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A methodology for stochastic inventory modelling 
with ARMA triangular distribution for new products
Fernando Rojas1,2*

Abstarct: This paper proposes a stochastic inventory policy of continuous review with 
random demand described with temporal dependence through an autoregressive 
moving average (ARMA) model with explicative variables, of usefulness in new products 
without a history of demand data, assuming a triangular distribution. Optimization of 
the cost function related to the inventory model is obtained considering the expected 
value and variance marginal stationary of the demand per unit time and stochastic 
programming. The proposed policy is exemplified with real-world demand data from a 
Chilean hospital, where the demand of products (drugs) are correlated with other prod-
ucts and autocorrelated. The proposed methodology shows a useful tool for adminis-
trators who must decide optimal batch sizes and their reorder points when there is a 
low availability of demand data and is known to have a temporal structure.

Subjects: Economics, Finance, Business & Industry; Business, Management and Accounting; 
Production, Operations & Information Management; Industry & Industrial Studies; Service 
Industries

Keywords: ARMA model; continuous review; triangular distribution

1. Introduction
Supply systems and policy inventories reduce the vulnerability of the supply chain management in 
enterprises. This reduction is achieved by optimizing inventory levels to meet the demand of prod-
ucts of the companies satisfying customers (Hillier & Lieberman, 2005).

Stochastic inventory models consider the demand for products as a random variable (RV) de-
scribed by a continuous or discrete distribution. To optimize total costs (TC) of inventory, the cost of 
placing an order to the supplier has three components: (a) a cost that is independent of the lot size, 
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(b) a cost that depends on the quantity of products in the lot, and (c) a cost of shortage due to un-
satisfied demand (Gjerdrum, Samsatli, Shah, & Papageorgiou, 2005). Once the inventory model indi-
cators have been defined and distributional assumptions for demand per unit time (DPUT) and for 
demand during lead-time (LT), in short LTD, have been established, the expected value of the objec-
tive function based on the TC of the inventory must be optimized (Namit & Chen, 1999).

The triangular distribution (TRI) is manageable and is known to be useful when a distribution can-
not be determined, because the data are difficult to obtain or costly to collect (Glickman & Xu, 2008). 
This distribution can be used to involve managers in the analytical process by considering their sub-
jective estimates of the minimum, most probable and maximum values. According to Johnson 
(2002), the TRI distribution has the advantage of being intuitively plausible for practitioners. 
Assuming that triangularity can help managers deal with new products, which have no historical 
data and therefore do not offer the possibility of analogies with similar products. Based on this as-
sumption, managers can decide the first lot size to order and reorder point (ROP), which often in-
cludes a safety stock (SS) term. As companies initially store the product and learn about their DPUT 
distribution over time, learning-based approaches can be useful.

The probabilistic treatment of DLT is facilitated when the LT is constant. Nevertheless, often DPUTs 
are not independent and identically distributed (IID) RVs over time (Kristianto, Gunasekaran, Helo, & 
Sandhu, 2012). When one wants to optimize inventories composed by multiple products, the possi-
ble time dependence of the demand for products that conform the assortment of inventory should 
be considered in the modelling, which should improve the operational results by using past informa-
tion (Calfa, 2015). This information can be described by autoregressive moving average models 
(ARMA) that the interested reader can consult in Box, Jenkins, Reinsel and Ljung (2015). All this sta-
tistical structure must be inserted in the mentioned objective function to be optimized by stochastic 
programming (Rojas & Leiva, 2016).

The motivation of this paper is that the proposed methodology has a useful as a tool for administra-
tors who must decide optimal batch sizes and their reorder points when there is a low availability of 
demand and is known to have a temporal dependence. Then we propose a methodology based on in-
ventory models of continuous review to be supplied from a single distributor, of utility for new products, 
assuming a triangular distribution and describing the dependence over time of the DPUT with an ARMA-
TRI model. The paper is organized as follows: Section 2 makes a literature review about: (i) modelling of 
DPUT for TRI distribution and conditional to past information based on ARMA models; (ii) inventory 
models of continuous review; (iii) stochastic programming; and (iv) financial indicators of the inventory 
policy. Section 3 exposes the proposed methodology, whereas Section 4 illustrates it with a real-world 
case study of drugs supply in a Chilean public hospital; and Section 5 provides a discussion and conclu-
sions of the results obtained in this research, as well as their limitations and future research.

