE−1) (P+
DE−1

) (PDE−2) (P+
DE−2

) (PDE−1) (P+
DE−1

) (PDE−2) (P+
DE−2

) (PDE−1) (P+
DE−1

) (PDE−2) (P+
DE−2

)

1 78/12 83/7 61/29 70/20 min 0.89 0.78 0.62 0.42 10.0 6.8 12.1 4.0
avg 2.50 2.37 3.24 2.71 7314.4 5276.9 14269.4 11086.2
max 3.57 4.26 7.12 6.69 ∗∗ ∗∗ ∗∗ ∗∗

2 84/6 86/4 68/22 78/12 min 2.19 0.27 0.69 0.32 9.6 2.5 9.1 2.3
avg 2.49 1.84 2.44 2.00 4578.7 2818.0 11102.5 7423.6
max 2.80 2.63 6.99 3.88 ∗∗ ∗∗ ∗∗ ∗∗

3 82/8 86/4 72/18 77/13 min 1.47 2.30 0.62 0.52 5.7 3.0 7.1 3.0
avg 2.59 2.55 2.45 2.13 4669.1 3817.4 10228.7 8497.1
max 5.32 2.89 6.20 5.12 ∗∗ ∗∗ ∗∗ ∗∗

All 244/26 255/15 201/69 225/45 avg 2.53 2.28 2.77 2.36 5520.8 3970.8 11866.9 9002.3

Table 3: Optimality gaps and CPU times for all formulations under different values for the maximum delivery delay, ρ;
∗MIP gap for instances not solved to optimality within 10 h; ∗∗time limit (10 h) reached.
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model (PDE−1). These findings are also supported by the growth observed in the computing

times. Interestingly, for those instances that could not be solved to proven optimality, the

associated gaps are, on average, relatively small (cf. columns 7 and 9). The challenges posed

by formulation (PDE−2) result in slightly larger gaps compared to formulation (PDE−1).

Table 2 also reveals the positive effect of the proposed valid inequalities (45) and (48), an

aspect that was mentioned at the beginning of Section 4 as goal (ii) to be investigated. Specif-

ically, the additional constraints prove to be very useful in identifying more optimal solutions in

shorter computing times. Adding inequalities (45) to formulation (PDE−1) results in obtaining

optimal solutions to 94% (255/270) of the instances. Moreover, CPLEX does not achieve op-

timality with formulation (P+
DE−1) for only 17% (15/90) of the instances with 60 customers.

Regarding the enhanced model (P+
DE−2), similar findings can be observed despite the greater

size of this formulation, with 83.3% (225/270) instances being solved to optimality.

The optimality gaps of the best solutions obtained after 10 h of CPU also decrease using

inequalities (45) and (48). The only exception occurs for the set of instances with 40 customers,

for which CPLEX reports an average optimality gap of 4.43% with formulation (P+
DE−2) against

a gap of 4.04% without using the proposed inequalities. Observe that the latter value is obtained

for 19 instances, whereas the former value results from six instances. If we consider the same

set of six instances in both formulations, we realize that they exhibit an average optimality

gap of 4.94% with model (PDE−1). Therefore, in fact, the valid inequalities (48) succeed in

reducing this gap to 4.43%.

Table 3 shows that increasing the maximum lead time for customers accepting late shipments

results in slightly less challenging problems for CPLEX. This fact is evidenced by the larger

number of instances not solved to proven optimality for ρ = 1, as opposed to ρ = 2 or ρ = 3.

We remark that increasing the value of ρ brings more flexibility to designing the facility network

and adjusting the capacities of the operating facilities over the planning horizon. Interestingly,

the quality of the best solutions returned by CPLEX upon reaching the time limit does not

seem to be much affected by parameter ρ. The enhanced formulations succeed in solving more

instances to optimality and in providing lower optimality gaps with a reduced computational

burden.

As evidenced by the significantly shorter computing times of the tighter formulations (P+
DE−1)

and (P+
DE−2) (cf. last column in Tables 2–3), the branch-and-cut tree generated by CPLEX is

smaller, despite the greater number of constraints. However, additional computational effort

may be required to solve the associated linear relaxations. This feature is present in solving the
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LP-relaxation of model (P+
DE−2) but not for the LP-relaxation of model (P+

DE−1), as displayed

in Tables 4 and 5. These tables report in the last four columns the minimum, average, and

maximum solution times of the linear relaxation (LP CPU (sec.)) of all models, for different

values of parameter |J | (Table 4) and parameter ρ (Table 5). In addition, columns 3–6 show the

minimum, average, and maximum integrality gaps (LP gap (%)). The latter give the relative

percent deviation between the objective value of the best feasible solution available (zUB) and

the lower bound provided by the linear relaxation. The best average values over all 270 instances

are highlighted in boldface in the last row of these tables.

|J | LP gap (%) LP CPU (sec.)

(PDE−1) (P+
DE−1

) (PDE−2) (P+
DE−2

) (PDE−1) (P+
DE−1

) (PDE−2) (P+
DE−2

)

20 min 4.69 1.66 3.68 1.87 0.1 0.1 0.2 0.2
avg 9.79 4.33 9.60 4.45 2.0 1.1 1.8 1.2
max 16.18 6.69 16.91 8.33 14.3 13.3 7.2 7.0

40 min 1.50 0.87 1.80 1.47 2.7 0.8 3.1 2.7
avg 3.75 2.65 4.16 3.19 17.2 10.2 16.3 19.0
max 9.29 9.24 9.60 9.60 46.2 43.4 31.8 55.7

60 min 0.71 0.69 1.22 0.83 4.8 4.5 6.1 6.6
avg 3.04 2.48 3.18 2.73 33.8 33.8 17.2 27.0
max 6.38 6.30 6.76 5.73 124.5 98.5 62.5 100.0

All avg 5.53 3.15 5.65 3.46 17.7 15.0 11.8 13.3

Table 4: Integrality gaps and solution times of the LP relaxation of all formulations ac-
cording to the total number of customers.

