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An inventory model for deteriorating items under 
inflation and permissible delay in payments by 
genetic algorithm
Sanjey Kumar1 and Neeraj Kumar1*

Abstract: Inventory models play a leading role in analyzing a lot of realistic situa-
tions arising at places like, food and vegetable markets, market yards, oil explora-
tion industries, etc. In the present article, we developed an inventory model for 
deteriorating items with permissible delay in payment under inflation. In the given 
model, demand rate is considered as stock-dependent and deterioration rate of 
each item follows Weibull distribution. The model is developed under two differ-
ent circumstances depending on whether the credit period is (1) less than the cycle 
time (2) greater than the cycle time. Also, a new algorithm is developed under these 
scenarios to obtain the EOQ. Finally results are analyzed and demonstrated with 
illustrative examples by Genetic Algorithm.

Subjects: Applied Mathematics; Mathematical Modeling; Non-Linear Systems

Keywords: Weibull distribution; inflation; stock-dependent demand; permissible delay; 
genetic algorithm

1. Introduction
Deterioration of items is a frequent and natural phenomenon which cannot be ignored. In realistic 
scenario, the life cycle of seasonal product, fruits, electric component, volatile liquid, food, etc. are 
short and finite usually can undergo deterioration. Thus, the item may not serve the purpose after a 
period of time and will have to be discarded as it cannot be used to satisfy the future demand of 
customers. The present article investigates inventory model for deteriorating items with stock-de-
pendent demand rate. The deterioration of inventory in stock during the storage period constitutes 
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an important factor which has attracted the attention of researchers. Dye (2002) developed an in-
ventory model with stock-dependent demand and partial backlogging. Chakrabarty, Giri, and 
Chaudhuri (1998) extended the Philip’s model (1974). Skouri and Papachristos (2003) investigate 
optimal time of an EOQ model with deteriorating items and time-dependent partial backlogging. 
Deterioration can’t be ignored in business scenarios. Rau, Wu, and Wee (2004) developed an inte-
grated inventory model to determine economic ordering policies of deteriorating items in a supply 
chain management system. Teng and Chang (2005) developed economic production quantity in an 
inventory model for deteriorating items. Deterioration refers to decay, damage, or spoilage like 
foods, drugs, chemicals, electronic components and radio-active substances, deterioration may 
happen during normal period of storage and the loss is to be taken into account where we analyze 
inventory systems. Dave and Patel (1983) investigate an inventory model for deteriorating items 
with time proportional demand. Roychowdhury and Chaudhuri (1983) introduced an order level in-
ventory model considering a finite rate of replenishment and allowing shortages. In this direction 
their model Misra (1975), Deb and Chaudhuri (1986) considered that deterioration rate is time de-
pendent. Berrotoni (1962) investigates some difficulties of fitting empirical data to mathematical 
distribution. It can be said that the rate of deterioration increases with age. It may be inferred that 
the work of Berrotoni (1962) inspired Covert and Philip (1973) to design an inventory model for dete-
riorating items with Weibull distribution by two parameters. Mandal and Phaujdar (1989) developed 
a production inventory model for deteriorating items with uniform rate of production and stock-de-
pendent demand. In this direction, some precious works in this area were also done by Padmanabhan 
and Vrat (1995), Ray and Chaudhuri (1997), Mandal and Maiti (1999).