2. Literature review

2.1. DPUT described by TRI distribution conditional to past information
As stated, usually DPUT are not IID RVs over time. This dependence can be considered by a time dy-
namic structure and described by ARMA time series models (Kristianto et al., 2012). ARMA model pa-
rameters can be estimated via the maximum likelihood (ML) method once the underlying distribution 
has been defined, where often a normal or Gaussian distribution is assumed (Box et al., 2015), but other 
distributions might also be considered (Rojas, 2016). ARMA models, or its integrated version to grant 
stationarity, denominated ARIMA, are widely flexible, easy to estimate and interpret, and besides their 
prediction is straightforward (Gilbert, 2005). Prediction based on ARMA models may be carried out by 
the density forecast (DF) technique (Bauwens, Giot, Joachim, & David, 2004; Calfa, 2015; Diebold, 
Gunther, & Tay, 1998; Diebold, Hahn, & Tay, 1999). When non-normality is detected in the under analy-
sis data, transformations for obtaining normality are usually utilized. However, data transformation 
brings problems of interpretation in the results. Furthermore, the ARMA model has a linear structure 
and the distributional assumption is considered for the model error, frequently named white noise. 
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Therefore, the classic ARMA model is highly restrictive. This restrictiveness was solved in a more general 
framework of statistical modelling by McCullagh and Nelder (1989) by means of generalized linear mod-
els (GLM). The GLM are based on distributions of the exponential family, where the normal model is a 
particular case. The GLM do not assume a distribution for the model error, but for the response directly, 
and allow for non-linear structures by a link function that relates the predictor to model mean. Benjamin, 
Rigby and Stasinopoulos (2003) proposed a GLM version of ARMA models known as generalized ARMA. 
In this framework it is possible to occupy other probabilistic distributions, such as the TRI distribution, 
reparametrized with respect to its mean. As mentioned, ARMA models are often used to predict future 
values, but they may also be employed to estimate mean values. This last aspect is particularly of inter-
est in stochastic inventory models. So, a major difference with previous work developed by Glickman 
and Xu (2008) or Wanke, Ebwank, Leiva and Rojas (2016) is that in the present proposal we consider the 
temporal structure of demand that may be present in a forecast for new products, when we know that 
it may be influenced by a temporal arrangement of the data (modelling), revealing trend, seasonality, 
cyclicity, among others, which is a very common characteristic in the processes of demand.

2.2. Inventory models of continuous review
A problem of multiple products commonly occurring in inventory policies is to decide what optimal 
quantities of products must be ordered simultaneously from a same supplier (Hillier & Lieberman, 
2005). Continuous review policies provide solutions to problems of inventory management in many 
real-world situations. Inventory models of continuous review are known as (Q, r) models, which are 
often used for inventory supply planning. This model is based on the economic order quantity or lot 
size and reorder point, denoted by Q and r, respectively (Rojas, Leiva, Wanke, & Marchant, 2015). 
Indicators Q and r must be determined to minimize the TC of the inventory management. Such a 
cost is function of the holding, ordering and shortage costs (Hillier & Lieberman, 2005). When calcu-
lating the reorder point for a fixed service level, the LTD distribution and its corresponding probability 
density function (PDF) must be used. When the LTD distribution is unknown, this PDF can be approxi-
mated by any suitable approach. We employ a simultaneous approach to optimize Q and r (Silver, 
Pyke, & Peterson, 1998; Wanke et al., 2016).