Tables 4 and 5 indicate that the linear relaxations of the enhanced formulations provide

substantially better lower bounds, and as a result lower integrality gaps, as opposed to the

original models. Even though the number of available optimal solutions decreases with the size

of J , and accordingly the quality of zUB declines, the average integrality gap becomes smaller

when inequalities (45) and (48) are added. In contrast, the magnitude of the maximum allowed

tardiness for orders in customer segment J1 does not seem to affect the average integrality gap

in any of the four formulations, as shown in Table 5. It is also noticeable that the reduction of

the average integrality gap is more pronounced for instances with 20 customers (> 50%) than

for instances with a larger number of customers.

Finally, we note that tight integrality gaps such as the ones we have obtained with the en-

hanced formulations can be very useful in evaluating the quality of a feasible solution produced,

for example, by a tailored heuristic method. In particular, this feature is relevant for problems

with large customer sets since in this case it becomes increasingly difficult for a state-of-the-art
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optimization solver to achieve optimality within acceptable time. From a computational point

of view, the optimal solution to the linear relaxation is inexpensive (≤ 100 seconds for the

enhanced models, according to Tables 4–5).

ρ LP gap (%) LP CPU (sec.)

(PDE−1) (P+
DE−1

) (PDE−2) (P+
DE−2

) (PDE−1) (P+
DE−1

) (PDE−2) (P+
DE−2

)

1 min 0.71 0.69 1.52 1.27 0.1 0.1 0.2 0.2
avg 5.03 3.46 6.25 3.85 14.6 14.5 10.5 13.3
max 14.76 9.24 16.91 9.60 63.8 56.8 33.5 48.4

2 min 0.71 0.69 1.22 0.83 0.1 0.2 0.2 0.2
avg 5.37 2.84 5.37 3.18 17.7 14.0 11.4 14.9
max 15.80 5.85 16.76 5.79 114.6 82.1 32.6 50.0

3 min 0.71 0.69 1.45 1.04 0.2 0.2 0.2 0.2
avg 5.37 3.16 5.31 3.34 20.8 16.6 13.4 19.0
max 16.18 6.86 16.53 7.43 124.5 98.5 62.5 100.0

All avg 5.53 3.15 5.65 3.46 17.7 15.0 11.8 13.3

Table 5: Integrality gaps and solution times of the LP relaxation of all formulations under
different values for the maximum delivery delay, ρ.

4.3 Deployment of facility location and capacity scalability strate-

gies

In this section, we focus on goals (iii) and (iv) stated at the beginning of Section 4, and

compare the characteristics of the two strategies proposed for locating facilities and adjusting

their capacities over the planning horizon. For this purpose, Table 6 gives the minimum,

average, and maximum relative deviation of the objective values of the best solutions reported

by CPLEX for the enhanced formulations. Specifically, columns 2–4 (resp. 6–8) display the value

of (z+DE−1−z+DE−2)/z
+
DE−1×100% according to the size of the customer set (resp. the maximum

delivery delay). We denote by z+DE−1 and z+DE−2 the best objective values identified by CPLEX

to formulation (P+
DE−1) and (P+

DE−2), respectively, within the given time limit. Each row

aggregates the results for 90 instances. Since the relative deviations presented in this table are

all positive, they indicate that cost savings can be achieved with the scenario-dependent capacity

scalability model (strategy 2) over the scenario-independent location and scalability model

(strategy 1). This finding is not surprising because modeling capacity adjustment decisions as

second-stage variables in formulation (P+
DE−2) allows a more agile response to temporal changes

in demand. In other words, these decisions can be met taking into account the realization
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of demand. Therefore, in general, the resulting schedule for facility opening and capacity

adjustment is cheaper compared to the case in which all design and capacity scalability decisions

must be made in the first stage. In the latter case, such decisions do not depend on the particular

realization of the random demand process.

|J | % Cost reduction of (P+

DE−2
) ρ % Cost reduction of (P+

DE−2
)

over (P+

DE−1
) over (P+

DE−1
)

Min Avg Max Min Avg Max
20 0.00 3.32 5.90 1 0.04 2.84 5.23
40 0.33 2.64 6.19 2 0.00 3.07 6.19
60 0.04 3.01 5.80 3 0.00 3.07 6.19

Table 6: Comparison between the best objective values of formulations (P+
DE−1) and

(P+
DE−2) for different parameters.

Over all 270 instances, strategy 2 allows for up to 6.19% reduction in total cost, with an

average reduction of 3%. Even when an instance is not solved to optimality with formula-

tion (P+
DE−2) and an optimal solution is available to formulation (P+

DE−1), strategy 2 always

has lower total cost than strategy 1. This particular case occurs in 30 instances.

To further analyze the differences between the two strategies, Tables 7 and 8 provide addi-

tional information about the selected facilities for each combination of potential facilities (|I|),
number of customers (|J |), and value of ρ (columns 1–3). Table 7 shows average results for

strategy 1 by indicating the average values of the first-stage decisions in columns 4–6. The

average demand of customer segment J1 that is served with delay is displayed for each demand

scenario in columns 7–9. Table 8 gives similar information but for strategy 2. Since adjustments

in the number of modular units at open facilities are second-stage decisions, they are specified

for each demand scenario separately.