In all the above models, the time value of money and inflation were not considered because of the 
belief that the time value of money and inflation would not affect significantly the decisions regard-
ing inventory management. But in real life, the impact of time value of money and inflation cannot 
be ignored while deciding the optimal inventory policies. Today, inflation has become a permanent 
feature of the economy. Many researchers have shown the inflationary effect on inventory policy. 
Bierman and Thomas (1977), Buzacott (1975), Chandra and Bahner (1988), Jesse, Mitra, and Cox 
(1983), Misra (1979) developed their inventory models assuming a constant inflation rate. An inven-
tory model with deteriorating items under inflation when a delay in payment is permissible is calcu-
lated by Liao, Tsai, and Su (2000). Bhahmbhatt (1982) introduced an EOQ model under a variable 
inflation rate and marked-up price. Ray and Chaudhuri (1997) presented an EOQ model under infla-
tion and time discounting allowing shortages. Both in deterministic and probabilistic inventory mod-
els of classical type it is observed that payment is made to the supplier for goods just after getting 
the consignment. But actually current scenario a supplier grants some credit period to the retailer to 
increase the demand. In this respect Goyal (1985) just formulated an EOQ model under some condi-
tions of permissible delay in payment. An EOQ model for inventory control in the presence of trade 
credit is presented by Chung and Huang (2005). Chung, Huang, and Huang (2002) and Chung and 
Huang (2003) developed an optimal replenishment policy for EOQ models under permissible delay in 
payments. In recent times to make the real inventory systems more practical and realistic, Aggarwal 
and Jaggi (1995) extended the model with a constant deterioration rate. Hwang and Shinn (1997) 
developed lot-sizing policy for exponential demand when delay in payment is permissible. Shah and 
Shah (1998) presented a probabilistic inventory model with a cost in case delay in payment is per-
missible. Subsequently Jamal, Sarker, and Wang (1997) developed further following the lines of 
Aggarwal and Jaggi’s (1995) model to take into consideration for shortage and make it more practi-
cal and acceptable in real situation. Some of the recent works in this area may relate to Datta, Paul, 
and Pal (1998), Dye (2002), Chung (2003), Zhou and Yang (2005), Goyal and Chang (2009), and Yang, 
Teng, and Chern (2010), Kumar, Singh, and Kumari (2013), developed an inventory model with stock-
dependent demand rate for deterioration items. Kumar, Singh, and Kumari (2014), Tayal, Singh, and 
Sharma (2015), developed an inventory model for deteriorating items with seasonal products and 
an option of an alternative market. Kumar and Kumar (2016a), developed an inventory model with 
stock-dependent demand rate for deterioration items. Recently Kumar and Kumar (2016b) present-
ed an inventory model for deteriorating items stock-dependent demand and partial backlogging.
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This study is developing an inventory model with stock-dependent demand rate with permissible 
delay in payment in real life situations. It will help the retailers to manage the business. The effect 
of preservation technique is used to reduce the deterioration and the time value of the money can-
not be ignored in determining the optimal inventory decision. The concept of the inflation should be 
considered especially for long-term investment and forecasting. The model shows the effect due to 
changes in various parameters by taking suitable numerical examples and sensitivity analysis.

2. Notations and assumptions

2.1. Notations
The following notations are used throughout this paper:

q(t)		  Inventory level at time t
S = q(0)		  Stock level at the beginning of each cycle after fulfilling backorders
H		  Length of the planning horizon
K		  Constant rate of inflation ($/$/unit time)
C(t)		�  Unit purchase cost for an item bought at time t, i.e. C(t) = C0.eKT, where C0 is the 

unit Purchase cost at time zero
h		  Holding cost ($/unit/year) excluding interest charges
C0		  Unit purchase cost
C2		  Shortage cost ($/unit/time)
C3		  The ordering cost/cycle
ie		  Interest earned ($/time)
ip		  Interest charged ($/time)
M		  Permissible delay in settling the accounts
T1		  Time at which shortages start (0 ≤ T1 ≤ T)
T		  Length of a cycle
TCU (T1, T)	 The Total cost function per unit time
TCU1 (T1, T)	 The Total cost function per unit time for T1 > M (Case I)
TCU2 (T1, T)	 The Total cost function per unit time for T1 ≤ M (Case II)

2.2. Assumptions
To develop the mathematical model, the following assumptions are being made:

(i) � The inventory system involves only one item.

(ii) � The rate of replenishment is instantaneous.

(iii) �� A fraction z(t) of the on hand inventory deteriorates per unit time where z(t) = αβtβ−1, 0 < α < 1, 
t > 0, β > 1.

(iv) � Shortages are allowed and the backlog rate is defined to be R(t)/1 + δ(T−t) when inventory is 
negative. The backlogging parameter δ is a positive constant.

(v) � The demand rate R(t) at time t is R(t) =
{

a + b q(t), 0 ≤ t ≤ T1
a, T1 ≤ t ≤ T  where a and b are non-

negative constraints.