2.3. Stochastic programming
As its name suggests, stochastic programming is a mathematical programming problem (linear, non-
linear, integer, etc.) which contains in its formulation some stochastic element that is unknown, but 
that can be estimated from its probability distribution (Shapiro, Dentcheva, & Ruszczynski, 2014). The 
expected value of the objective function based on the TC of inventory must be optimized in a continu-
ous review policy of an assortment of products. Stochastic programming can be used to solve this op-
timization problem by the differential evolution (DE) algorithm, which belongs to the family of genetic 
algorithms, imitating the natural process of choice in evolutionary fashion (Price, Storn, & Lampinen, 
2006; Rojas, & Leiva, 2016; Thangaraj, Pant, Bouvry, & Abraham, 2010; Wanke & Leiva, 2015).

2.4. Financial indicators of the inventory policy
The economical benefits of inventory models are evaluated by efficiency indicators. Some of them 
are financial, such as TCs from inventories or sales related to rotation of stocks available; whereas 
others are operational, such as the ability to meet demand with inventory planned by the inventory 
model (called “fill-rate”), or the expected shortage per cycle (Wanke et al., 2016).

2.5. Summary
In this work, we propose a methodology based on stochastic inventory models of continuous review 
for multiple products with supply from a single dealer. DPUT of each product is considered as an RV 
following a continuous probabilistic distribution. DPUTs are assumed to have dependence over time 
which is described by ARMA models. DPUT of a product may be possibly related to the DPUT of other 
products of the inventory assortment, which is described by multivariate continuous probabilistic 
distributions. Optimization of the inventory TC is carried out by stochastic programming using the DE 
algorithm. Economical evaluation of the results obtained in this study is conducted by financial 
indicators based on TCs of the inventory assortment of products.
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3. Methodology

3.1. Triangular demand distribution
Let the continuous RV Yt be the DPUT for a new product. If Yt has a TRI distribution around its mode 
c with parameters a ∈ ℝ and b ∈ ℝ, which is denoted by Yt ∼ TRI(a, b, c), then its PDF, cumulative 
distribution function (CDF) (1) and quantile function (QF) (2) are, respectively, given by

and

In addition, the mean and variance of X ∼ TRI(a, b, c) are, respectively, given by

3.2. Demand distribution during lead-time
Furthermore, let the RV L be the LT (lead time) of a item, which is not dependent from the sequence 
of independent identically distributed RVs {Yt, t ≥ 0}, where E(Yt) = E(Y) = � and 
Var(Yt) = Var(Y) = �

2 are the mean and variance of the DPUT, respectively. Suppose that the 
orders do not have crossbreeding (Hayya, Bagchi, Kim, & Sun, 2008).

Let SL be the LTD for the item, a random sum expressed as

with PDF fSL (⋅) defined on [0,∞) (non-negative support), CDF

and QF s(q) = F−1SL (q), for 0 < q < 1. The expectation and variance of SL are, respectively, expressed 
as

and

Please note that generally both LT as DPUT can be modelled by any discrete or continuous PDFs.

fYt
(yt) =

dFYt
(yt)

dyt
=

⎧
⎪
⎨
⎪
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2(yt−a)

(b−a)(c−a)
, if a ≤ yt ≤ c;

2(b−yt)
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, if c ≤ yt ≤ b;

0, otherwise;
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√
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b −
√
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∫
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(3)�SL
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3.3. ARMA model
The assumption of IID RVs for DPUTs Yt depending over time t, for t = 1,… ,m, and for the DLT SL 
can be violated. The time series Yt is described by an ARMA(p, q) model defined by

where yt, yt−1,⋯ , yt−p are RVs conceived as realizations of stochastic process at different points of 
time t, t − 1, t − 2,⋯, which are characterized by a stationary mean 
E(Yt) = E(Yt−1) = E(Yt−2) = ⋯ = 𝜇 = x⊤t � (Benjamin et al., 2003), � y � corresponds to the ARMA 
components of a model of orders p and q, respectively. Note that �⊤

t = (𝛽0, 𝛽1,… , 𝛽n) is a vector of 
coefficients associated with n covariates with dependence over time denoted by 
x
⊤

t = (x0, x1,t, x2,t,… , xn,t), with x0 = 1. For its part �t−j = yt−j − � corresponds to residuals o errors 
uncorrelated in the original scala of measurement of response variable with mean zero and normal 
distribution. In the ARMA models, it is assumed that the variance of the residuals (�2