Not surprisingly, the total number of selected facilities is, on average, similar in both strate-

gies. This is explained by facility opening decisions being modeled as first-stage variables in

both approaches. Furthermore, Table 8 clearly shows that the choice of facilities to have their

capacities expanded or reduced is driven by the type of demand scenario. In contrast, when

such choices are also included in the first-stage there is a decline in flexibility which results in

greater total cost as seen previously. According to Table 8, when customer demand exhibits

a trapezoidal pattern, the need to install additional modular units is higher compared to the

other two demand scenarios. The removal of modular units from operating facilities is more

noticeable when customer demand has an inverted trapezoidal structure. In the scenario with
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|I| |J | ρ Avg no. Avg no. of facilities with Scenario 1: Scenario 2: Scenario 3:
of open cap. adjustments irregular demand rate trapezoidal demand rate inverted trapezoidal demand rate
facilities Expansion Contraction Avg delayed demand (%) Avg delayed demand (%) Avg delayed demand (%)

5 20 1 2.00 0.90 0.40 0.14 4.29 0.08
2 2.00 0.93 0.43 0.64 9.22 0.33
3 2.00 0.93 0.43 1.05 10.21 0.60

10 40 1 3.50 1.00 0.43 0.04 3.55 0.01
2 3.30 1.00 0.33 0.13 6.02 0.03
3 3.30 1.00 0.30 0.16 6.21 0.03

15 60 1 5.07 1.33 0.60 0.03 2.70 0.01
2 4.93 1.57 0.57 0.19 4.07 0.08
3 4.83 1.37 0.33 0.18 4.25 0.07

All instances 3.44 1.11 0.43 0.29 5.61 0.14

Table 7: Average number of selected facilities in strategy 1 (formulation (P+
DE−1)) and average demand served with delay

to customer segment J1.

|I| |J | ρ Avg no. Scenario 1: Scenario 2: Scenario 3:
of open irregular demand rate trapezoidal demand rate inverted trapezoidal demand rate
facilities Avg no. of facilities with Avg delayed Avg no. of facilities with Avg delayed Avg no. of facilities with Avg delayed

cap. adjustments demand (%) cap. adjustments demand (%) cap. adjustments demand (%)
Expansion Contraction Expansion Contraction Expansion Contraction

5 20 1 2.00 0.03 0.70 0.28 0.97 0.37 3.95 0.23 0.73 0.01
2 2.00 0.10 0.43 0.78 1.00 0.23 8.02 0.23 0.40 0.16
3 2.00 0.13 0.37 1.27 1.10 0.27 8.46 0.27 0.33 0.46

10 40 1 3.50 0.20 0.97 0.07 1.13 0.47 3.26 0.23 0.87 0.01
2 3.30 0.27 0.87 0.27 1.13 0.20 5.87 0.40 0.77 0.03
3 3.30 0.27 0.63 0.48 1.30 0.23 6.33 0.43 0.60 0.03

15 60 1 5.10 0.03 1.10 0.04 1.63 0.60 2.33 0.27 1.13 0.00
2 4.93 0.27 0.77 0.31 1.83 0.33 4.06 0.40 0.73 0.09
3 4.90 0.40 0.83 0.44 2.00 0.30 4.27 0.40 0.63 0.12

All instances 3.45 0.19 0.74 0.44 1.34 0.33 5.17 0.32 0.69 0.10

Table 8: Average number of selected facilities in strategy 2 (formulation (P+
DE−2)) and average demand served with delay

to customer segment J1.
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irregular demand pattern, both types of capacity adjustments occur, with the contraction of

capacity having a slightly higher incidence.

Regardless of the strategy chosen, the relative amount of late shipments to customer seg-

ment J1 is always the largest in demand scenario 2. This is the outcome of the trade-off between

the investment in additional capacity to deal with higher demand requirements (either through

opening more facilities or expanding operating facilities) and incurring a tardiness penalty cost

for not serving all the demand on time. In general, and independently of the scenario and the

strategy followed for determining a schedule for facility opening and capacity adjustment, the

percentage of late deliveries increases with the maximum allowed delay, as expected.

4.4 The relevance of the stochastic setting

This section focuses on goal (v) of the computational study, namely on the evaluation of

the benefits of the stochastic programming approach. This is a relevant issue because of the

additional complexity posed by the stochastic setting compared to the deterministic counterpart.

Even though there are no ‘robust measures’ for assessing the relevance of using a stochastic

model instead of a (simpler) deterministic model (Birge and Louveaux [13]), two metrics are

often used. The first is the expected value of perfect information (EVPI), while the second is the

value of the stochastic solution (VSS). Both metrics will be calculated to measure the benefit

of working with the stochastic programs (P+
DE−1) and (P+

DE−2). As discussed by Birge and

Louveaux [13], EVPI and VSS are distinct indicators that measure different types of uncertainty.

The EVPI represents the maximum amount that the decision maker would be willing to pay

in return for complete information about the future. It is defined as the difference between the

optimal value of the stochastic program (in our case, z+DE−1 or z
+
DE−2) and the optimal value of

the so-called ‘wait-and-see’ (WS) problem. For each demand scenario s, formulation (P+
DE−1)

(or (P+
DE−2)) is solved under the assumption that the scenario occurs with probability 1. In

this way, we obtain the optimal decisions that should be made if it were possible to fully predict

future demands. Let z+DE−1,s (resp. z+DE−2,s) denote the optimal value of the deterministic

problem associated with a particular scenario s ∈ S and strategy 1 (resp. strategy 2). It follows

that the optimal value of the WS problem is given by
∑

s∈S πs z
+
DE−1,s for strategy 1. A similar

calculation is performed for strategy 2.

The VSS measures the difference between the optimal objective value of the so-called

‘expected value problem’ (EEV) and the optimal objective value of the stochastic program.
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The former is obtained by creating a single scenario in which all random variables are replaced

by their expected values, and then determining the optimal values of the first-stage variables for

that single scenario. Next, the expected cost over all scenarios using those first-stage variable

values is calculated. In the case of our problem, the average scenario would be constructed by

taking the average demand of every customer in each time period, dtj =
∑

s∈S πs d
t
js (j ∈ J ;

t ∈ T ). Unfortunately, the associated values of the first-stage variables may result in an

infeasible stochastic problem, either for model (P+
DE−1) or model (P+

DE−2), or even both. To

overcome this difficulty, a ‘reference scenario’ is often used (Birge and Louveaux [13]). Typically,

the worst-case scenario, i.e. the scenario with the highest demand level for every customer and

time period, is adopted. Due to the features of our problem, it is not possible to identify such a

scenario for every instance. Therefore, we adapt the standard definition of VSS by considering

a ‘modified reference scenario’ such that dtj = maxs∈S
{
dtjs

}
for every j ∈ J and t ∈ T .