3. Formulation and solution of the model
Based on the above description, during the time interval [0, T1], the inventory level at time t will sat-
isfy the following differential representing the inventory status is given by:

With the boundary condition q (T1) = 0, the solution of Equation (1) is:

(1)
dq(t)

dt
+ ��t�−1q(t) = −

(
a + bq(t)

)
0 ≤ t ≤ T1



Page 5 of 15

Kumar & Kumar, Cogent Business & Management (2016), 3: 1239605
http://dx.doi.org/10.1080/23311975.2016.1239605

 

Again in the second time interval [T1, T' the instantaneous inventory will satisfy. Thus, the differential 
equation below represents the inventory status:

 

With the condition q (T1) = 0, we get the solution of equation (3) is:

 

Inventory model before and after the deflation is illustrated in Figures 1 and 2.

3.1 Case I (M < T1): Payment before depletion
The holding cost during [0, T] is:

 

 

(Ignoring the higher order of α)

The number deteriorating items during [0, T1] is:

 

The deteriorated cost DC is:

 

(2)q(t) = a(��T�
1
+ b)

[
e

��

�+1
(T�+11

− t�+1)+ b( T1−t) − 1
]

(3)
dq(t)

dt
= −

a

1 + �(T − t)
. T1 ≤ t ≤ T

(4)q(t) =
a

�

[
log {1 + �(T − t)} − log

{
1 + �

(
T − T1

)}]

(5)
HC = h

m−1�
n=0

C(� T)

T1

∫
0

q(t)dt = h c0

�
eKH − 1

eKT − 1

�⎡⎢⎢⎣

T1

∫
0

a
�
��T�

1
+ b

��
e

��

�+1
(T�+1
1

−t�+1)+b(T1−t) − 1
�
dt

⎤⎥⎥⎦

(6)= h c0

�
eKH − 1

eKT − 1

�⎡⎢⎢⎢⎣
a
�
��T�

1
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�⎧⎪⎨⎪⎩
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1
−
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��

�+1
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1
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��

�+1
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1
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⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦

(7)= q(0) −

T1

∫
0
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(
aT1 +

bT1
2

)
=
a�T�+1

1

� + 1
+
b�T�+2

1

� + 2

(8)
DC = C0

(
eKH − 1

eKT − 1

){
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1
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+
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1
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Figure 1. Inventory model 
before the deflation. Inventory Level ordering quantity

Time 

0               M                        a1a              T   
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The shortage cost [0, T1] is:

 

 

 

The total variable cost is comprised of the sum of the ordering cost, holding cost, backorder cost, 
deterioration cost, and interest payable minus the interest earned. They are grouped together after 
evaluating the above cost individually.

The interest earned IE1 during the time [0, T] is:

 

(9)
SHC = C2.C0

(
eKH − 1

eKT − 1

) T

∫
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q(t)dt

(10)= C2.C0
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KH

− 1

e
KT

− 1

) T
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[
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dt
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�
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log
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(12)
IE

1
= ie.C0

eKH − 1

eKT − 1

T

∫
0

�
T
1
− t

��
a + bq(t)

�
dt

= ie.C0
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eKT − 1
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2
+
ab�2�2
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⎛⎜⎜⎝
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−
T
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Figure 2. Inventory model after 
the deflation. Inventory Level ordering quantity
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The interest payable IP per cycle for the inventory not being sold after due date M:

 

 

 

So, the total variable cost, TVC1 is defined as:

TVC1= Ordering cost + holding cost + deterioration cost + shortage cost + interest payable – interest 
earned.

 

 

The total variable cost per unit time, TCU, during the cycle period [0, T] is given by:

(13)IP1 = ip.C0
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3.2. Case II (T < M): Payment after depletion
The ordering cost C3, the holding cost HC, the shortage cost SHC, and the deterioration cost DC during 
the cycle period (0, T) is the same as in case I. The payable per cycle is PT = 0 when T1 < M < T because 
the supplier can be paid in full (at time M) the permissible delay. The interest earned per cycle is:

 

 

The total variable cost, TVC2 is defined as:
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The total variable cost per unit time TCU (T1, T) is:

4. Genetic algorithm
A genetic algorithm (GA) is based on natural selection process to optimized tools that minimizes the 
total costs in supply chain management. It is an evolutionary computation method to solve inventory 
problems. This is the more effective methods to find the optimized solution. The genetic algorithm uses 
three main types of rules at each step to create the next generation from the current population.

4.1. The basic steps to find the optimized solution
Step 1: First one is Selection rules, In this we select the individuals, called parents that contribute to 
the population at the next generation.

Step 2: Next one is Crossover rules, In this, we perform crossover operation between two parents 
to form children for the next generation.