�
) is constant in 

the time (Gilbert, 2005). All the parameters required are estimated to define the model. Thus, the 
stationary marginal mean of ARMA model is

while the stationary marginal standard deviation (SD) of the response variable depend of order of 
the model. Table 1 presented the stationary marginal SD more usual to response variable according 
order to ARMA model.

3.4. Parameter estimation
Given n observations of Yt, for t = 1,… ,n, the likelihood function is constructed as the product of 
conditional PDFs of Yt given past information Ωt−1. The stationary mean � is a function of the ARMA 
parameters �⊤, �⊤ and �⊤, where each time embodies these conditioning variables. Therefore, the 
corresponding log-likelihood function is given by

Yt = x
⊤

t � +

p∑

j=1

𝜙j{yt−j − x
⊤

t−j�} + 𝜀t +

q∑

j=1

𝜃j 𝜀t−j ,

(5)𝜇 = x⊤t �,

(6)l(�⊤,�⊤, �⊤
) =

n∑

t=1

log(fYt
(yt|𝜇(�

⊤,�⊤, �⊤
))).

Table 1. Stationary marginal SD more usual to response variable according order to ARMA 
model
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By differentiating (6) for each of the parameters, it is possible to obtain their maximum likelihood 
(ML) estimates.

3.5. Stochastic programming of inventory model continuous review
The total expected annual cost assuming inventory shortage is expressed as a sum of (i) the holding 
cost per unit of product per year, denoted by C

s
, multiplied by the expected quantity in balance of the 

items; (ii) the ordering cost, denoted by C
o
, multiplied by the number of orders per year, and (iii) the 

penalty cost when have shortage of inventory, denoted by C
p
, that is, the penalty cost per shortage 

product unit multiplied by the number of orders per year and by the expected quantity of shortage 
product units. Thus, for the (Q, r) model, the annual total cost is expressed as

where � is calculated from (5) and �SL is defined in (3) (Hadley & Whitin, 1963; Johnson & Montgomery, 
1974; Silver et al., 1998). Notice that � is multiplied by 12, because the total cost given in (7) is de-
fined on an annual basis and � on a monthly basis. In addition, �SL is not altered, because its scope 
is verified within each safety inventory cycle. For the inventory total cost given in (7), 
r − �SL

= SS = kp �SL
, with the SD of the LTD �SL being given from (4) which is calculated in stationary 

marginal form according order to ARMA model of Table 1. kp is the amount of SDs of the LTD or safety 
factor (SF) associated with a service level of p × 100%, for 0 < p < 1. Note that kp corresponds to the 
p × 100th standardized percentile, usually used in the 95th position, ensuring a service level of 95%. 
In (7), W(r) is the expected shortage per cycle given by

where m is the maximum value for the LTD, r the already mentioned reorder point and, as also men-
tioned, fSL (⋅) the LTD PDF.

3.6. Summary of the methodology
Algorithm 1 summarizes our methodology in four main steps divided in 10 sub-steps based on the 
aspects detailed in Sections 3.1–3.6, from the collection of data until the establishment of the TCs to 
evaluate the optimized system with autocorrelated demand not IID in relation to the IID demand 
optimized system. We recall this algorithm considers the demand dependent to past information for 
products, but once all the products are considered, the total cost of the products used in the service 
are minimized.

4. Simulation study and application
Below, we show how inventory management of products can be planned within companies by using 
the methodology proposed in Section 3 and the computational framework developed for this 
methodology.