Tables 9 and 10 report the average relative values of EVPI (column 5) and modified VSS

(column 7) for strategy 1 and strategy 2, respectively. The relative values are calculated

by dividing each metric by the optimal objective value of the associated stochastic problem.

Column 4 indicates the number of instances for which optimal solutions are available and for

that reason were used for calculating these average relative gaps. In addition, columns 6 and 8

give the average total computing time required to solve the WS and EEV problems to optimality,

respectively.

|I| |J | ρ # opt sol. Metric 1 Metric 2
(P+

DE−1
) Avg EVPI Avg total Avg modified Avg total

gap (%) CPU (sec.) VSS gap (%) CPU (sec.)
5 20 1 30 9.57 234.8 0.52 11.3

2 30 8.95 28.2 0.96 86.6
3 30 8.96 26.1 0.97 14.0

10 40 1 30 9.29 1386.7 2.25 230.8
2 30 8.18 341.5 3.31 455.2
3 30 8.11 453.1 3.42 391.5

15 60 1 23 10.16 6949.6 1.35 720.0
2 26 9.41 4104.3 2.04 903.3
3 26 9.20 8086.0 2.50 1193.6

All instances 255 9.06 2400.8 1.93 445.2

Table 9: EVPI and modified VSS gaps for the scenario-independent location and capacity
scalability model.
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The EVPI and modified VSS gaps reported in the tables indicate that it is appropriate

to consider a stochastic approach rather than its deterministic counterpart. For the scenario-

independent location and capacity scalability model (strategy 1), the relative EVPI gap ranges

from 1.45% to 17.70%, with an average of 9.06%. Concerning the scenario-dependent capacity

scalability model (strategy 2), smaller, but still significant, EVPI gaps are obtained (average:

5.87%) that vary between 0.45% and 14.28%. Interestingly, the average EVPI gap does not

seem to be greatly affected neither by the size of the customer set nor by the maximum delivery

delay imposed on J1. This is an indication that capturing uncertainty is relevant under different

conditions.

For the modified VSS gap, we observe that it gradually increases with growing value of ρ.

Recall that this metric measures how far away the value of the optimal solution of a deterministic

simplified version of the problem is from the optimal value of a stochastic problem. By increasing

ρ, more opportunities arise to satisfy the demand of some customers with delay which, in turn,

enable a lower investment in configuring the facility network (e.g., through reducing the need

to establish more facilities). This feature becomes even more relevant in a stochastic setting,

whereas the quality of the optimal solution to the deterministic EEV problem deteriorates.

Finally, and as expected, the computational burden required to optimally solve the WS and

EEV problems is considerably lower than solving the stochastic programming models.

|I| |J | ρ # opt sol. Metric 1 Metric 2
(P+

DE−2
) Avg EVPI Avg total Avg modified Avg total

gap (%) CPU (sec.) VSS gap (%) CPU (sec.)
5 20 1 30 6.69 239.7 0.03 144.8

2 30 5.77 235.4 0.48 92.6
3 30 5.75 89.5 0.53 21.3

10 40 1 27 6.61 1595.7 2.55 486.9
2 28 5.48 745.8 3.52 552.7
3 29 5.27 1201.9 3.74 648.8

15 60 1 13 5.90 8035.8 1.66 1261.5
2 20 5.74 7554.8 2.24 1201.0
3 18 5.50 8532.7 2.48 1382.4

All instances 225 5.87 3136.8 1.86 643.6

Table 10: EVPI and modified VSS gaps for the scenario-dependent capacity scalability
model.
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5 Conclusions

We have studied a stochastic multi-period facility location and capacity scalability problem tak-

ing into account the sensitivity of each individual customer to delivery lead times. In addition

to determining a schedule for opening facilities and setting their initial number of modules,

this problem also allows for several ways to adjust capacity over the planning horizon. Specif-

ically, capacities can be increased incrementally by installing additional modules or decreased

by removing existing modular units. These two features, expansion and contraction, can help

substantially improve the flexibility in responding to spatial and temporal changes in demand.

For the case of uncertain future customer demand, we have proposed two stochastic models

that differ in the framework in which capacity adjustments can be planned. The first two-stage

stochastic model follows the natural approach of defining all decisions related to the design of

the facility network as first-stage decisions. Demand allocation decisions are deferred to the

second stage. The second model presents an alternative strategy which is particularly relevant

when capacity adjustment decisions have a tactical nature. In this case, first-stage decisions

include the selection of locations to open new facilities and setting their initial capacities. The

phased capacity expansion and contraction of facilities along with demand allocation represent

the recourse decisions. Under the assumption that demand uncertainty can be captured by a

finite set of scenarios, we were able to develop the extensive form of the deterministic equivalent

for the two stochastic programs. Additionally, valid inequalities were developed to enhance the

resulting large-scale formulations.

Numerical experiments with randomly generated instances indicate that the proposed addi-

tional inequalities substantially increase the capability of an off-the-shelf MILP solver to identify

optimal solutions in much shorter computing times. Moreover, improved solution quality is also

achieved for instances for which the specified time limit is reached without guaranteed optimal-

ity. Deferring the decisions on capacity expansion and capacity contraction to the second-stage

problem results in network configurations with noticeable lower total cost compared to the

approach where such decisions belong to the first-stage problem. This cost advantage arises

due to the possibility of adapting the network configuration to particular demand realizations.