Step 3: Last one is Mutation rules, In mutation, we apply some random changes to individual 
parents.
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4.2. Parameters
Firstly, we set the different parameters on which the specific GA depends. These are the number of 
generations (MAXGEN), population size (POPSIZE), the probability of crossover (PCROS), probability of 
mutation (PMUTE).

4.3. Chromosome representation
An important issue in applying a GA is to design an appropriate chromosome representation of solu-
tions of the problem together with genetic operators. Traditional binary vectors used to represent 
the chromosomes are not effective in many non-linear problems. Since the proposed problem is 
highly non-linear, hence to overcome the difficulty, a real-number representation is used. In this 
representation, each chromosome Vi is a string of n numbers of genes Gij, (j = 1, 2, ... n) where these 
n numbers of genes, respectively, denote n number of decision variables (Xi, i = 1, 2, … n).

4.4. Initial population production
The population generation technique proposed in the present GA is illustrated by the following pro-
cedure: For each chromosome Vi, every gene Gij is randomly generated between its boundary (LBj, 
UBj) where LBj and UBj are the lower and upper bounds of the variables Xi, i = 1, 2, ... n, POPSIZE.

4.5. Evaluation
Evaluation function plays the same role in GA as that, which the environment plays in natural evolu-
tion. Now, evaluation functions (EVAL) for the chromosome Vi is equivalent to the objective function 
PF(X). These are steps of evaluation:

Step 1: Find EVAL(Vi) by EVAL(Vi) = f(X1, X2, X3, ... Xn) where the genes Gij represent the decision vari-
able Xj, j = 1, 2, … n, POPSIZE and f is the objective function.

Step 2: Find total fitness of the population: F =
POPSIZE∑
i=1

EVAL
�
Vi
�
..

Step 3: Calculate the probability pi of selection for each chromosome Vi as Yi =
∑i

j=1 pj

4.6. Selection
The selection scheme in GA determines which solutions in the current population are to be selected for 
recombination. Many selection schemes, such as stochastic random sampling, roulette wheel selection 
have been proposed for various problems. In this paper, we adopt the roulette wheel selection process.

This roulette selection process is based on spinning the roulette wheel POPSIZE times, each time 
we select a single chromosome from the new population in the following way:

(a) Generate a random (float) number r between 0 and 1.

(b) �If r < Yi then the first chromosome is Vi otherwise select the ith chromosome Vi (2 ≤ i ≤ POPSIZE) 
such that Ti − 1 ≤ r ≤ Yi.

4.7. Crossover
Crossover operator is mainly responsible for the search of the new string. The exploration and exploi-
tation of the solution space are made possible by exchanging genetic information of the current 
chromosomes. Crossover operates on two parent solutions at a time and generates off spring solu-
tions by recombining both parent solution features. After selection of chromosomes for the new 
population, the crossover operator is applied. Here, the whole arithmetic crossover operation is used. 
It is defined as a linear combination of two consecutive selected chromosomes Vm and Vn and the 
resulting offspring’s V ′

m and are V ′

n calculated as:

where c is a random number between 0 and 1.

V �

m = c ⋅ Vm + (1 − c) ⋅ Vn

V �

n = c ⋅ Vn + (1 − c) ⋅ Vm
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4.8. Mutation
Mutation operator is used to prevent the search process from converging to local optima rapidly. It 
is applied to a single chromosome Vi. The selection of a chromosome for mutation is performed in 
the following way:

Step 1. Set i ← 1.

Step 2. Generate a random number u from the range [0, 1].

Step 3. If u < PMUTE, then go to Step 2.

Step 4. Set i ← i + 1.

Step 5. If i ≤  POPSIZE, then go to Step 2.

Then the particular gene Gij of the chromosome Vi, selected by the above-mentioned steps is ran-
domly selected. In this problem, the mutation is defined as Gmutij = random number from the range 
[0, 1].

4.9. Termination
If the number of iterations is less than or equal to MAXGEN then the process is going on, otherwise 
it terminates. The GA’s procedure is given below:

begin

do {

  t ← 0

  while (all constraints are not satisfied)

  {

    initialize Population (t)

  }

    evaluate Population(t)

    while (not terminate)

    {

    t ← t + 1

      select Population(t) from Population(t-1)

      crossover and mutate Population(t)

      evaluate Population(t)

    }

  print Optimum Result

}

end.