(7)C
T
= G(Q, r) =

(
Q

2
+ r − �SL

)
C
s
+
12�

Q
C
o
+W(r)

12�

Q
C
p
,

W(r) =

m

∫
r

(s − r)fSL
(s) ds,



Page 7 of 13

Rojas, Cogent Business & Management (2017), 4: 1270706
http://dx.doi.org/10.1080/23311975.2016.1270706

4.1. Computational framework
R is a non-commercial and open source software for statistics and graphs, which can be obtained at 
no cost from http://www.r-project.org. The statistical software R is being currently very popular in the 
international scientific community. For a use of this software in inventory models (see Rojas et al., 
2015). Some R packages related to statistical distributions that may be useful in inventory models 
are available at http://CRAN.R-project.org (Barros, Paula, & Leiva, 2009; Stasinopoulos & Rigby, 2007). 
The expected value for demand products is calculated by using ARMA models implemented in the  
R software by the packages forecast() for time series. The random generator TRI distribution number 
is made by packaged triangle change distribution of command arima.sim(). The stochastic program-
ming of inventory models is performed by the packaged DEoptim() of the same software.

4.2. Simulation study

4.2.1. Temporal structure of DPUT data
We use the Monte Carlo method for simulating data (n = 1,000) of DPUT with temporal structure 
from TRI distribution (parameters a = 1, b = 10, c = 5). The variation of the shape and kurtosis of the 
distribution is compared when considered TRI distribution with an assumption of IID (without a 
temporal structure and without co-variate), and then when temporary structures AR and MA are 
introduced, as well as both (ARMA). Figure 1 shows that the introduction of a positive order autore-
gressive (AR1P, coefficient �1= 0.5) shifts the distribution towards higher values of the variable (right) 
and it makes slightly more platykurtic. The inverse effects occur with the negative order autoregres-
sive (AR1N, coefficient �1 = −0.5). The orders of moving average positive and negative ( MAP, �1 = 

http://www.r-project.org
http://CRAN.R-project.org
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0.5 and MAN, �1 = −0.5), operate shifting the values of the variable in the same above address, but 
with a lower magnitude both in the displacement as the platy-kurtosis. The described effects are 
accentuated even more in the address described as the AR and MA orders are both positive or both 
negative, instead are cancelled when they are of different signs, resembling the distribution TRI IID  
of reference.

4.2.2. Change in parameter estimation with ARMA-TRI model
To study the change of the estimation of parameter, we compare the mean and standard deviation 
(SD) of 1,000 data simulated in time series with ARMA-TRI models respect to IID-TRI distribution 
(parameters a = 1, b = 10, c = 5). The results are shown in Table 2. Note that in almost all cases the 
mean and SD of the simulated time series described by ARMA-TRI models are higher to the average 
and SD of the TRI IID distribution. This change is very important to the modelling in stochastic 
programming.

4.3. Application
The drug supply in pharmacy units of Chilean primary health centres is channelled through their 
central warehouse, which acts as an intermediary between suppliers and output units (OU). The OUs 
receive the demand for drugs, including its own pharmacy, which performs dispensing of prescrip-
tions to patients. This warehouse needs the storage, conservation and distribution of such drugs. 
Supply of warehouse is carried out by a supplier. The warehouse delivers the products on a monthly 
basis to all OUs by using aggregated demand requirements for each of them in the same period.

Figure 1. Simulation study 
TRI distribution with ARMA 
structure. Shape and Kurtosis.
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Table 2. Change in parameter estimation ARMA-TRI vs TRI-IID model
Model/Parameter Mean (units) SD (units)
TRI-IID 5.51 1.74