However, this approach leads to considerably larger models which in turn require higher com-

putational burden. Based on our comparative analysis, a decision maker becomes aware of the

opportunities that arise from different strategies. Finally, we have shown that when demand is

uncertain it is relevant to adopt a stochastic framework despite its additional complexity.
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In further work, the proposed models could be extended by considering the uncertainty

present in other parameters (e.g. costs) along with the unknown demand. Naturally, from

a computational viewpoint this would pose additional challenges to an off-the-shelf solver.

Therefore, it would be relevant to develop an efficient and effective heuristic method. In this

case, the enhancements proposed in Section 3 would also be helpful as they sharpen the linear

relaxation. Hence, the LP-bounds would be useful to evaluate the quality of the solutions

returned by a heuristic procedure. Finally, another line of research could be directed toward

the development of a multi-stage stochastic framework to enable the revision of the planning

decisions as more information regarding the uncertain data is revealed. Even though a multi-

stage model yields a better characterization of the dynamic planning process, solution techniques

remain computationally challenging (Bakker et al. [9], Nickel et al. [44]).

Appendix A: Deterministic equivalent formulation of

the scenario-dependent capacity scalability problem

For the scenario-dependent capacity scalability problem introduced in Section 2.3, the exten-

sive form of the deterministic equivalent model of the two-stage stochastic program uses the

continuous flow variables (25)–(27) and the following (scenario-indexed) binary variables that

define the capacity adjustment decisions over the planning horizon:

ẽ ℓ
iks = 1 if the capacity of a facility in location i is expanded with k modular units at

time period ℓ under scenario s, 0 otherwise (i ∈ I; k = 1, . . . , ni − 1;

ℓ ∈ TL \ {1}; s ∈ S). (49)

r̃ ℓ
iks = 1 if the capacity of a facility in location i is reduced by removing k modular

units at time period ℓ under scenario s, 0 otherwise (i ∈ I; k = 1, . . . , ni − 1;

ℓ ∈ TL \ {1}; s ∈ S). (50)

ṽ ℓ
iks = 1 if a facility is operated at location i with k modular units at time period

ℓ under scenario s ∈ S, 0 otherwise (i ∈ I; k = 1, . . . , ni; ℓ ∈ TL; s ∈ S). (51)
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Formulation (PDE−2) is given by

Min
∑

ℓ∈TL

∑

i∈I

ni∑

k=1

FOℓ
ik z

ℓ
ik +

∑

s∈S

πs


 ∑

ℓ∈TL\{1}

∑

i∈I

ni−1∑

k=1

FEℓ
ik ẽ

ℓ
iks+

∑

ℓ∈TL\{1}

∑

i∈I

ni−1∑

k=1

FRℓ
ik r̃

ℓ
iks +

∑

ℓ∈TL

∑

i∈I

ni∑

k=1

ṽ ℓ
iks

φ(ℓ)∑

t=ℓ

M t
ik +

∑

t∈T

∑

i∈I

ni∑

k=1

otik w
t
iks +

∑

t∈T

∑

i∈I

∑

j∈J0

ctij x
t
ijs+

∑

t∈T

∑

i∈I

∑

j∈J1

min{t+ρj , |T |}∑

t′=t

(
ct

′

ij + ptt
′

j

)
ytt

′

ijs


 (52)

subject to

(10), (14), (29) − (35)

ni∑

k=1

ṽ ℓ
iks =

∑

ℓ′∈TL: ℓ′≤ℓ

ni∑

k=1

zℓ
′

ik i ∈ I, ℓ ∈ TL, s ∈ S (53)

ni−1∑

k=1

ẽ ℓ
iks +

ni−1∑

k=1

r̃ ℓ
iks ≤

∑

ℓ′∈TL: ℓ′<ℓ

ni∑

k=1

zℓ
′

ik i ∈ I, ℓ ∈ TL \ {1}, s ∈ S (54)

ni∑

k=1

k ṽ ℓ
iks =

∑

ℓ′∈TL: ℓ′≤ℓ

ni∑

k=1

k zℓ
′

ik +

∑

ℓ′∈TL\{1}: ℓ′≤ℓ

ni−1∑

k=1

k
(
ẽ ℓ′

iks − r̃ ℓ′

iks

)
i ∈ I, ℓ ∈ TL, s ∈ S (55)

wt
iks ≤ kQ ṽ ℓ

iks i ∈ I, k = 1, . . . , ni, t ∈ T,

ℓ = max{ℓ′ ∈ TL : ℓ′ ≤ t}, s ∈ S (56)

ṽ ℓ
iks ∈ {0, 1} i ∈ I, k = 1, . . . , ni, ℓ ∈ TL, s ∈ S (57)

ẽ ℓ
iks, r̃

ℓ
iks ∈ {0, 1} i ∈ I, k = 1, . . . , ni − 1,

ℓ ∈ TL \ {1}, s ∈ S (58)
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Appendix B: Data generation

The data generation scheme is based on the method developed by Correia and Melo [15] for a

deterministic variant of our problem. In what follows, we denote by U [a, b] the generation of

random numbers over the range [a, b] according to a continuous uniform distribution.

For every customer j (j ∈ J), time period t (t ∈ T ), and scenario s (s ∈ S), demand dtjs

is randomly generated according to the procedure described in Table 11.

Scenario Demand pattern Customer demand Periods Coefficient
1, 2, 3 d1js = U [20, 500]
1 irregular dtjs = βt

j d
t−1

j t = 2, . . . , |T | βt
j ∈ U [0.8, 1.2]

2 trapezoid dtjs = βt
j d

t−1

j t = 2, . . . , |T |/3 βt
j ∈ U [1.0, 1.2]

dtjs = βt
j d

t−1

j t = 1 + |T |/3, . . . , 2|T |/3 βt
j ∈ U [0.99, 1.01]

dtjs = βt
j d

t−1

j t = 1 + 2|T |/3, . . . , |T | βt
j ∈ U [0.8, 1.0]

3 inverted trapezoid dtjs = βt
j d

t−1

j t = 2, . . . , |T |/3 βt
j ∈ U [0.8, 1.0]

dtjs = βt
j d

t−1

j t = 1 + |T |/3, . . . , 2|T |/3 βt
j ∈ U [0.99, 1.01]

dtjs = βt
j d

t−1

j t = 1 + 2|T |/3, . . . , |T | βt
j ∈ U [1.0, 1.2]

Table 11: Generation of demand scenarios.