5. Numerical example and sensitivity analysis
In this paper, the ordering policies have been discussed in two scenarios: payment before total de-
pletion (Case I) and payment after total depletion (Case II). An example is considered to illustrate 
the effect of the developed model in this paper.

The following inventory parametric values are using a = 600, b = 70, α = 0.00010, β = 1.0, M = 0.1, 
δ = 5.0, C0 = 0.5, ie = 0.18, ip = 0.20, K = 0.1, H = 1 year, h = $ 2.00/unit, C3 = 100.0, C2 = 0.8/unit.
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To solve this problem we used genetic algorithm. In this problem, GA consists of the parameters, 
POPSIZE = 50, MAXGEN = 50, Cross over probability = 0.75, Mutation probability = 0.005. The solutions 
of two cases for different parametric values of α, β, M and δ, are given in Tables 1 and 2.

If we plot the total cost function TCU1 and TCU2 with some values of T1 and T vs. various param-
eters then we get strictly convex graph of total cost function given in Figures 3 and 4.

From the above tables and figures, the results can be discussed as follows:

1. � Table 1 indicates as the values of T1 and T reduce when the parameter α increases, but the total 
cost function (TCU) increases in both cases.

2. � The values of T1, T decrease when the parameter β increases, and total cost function (TCU) in-
creases in both cases.

3. � The values of T1, T increase when the parameter M increases, and the total average inventory 
cost (TCU) decreases both in cases.

4. � In Table 2 cycle time T decreases as the parameter δ increases, but total cost function (TCU) 
increases in both the cases.

Table 1. Case I: Payment before depletion
Changing parameters Change in parameter T1 T TCU1

α 0.00010 0.0822 0.0883 4585.08

0.00015 0.0716 0.0853 6375.53

0.00020 0.0593 0.0676 7845.87

β 1.0 0.0822 0.0883 4585.08

1.5 0.0721 0.0813 6405.02

2.0 0.0543 0.0759 6968.14

M 0.1 0.0822 0.0883 4585.08

0.3 0.0919 0.0953 3695.52

0.5 0.0958 0.1053 2655.38

δ 5.0 0.0822 0.0853 4585.08

6.0 0.0873 0.0927 4915.57

7.0 0.0892 0.1073 5289.64

Table 2. Case II: Payment after depletion
Changing parameters Change in parameter T1 T TCU2

α 0.00010 0.0926 0.1033 3245.50

0.00015 0.0816 0.0953 4175.53

0.00020 0.0798 0.0886 4855.84

β 1.0 0.0926 0.1033 3245.50

1.5 0.0791 0.0913 3405.02

2.0 0.0643 0.0759 4968.14

M 0.10 0.0926 0.1033 3245.50

0.12 0.1004 0.1243 2295.56

0.13 0.1058 0.1355 2055.30

δ 5.0 0.0926 0.1033 3245.50

6.0 0.973 0.0927 3985.67

7.0 0.0976 0.0873 4287.24
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In Tables 1 and  2 the parameters α, β have a bigger influence than the parameters M and δ. 
Therefore, the parameters α, β are necessitate privileged compassion toward the cycle time as well 
as total average inventory cost.

6. Conclusion
In the present article, we have designed a model has been illustrated for determination of optimal 
ordering time and total cost with stock dependent demand for deteriorating items following the 
Weibull distribution. Two cases specifically (i) payment before depletion and (ii) payment after de-
pletion have been taken into account for the consideration of the model which can assist the deci-
sion-maker to find the optimal cycle time to minimize the total average inventory cost. From the 
sensitivity analysis, it is observed that as the rate of deterioration (α and β) and backlogging rate δ 
increases, the total average inventory cost increases, which is obvious. Moreover it is also observed 
that as permissible delay increases, the total average inventory cost decreases i.e. there is an 

Figure 4. Effect of parameters 
α, β, M, and δ on total cost after 
the deflation.

Figure 3. Effect of parameters 
α, β, M, and δ on total cost 
before the deflation.
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opposite relation between permissible delay period and the total average inventory cost. The sensi-
tive motive behind this is that the conservatory in permissible delay period offers an opportunity to 
the consumer to earn more by investing the resource otherwise from the sale proceeds of the inven-
tory which result in lower cost.

A further study would be to extend the purposed model for finite replenishment rate, price de-
pendent demand, fuzzy demand, variable lead time, and many more.
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