AR1(� = −0.5)MA(� = 0)-TRI 10.5 2.42

AR1(� = −0.5)MA(� = 0)-TRI 3.07 2.38

AR(� = 0)MA(� = 0.5)-TRI 8.18 2.18

AR(� = 0)MA(� = −0.5)-TRI 2.81 2.35

AR(� = 0.5)MA(� = 0, 5)-TRI 15.69 3.37

AR(� = −0.5)MA(� = −0.5)-TRI 1.83 3.63

AR(� = 0.5)MA(� = −0.5)-TRI 5.55 1.73

AR(� = −0.5)MA(� = 0.5)-TRI 5.54 1.76
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4.3.1. The data-set
To validate the proposed methodology, we use real-world monthly demand data for an assortment 
of 223 pharmaceutical products, which it has extracted an example of 1 demand of product with 
time dependence monthly that associated with other demand of product. The associations between 
demands of pharmaceutical products are common in this area, because usually more than one drug 
is used to treat the same disease. Then, in ARMA model the DPUT of a product can co-vary as a pre-
dictor of another DPUT of product. The products are shipped from the warehouse and delivered to a 
family health centre, located at the city of Concon, Chile, for a study of supply policy conducted by 
Fernando Rojas in the University of Valparaiso, Chile, during 24 months of the years 2014–2015 
(from January 1 to December 31). In this type of public institutions the availability of data is very 
limited and so the parameters of the TRI distribution were informed by the pharmacist in charge of 
the pharmacy.

4.3.2. Data analysis
Figure 2 shows a time series monthly of DPUTs, whereas Figure 3 presents (a) ACF, (b) PACF of DPUTs 
of an illustrative products, respectively. Note that the examination of these figures shows that the 
probability distributions of these variables are approximated by TRI distribution but not IID. The 
pharmacist in charge estimated the parameters as a = 50, b = 240 and c = 170 units/month, 
respectively.

Figure 3. (a) ACF, (b) PACF of 
DPUTs for illustrative product.
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Table 3 shows descriptive statistics of monthly DPUTs of illustrative product with mean, SD, inter-
quartile range (IQR), percentile 0, 25, 75, 100 and size sample (n). The data-set of this monthly DPUTs 
is:

The monthly DPUT of other associated product show a correlation coefficient of 0.5469 with adjusted 
p-values (Holm’s method) of 0.0057. The data-set of this monthly DPUTs is:

To confirm that original time series is stationary we applied Augmented Dickey–Fuller Test, obtain a 
statistics Dickey–Fuller = −2.599, for lag order = 2, with p-value = 0.3442 for alternative hypothesis of 
stationarity. This result indicated that it is possible to apply an ARMA model to original data, consid-
ering a covariate.

To estimate the parameters and fittings of the ARMA-TRI model according Akaike criteria, it is pos-
sible to consult a code in software R, which is available by the author. In this case, in concordance 
with visual examen to ACF and PACF plots, the best model is AR(1) with covariate. The coefficients 
necessary to specify the model (in parenthesis shows standard errors) and show a training set error 
measures of the forecast as root mean squared error (RMSE), mean absolute percentage error 
(MAPE) and mean absolute scaled error (MASE), obtaining the results shown in Table 4.

To confirm the correct fit of the proposed AR(1)-TRI model, are examined plots of residuals and 
normal QQ-plots, view Figure 4. Also check Box-Pierce test to corroborate aleatory disposition with 
statistic �-squared = 0.063052, degree of freedom (df) = 1, and p-value = 0.8017. On the other hand, 

{82, 142, 125, 133, 106, 105, 141, 206, 170, 177, 158, 105, 155, 49, 133, 168, 210, 188,

165, 207, 205, 175, 225, 205}.

{100, 0, 100, 100, 100, 100, 200, 300, 200,

200, 200, 100, 100, 0, 100, 0, 300, 400, 400, 300, 200, 0, 200, 100}.

Table 4. ARMA-TRI model coefficients of DPUTs with covariate and temporal structure
AR(1) Intercept Covariate �

2

�
log 

likelihood
AIC RMSE MAPE MASE

0.409 (0.210) 125.574 (16.021) 0.189 (0.0717) 1,178 −119 246 34.316 24.939 0.812

Table 3. Descriptive statistics of monthly DPUTs of illustrative product
Mean SD IQR 0% 25% 50% 75% 100% n
155.625 45.15463 61.25 49 131 161.5 192.25 225 24

Figure 4. (a) Plot of AR(1)-TRI 
model residuals, (b) normal 
QQ-plot of AR(1)-TRI model 
residuals.
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Figure 5 also corroborated that standardized residuals of AR(1)-TRI model are random, and haven’t 
autocorrelation and p-values for Ljung-Box statistics are not significative for all lags.