The generation of the variable costs relies on two real random numbers, β1 and β2, in the

range 1.01 and 1.03 (details are given next). For i ∈ I and j ∈ J , the unit variable distribution

costs are generated as follows:

c1ij = U [5, 10],
ctij = c1ij for t = 2, . . . , σ,

ctij = β1 c
12
ij for t = 1 + σ, . . . , 2 σ,

ctij = β2 c
24
ij for t = 1 + 2 σ, . . . , |T |.

Recall that σ = |T |/|TL| gives the total number of periods between two consecutive design

periods. Since |TL| = 3, the planning horizon is divided into three sections. For |T | = 12 (resp.

|T | = 24), each section spans 4 (resp. 8) time periods. The unit distribution costs are assumed

to be constant in all time periods within a section. However, the costs increase between 1%

and 3% from one section to the next. This type of pattern is also present in the unit variable

processing costs. The latter reflect economies of scale by considering the number of modular
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units that are available at a particular location. For i ∈ I, we set

o1ik = 100 /
√
Q for t = 1, . . . , σ,

otik = 0.9 otik−1 for t = 2, . . . , σ; k = 2, . . . , ni,

otik = β1 o
σ
ik for t = 1 + σ, . . . , 2 σ; k = 2, . . . , ni,

otik = β2 o
2σ
ik for t = 1 + 2 σ, . . . , |T |.

Recall that at most four modular units may be available at a location, i.e. ni = 4 (i ∈ I).

Regarding the generation of the fixed costs, the following procedure was employed.

• At the first design period, ℓ = 1, the fixed cost of opening facility i (i ∈ I) with k

modular units (k = 1, . . . , ni) is defined by

FO1
ik = αi + γi

√
k Q, αi ∈ U [500, 1000]; γi ∈ U [4000, 6000].

In the remaining strategic periods ℓ ∈ TL \ {1}, we set FOℓ
ik = U [1.01, 1.03]FOℓ−1

ik for

every k = 1, . . . , ni. Once again, the capacity size of a facility at the time it is established

also affects the above costs.

• All remaining fixed costs at location i (i ∈ I) represent a given percentage of the fixed

opening costs:

FEℓ
ik = 0.25 FOℓ

ik k = 1, . . . , ni − 1; ℓ ∈ TL \ {1},
FRℓ

ik = 0.10 FOℓ
ik k = 1, . . . , ni − 1; ℓ ∈ TL \ {1},

M t
ik = 0.05 FOℓ

ik k = 1, . . . , ni; ℓ ∈ TL; t = ℓ, . . . , t′; t′ ∈ T : t′ < ℓ+ 1.

Finally, we adapt the scheme proposed in [15] to generate the unit tardiness penalty costs

for late deliveries to customers j ∈ J1 as follows:

ptt
′

j = 0.1 θtj (t
′ − t)2 for t ∈ T and t′ = t, . . . ,min{t+ ρj , |T |},

with

θtj =

∑
i∈I

ni∑
k=1

M t
ik

TD |I| ∑
i∈I

ni

+

∑
i∈I

ctij

|I| +

∑
i∈I

ni∑
k=1

otik

|I| ∑
i∈I

ni

,
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and TD denoting the maximum quantity demanded across all scenarios. Therefore, TD =
∑

j∈J

∑
t∈T maxs∈S d

t
js. Observe that the unit tardiness penalty cost is a function of the average

fixed facility operating costs, and the average variable distribution and processing costs.
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supply chain planning under uncertainty based on stochastic 0-1 programming. Journal of Global

Optimization, 26:97–124, 2003.

[6] S.A. Alumur, S. Nickel, and F. Saldanha da Gama. Hub location under uncertainty. Transporta-

tion Research Part B, 46:529–543, 2012.

[7] E.M. Alvarez, M.C. van der Heijden, and W.H.M. Zijm. Service differentiation in spare parts

supply through dedicated stocks. Annals of Operations Research, 231:283–303, 2015.

[8] A. Antunes and D. Peeters. On solving complex multi-period location models using simulated

annealing. European Journal of Operational Research, 130:190–201, 2001.

38



[9] H. Bakker, F. Dunke, and S. Nickel. A structuring review on multi-stage optimization

under uncertainty: Aligning concepts from theory and practice. Omega, 2019. doi:

10.1016/j.omega.2019.06.006. In press.

[10] O. Baron, J. Milner, and H. Naseraldin. Facility location: A robust optimization approach.

Production and Operations Management, 20:772–785, 2011.

[11] P. Beraldi and M.E. Bruni. A probabilistic model applied to emergency service vehicle location.

European Journal of Operational Research, 196:323–331, 2009.

[12] O. Berman and J. Wang. The probabilistic 1-maximal covering problem on a network with

discrete demand weights. Journal of the Operational Research Society, 59:1398–1405, 2008.

[13] J.R. Birge and F.V. Louveaux. Introduction to Stochastic Programming. Springer Series in

Operations Research and Financial Engineering. Springer, New York, Dordrecht, Heidelberg,

London, second edition, 2011.

[14] I. Contreras, J.-F. Cordeau, and G. Laporte. Stochastic uncapacitated hub location. European

Journal of Operational Research, 212:518–528, 2011.

[15] I. Correia and T. Melo. A multi-period facility location problem with modular capacity adjust-

ments and flexible demand fulfillment. Computers & Industrial Engineering, 255:729–746, 2017.

[16] I. Correia and F. Saldanha da Gama. Facility location under uncertainty. In G. Laporte, S. Nickel,

and F. Saldanha da Gama, editors, Location Science, chapter 8, pages 177–204. Springer, Hei-

delberg, 2015.