Table 5 shows means and SDs of the DPUTs modelled with and without temporal structure, indica-
tors of a model of continuous review inventory and annual financial results compared between the 
two cases. Lead time is constant of 0.75 month, holding cost (Cs) consider is 0.042 USD/unit/year, 
order cost (Co) is 0.86 USD/order and penalty cost for shortage (Cp) is 0.33 USD/unit.

Figure 5. Check diagnostic 
AR(1) model for illustrative 
product.
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Table 5. Comparative parameters, indicators and annual financial results of policies continues 
review according to models of temporal structure

With temporal structure ARMA-TRI 
model

TRI-IID without temporal 
structure

Parameters Mean (un/month) Mean (un/month)

155.5624 155.625

SD (un/month) SD (un/month)

37.62098 45.15463

Indicators Lot size (Q) (units) Lot size (Q) (units)

291 289

Safety factor (kp) Safety factor (kp)

2.06 2.06

Reorder point (r) Reorder point (r)

197.27 183.78

Expected Shortage (W(r))(unit/cycle) Expected Shortage (W(r))(unit/cycle)

0.28 0.23

Annual financial results Annual total cost inventory (USD/year) Annual total cost inventory (USD/year)

15.62 14.95
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5. Discussion, conclusions, limitations and future research

5.1. Discussion
In this paper we have shown a useful methodology for managers who make purchasing decisions in 
situations applicable to new products, or when there is low availability of demand data, which con-
siders the very intuitive TRI distribution with temporal structure, which is very classic to describe the 
behaviour with tendency, seasonality or cyclicity of many products. The policy inventories raised 
show an interesting way to achieve significant savings in TC and shortage expected with application 
to multi-product systems. The proposed supply policy of products is useful in institutions that have 
a supplier to meet your requirements, and that generally are characterized by high bureaucracy in 
your administrative systems as public hospitals, where the operation of a supply system as proposed 
would be facilitated (Bennett & Gilson, 2001; Birkett, Mitchell, & McManus, 2001).

5.2. Conclusions
The parameterization of the mean and standard deviation of DPUT with TRI distribution under a 
temporal structure of a conditional autoregressive model to information passed as ARMA, achieves 
an efficient and dynamic characterization of a myopic policy involving the DPUT and DLT. Regarding 
the key parameters used to model the occupied inventory policy as an example, these are the mean, 
standard deviation of the DPUT and standardized percentiles of the DLT, we can say that these are 
broadly sensitive to the underlying temporal structure, and apparently would have Pure and hybrid 
AR-MA structures where the mean parameter is greatly increased. With respect to the standard 
deviation, this parameter increases practically in all the temporary structures of modelling, reason 
why the effect on the percentile of standardized security is but hybrid, since it depends on both de-
scribed parameters. Althought TRI distribution was occupied in this work the proposal is valid for any 
PDF that can be parameterized with respect to the conditional mean of a time series model. This 
condition opens multiple areas of research in the area.

5.3. Limitations
In this paper, we have limited the proposed methodology to the case of a policy of continuous revision 
considering shortage, with optimum TC as an single objective function. The limitations are that it has been 
considered a single target on TC, which could be extended to multiple optimization targets, while the 
shortage has been modelled under a normality assumption, which is also susceptible to improvement.

5.4. Future research
In the future, it is possible to obtain improvements in the modelling raised occupying other than TRI 
distributions, and even considering that in many cycles demand component is zero, requiring de-
mand model using probability distributions for continuous and/or discrete data zero-inflated. The 
possibility to perform forecasts based on a conditional autoregressive model whose quality could be 
evaluated by the probability integral transformed, can update in n-steps ahead of the myopic policy 
inventories.
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