[17] I. Correia, T. Melo, and F. Saldanha da Gama. Comparing classical performance measures for a

multi-period, two-echelon supply chain network design problem with sizing decisions. Computers

& Industrial Engineering, 64:366–380, 2013.

[18] I. Correia, S. Nickel, and F. Saldanha da Gama. A stochastic multi-period capacitated multiple

allocation hub location problem: Formulation and inequalities. Omega, 74:122–134, 2018.

[19] M.J. Cortinhal, M.J. Lopes, and M.T. Melo. Dynamic design and re-design of multi-echelon,

multi-product logistics networks with outsourcing opportunities: A computational study. Com-

puters & Industrial Engineering, 90:118–131, 2015.

[20] E.M. Delmelle, J.-C. Thill, D. Peeters, and I. Thomas. A multi-period capacitated school location

problem with modular equipment and closest assignment considerations. Journal of Geographical

Systems, 16:263–286, 2014.

39
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[40] N. Marković, I.O. Ryzho, and P. Schonfeld. Evasive flow capture: A multi-period stochastic

facility location problem with independent demand. European Journal of Operational Research,

257:687–703, 2017.

[41] M.T. Melo, S. Nickel, and F. Saldanha da Gama. Dynamic multi-commodity capacitated facility

location: a mathematical modeling framework for strategic supply chain planning. Computers &

Operations Research, 33:181–208, 2006.

[42] I.B. Mohamed, W. Klibi, and F. Vanderbeck. Designing a two-echelon distribution network under

demand uncertainty. European Journal of Operational Research, 280:102–123, 2020.

[43] S. Nickel and F. Saldanha da Gama. Multi-period facility location. In G. Laporte, S. Nickel,

and F. Saldanha da Gama, editors, Location Science, chapter 11, pages 289–310. Springer,

Heidelberg, 2015.

41



[44] S. Nickel, F. Saldanha-da-Gama, and H.-P. Ziegler. A multi-stage stochastic supply network

design problem with financial decisions and risk management. Omega, 40:511–524, 2012.

[45] S.H. Owen and M.S. Daskin. Strategic facility location: A review. European Journal of Opera-

tional Research, 111:423–447, 1998.

[46] L. Snyder. Facility location under uncertainty: A review. IIE Transactions, 38:537–554, 2006.

[47] V. Verter and M.C. Dincer. Facility location and capacity acquisition: An integrated approach.

Naval Research Logistics, 42:1141–1160, 1995.

[48] Y. Wang, M.A. Cohen, and Y.-S. Zheng. Differentiating customer service on the basis of delivery

lead-times. IIE Transactions, 34:979–489, 2002.

[49] W. Wilhelm, X. Han, and C. Lee. Computational comparison of two formulations for dynamic

supply chain reconfiguration with capacity expansion and contraction. Computers & Operations

Research, 40:2340–2356, 2013.

[50] L. A. Wolsey. Integer programming. Wiley-Interscience Series in Discrete Mathematics and

Optimization. Wiley, New York, 1998.

[51] D. Zhuge, S. Yu, L. Zhen, and W. Wang. Multi-period distribution center location and scale

decision in supply chain network. Computers & Industrial Engineering, 101:216–226, 2016.

42



 

Veröffentlichte Berichte der Fakultät für Wirt-
schaftswissenschaften 

Die PDF-Dateien der folgenden Berichte sind verfüg-
bar unter: 

 

Published reports of the Saarland Business 
School 

The PDF files of the following reports are available un-
der: 

http://www.htwsaar.de/wiwi

 
1 I. Correia, T. Melo, F. Saldanha 

da Gama 

Comparing classical performance 
measures for a multi-period, two-
echelon supply chain network de-
sign problem with sizing decisions 

Keywords: supply chain network de-
sign, facility location, capacity acquisi-
tion, profit maximization, cost minimi-
zation 

(43 pages, 2012) 

2 T. Melo 

A note on challenges and opportu-
nities for Operations Research in 
hospital logistics 

Keywords: hospital logistics, Opera-
tions Research, application areas 

(13 pages, 2012) 

3 S. Hütter, A. Steinhaus 

Forschung an Fachhochschulen – 
Treiber für Innovation im Mittel-
stand: Ergebnisse der Qbing-
Trendumfrage 2013 

Keywords: Innovation, Umfrage, 
Trendbarometer, Logistik-Konzepte, 
Logistik-Technologien, Mittelstand, 
KMU 

(5 pages, 2012) 

4 A. Steinhaus, S. Hütter 

Leitfaden zur Implementierung von 
RFID in kleinen und mittelständi-
schen Unternehmen 

Keywords: RFID, KMU, schlanke Pro-
zesse, Prozessoptimierung, Produk-
tion, Forschungsgruppe Qbing 

(49 pages, 2013) 

5 S.A. Alumur, B.Y. Kara, 
M.T. Melo 

Location and Logistics 

Keywords: forward logistics network 
design, reverse logistics network de-
sign, models, applications 

(26 pages, 2013) 

6 S. Hütter, A. Steinhaus 

Forschung an Fachhochschulen – 
Treiber für Innovation im Mittel-
stand: Ergebnisse der Qbing-
Trendumfrage 2014 

Keywords: Innovation, Umfrage, 
Trendbarometer, Logistik-Konzepte, 
Logistik-Technologien, Mittelstand, 
KMU 

(6 pages, 2014) 

7 M.J. Cortinhal, M.J. Lopes, 
M.T. Melo 

Redesigning a three-echelon logis-
tics network over multiple time pe-
riods with transportation mode se-
lection and outsourcing opportuni-
ties 

Keywords: logistics network de-
sign/re-design, multiple periods, trans-
portation mode selection, product out-
sourcing, mixed-integer linear pro-
gramming 

(49 pages, 2014) 

8 T. Bousonville, C. Ebert, J. Rath 

A comparison of reward systems 
for truck drivers based on  
telematics data and driving  
behavior assessments 

Keywords: telematics, driving  
behavior, incentives, award systems 

(9 pages, 2015) 

9 I. Correia, T. Melo 

Multi-period capacitated facility lo-
cation under delayed demand satis-
faction 

Keywords: location, multi-period, ca-
pacity choice, delivery lateness, MILP 
models 

(35 pages, 2015) 

10 C.L. Martins, M.T. Melo, 
M.V. Pato 

Redesigning a food bank supply 
chain network, Part I: Background 
and mathematical formulation 

Keywords: supply chain, sustainabil-
ity, tri-objective problem, MILP model 

(30 pages, 2016) 

11 I. Correia, T. Melo 

A computational comparison of for-
mulations for a multi-period facility 
location problem with modular ca-
pacity adjustments and flexible de-
mand fulfillment 

Keywords: facility location, multi-pe-
riod, capacity expansion and contrac-
tion, delivery lateness, mixed-integer 
linear models 

(42 pages, 2016) 

12 A. Bernhardt, T. Melo,  
T. Bousonville, H. Kopfer 

Scheduling of driver activities with 
multiple soft time windows consid-
ering European regulations on rest 
periods and breaks 

 
 



Keywords: road transportation, driver 
scheduling, rest periods, breaks, driv-
ing hours, Regulation (EC) No 
561/2006, mixed integer linear pro-
gramming models 

(137 pages, 2016) 

13 C.L. Martins, M.T. Melo, 
M.V. Pato 

Redesigning a food bank supply 
chain network, Part II: Computa-
tional study 

Keywords: food rescue and delivery, 
sustainability, supply chain network 
design, tri-objective problem, social 
impact, economic and environmental 
performance 

(57 pages, 2017) 

14 A. Bernhardt, T. Melo,  
T. Bousonville, H. Kopfer 

Truck driver scheduling with 
combined planning of rest periods, 
breaks and vehicle refueling 

Keywords: road transportation, 
refueling, fuel cost, driver scheduling, 
rest periods, breaks, driving hours, 
Regulation (EC) No 561/2006, mixed 
integer linear programming 

(90 pages, 2017) 

15 M.J. Cortinhal, M.J. Lopes,  
M.T. Melo 

Impact of partial product  
outsourcing, transportation mode 
selection, and single-assignment 
requirements on the design of a 
multi-stage supply chain network 

Keywords: supply chain network de-
sign, facility location, supplier  
selection, in-house production,  
product outsourcing, transportation 
mode selection, single-assignment, 
mixed-integer linear programming 

(51 pages, 2018) 

16 C. Sauvey, T. Melo, I. Correia 

Two-phase heuristics for a multi-
period capacitated facility location 
problem with service-differentiated 
customers 

 

 

 

Keywords: facility location, multi-pe-
riod, delivery lateness, constructive 
heuristics, local improvements 

(41 pages, 2019) 

17 I. Correia, T. Melo 

Dynamic facility location problem 
with modular capacity adjustments 
under uncertainty 

Keywords: facility location, dynamic 
capacity adjustment, delivery late-
ness, stochastic programming, valid 
inequalities 

(42 pages, 2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  



 
Hochschule für Technik und Wirtschaft des Saarlandes 

Die Hochschule für Technik und Wirtschaft des Saarlandes (htw saar) wurde im Jahre 1971 als saarländische 

Fachhochschule gegründet. Insgesamt studieren rund 6000 Studentinnen und Studenten in 46 verschiedenen 

Studiengängen an der htw saar, aufgeteilt auf vier Fakultäten. 

In den vergangenen zwanzig Jahren hat die Logistik immens an Bedeutung gewonnen. Die htw saar hat dieser 

Entwicklung frühzeitig Rechnung getragen und einschlägige Studienprogramme sowie signifikante Forschungs- 

und Technologietransferaktivitäten entwickelt. Die Veröffentlichung der Schriftenreihe Logistik soll die Ergeb-

nisse aus Forschung und Projektpraxis der Öffentlichkeit zugänglich machen.  

Weitere Informationen finden Sie unter http://logistik.htwsaar.de 

 

 

 

Institut für Supply Chain und Operations Management 

Das Institut für Supply Chain und Operations Management (ISCOM) der htw saar ist auf die Anwendung quan-

titativer Methoden in der Logistik und deren Implementierung in IT-Systemen spezialisiert. Neben öffentlich ge-

förderten Forschungsprojekten zu innovativen Themen arbeitet ISCOM eng mit Projektpartnern aus der Wirt-

schaft zusammen, wodurch der Wissens- und Technologietransfer in die Praxis gewährleistet wird. Zu den Ar-

beitsgebieten zählen unter anderem Distributions- und Transportplanung, Supply Chain Design, Bestandsma-

nagement in Supply Chains, Materialflussanalyse und -gestaltung sowie Revenue Management.  

Weitere Informationen finden Sie unter http://iscom.htwsaar.de 

 

Forschungsgruppe Qbing 

Qbing ist eine Forschungsgruppe an der Hochschule für Technik und Wirtschaft des Saarlandes, die speziali-

siert ist auf interdisziplinäre Projekte in den Bereichen Produktion, Logistik und Technologie. Ein Team aus 

derzeit acht Ingenieuren und Logistikexperten arbeitet unter der wissenschaftlichen Leitung von Prof. Dr. Steffen 

Hütter sowohl in öffentlich geförderten Projekten als auch zusammen mit Industriepartnern an aktuellen Frage-

stellungen zur Optimierung von logistischen Prozessabläufen in Handel und Industrie unter Einbeziehung mo-

dernster Sensortechnologie und Telemetrie. Qbing hat auch und gerade auf dem Gebiet der angewandten For-

schung Erfahrung in der Zusammenarbeit mit kleinen und mittelständischen Unternehmen. 

Weitere Informationen finden Sie unter http://www.qbing.de 
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