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a b s t r a c t

Using data about votes emitted by funds in meetings held by United States banks from 2003 to 2013,
we apply a genetic algorithm to a set of financial variables in order to detect the determinants of the
vote direction. Our findings indicate that there are three main explanatory factors: the market value
of the firm, the shareholder activism measured as the total number of funds voting, and the temporal
context, which reflects the influence of recent critical events affecting the banking industry, including
bankruptcies, reputational failures, and mergers and acquisitions. As a result, considering that voting
behavior has been empirically linked to reputational harms, these findings can be considered as a useful
32
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insight about the keys that should be taken into account in order to achieve an effective reputational risk
management strategy.

© 2015 AEDEM. Published by Elsevier España, S.L.U. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
nited States

. Introduction

The voting behavior disclosed by shareholders in corporate
eetings is a key concern for researchers into the corporate

overnance field. Actually, many investigations have been car-
ied out regarding the motivations of the vote direction (Choi,
isch, & Kahan, 2008), as well as its effects (Becker, Bergstresser,

Subramanian, 2013; Fischer, Gramlich, Miller, & White, 2009),
ncluding its connection with shareholder wealth (DeAngelo &
eAngelo, 1989; Dodd & Warner, 1983; Mulherin & Poulsen, 1998)
nd corporate reputation (Bernile & Jarrell, 2009; Ertimur, Ferri, &
aber, 2012; Ferri & Maber, 2013).
Genetic algorithms are methods of inductive learning based

n adaptive search techniques, which have the strength of using
ccumulative information regarding an unknown search space with
he aim of redirecting successive searches into the most suitable
ubspaces, as an imitation of the biological evolution (Vafaie & De

ong, 1992). A candidate solution is characterized by means of a
inear string similarly to a chromosome. A population advances
oward better solutions, and a fitness function quantifies the

∗ Corresponding author.
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suitability of each solution. As a consequence, this methodology
has been successfully applied to the analysis of different scenarios,
with the aim of discovering the most relevant features for the expla-
nation of a certain phenomenon (Huang, Cai, & Xu, 2007; Rozsypal
& Kubat, 2003; Yang & Honavar, 1998).

The recent developments into the quantitative finance field have
resulted in the appearance of complex mathematical models for the
explanation of different financial phenomena, which are frequently
characterized by a lack of analytic representation. In this sense, sev-
eral metaheuristic algorithms have demonstrated to be a suitable
methodology for addressing these financial problems. In particular,
genetic algorithms have been successfully applied to the analy-
sis of different financial scenarios with promising results. Thus,
genetic algorithms have been recently used in value-at-risk com-
puting (Sharma, Thulasiram, & Thulasiraman, 2015), bankruptcy
research (Davalos, Leng, Feroz, & Cao, 2014; Shin & Lee, 2002;
Wu, Tzeng, Goo, & Fang, 2007), optimal insurance risk alloca-
tion (Ha, 2013), exchange rates prediction (Vasilakis, Theofilatos,
Georgopoulos, Karathanasopoulos, & Likothanassis, 2013), finan-
cial failures forecasting (Chen, 2014), financial fraud detection

(Hoogs, Kiehl, Lacomb, & Senturk, 2007), portfolio optimization
(Chang, Yang, & Chang, 2009; Oh, Kim, & Min, 2005) and stock mar-
kets prediction (Ghoshal, Mukherjee, & Dhar, 2011; Karimi, Dastgir,
& Shariati, 2014; Leigh, Purvis, & Ragusa, 2002).
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The aim of this research is to address an empirical examination
f the global vote direction observed in corporate meetings held by
nited States banks, applying a genetic algorithm over a large set
f financial variables in order to identify the key determinants of
he voting decisions.

. Literature review

The voting behavior disclosed by shareholders in corporate
eeting has attracted increased attention from academics and

ractitioners in recent times. Thus, a direct relation between
hareholder wealth and proxy contests has been demonstrated
DeAngelo & DeAngelo, 1989; Dodd & Warner, 1983; Mulherin &
oulsen, 1998), with palpable consequences observable through-
ut financial markets (Becker et al., 2013; Fischer et al., 2009). In
ddition, although there is a lack of consensus regarding the crite-
ia that proxy advisors take into account in order to disclose their
oting advise (Choi et al., 2008), they tend to acclaim a non-pro vote
hen a company with low results discloses high executive compen-

ation (Ertimur, Ferri, & Oesch, 2013), with a demonstrated direct
elation between the application of the Say on Pay policy and cor-
orate performance (Cuñat, Gine, & Guadalupe, 2013), and some
mpirical findings on how corporate governance is linked to vote
irection (Cai, Garner, & Walkling, 2009). Moreover, the damages
erived from reputational risk have been explored through voting
ehavior, with voting pattern suggested as an adequate indicator
or reputational harm (Bernile & Jarrell, 2009; Ertimur et al., 2012;
erri & Maber, 2013).

Despite being a general concern, lately the focus has turned
oward the banking industry and the investigation of the voting
attern in this specific sector has been addressed, with special
ttention to the effects of the Say on Pay policy (Yahr, 2013). That
s a consequence of the relevant role in the germen of the financial
risis attributed to financial institutions, and also frequent reputa-
ional scandals affecting the banking industry contribute to explain
his raising degree of interest (Fiordelisi, Soana, & Schwizer, 2013).
ndeed, it has been pointed out that the banking activity is par-
icularly sensitive to reputational issues (Allen & Santomero, 1997;
llen & Santomero, 2001; Bhattacharya & Thakor, 1993). As a matter
f fact, corporate reputation has been referred as a strong com-
etitive advantage for financial institutions (Xifra & Ordeix, 2009)
nd reputational risk has been identified as a severe threat for the
anking business (Limentani & Tresoldi, 1998).

Actually, the banking industry has been traditionally considered
suitable scope for research purposes, due to the special charac-

eristics of the banking products, as well as the role that banks play
s financial intermediaries in an asymmetric information scenario
Allen & Santomero, 1997, 2001; Bhattacharya & Thakor, 1993). In
act, the United States banking industry is a particularly motivating
ocus for investigation, considering that the deregulation process
hat has been affecting this sector in recent times makes it an
dequate choice for addressing the corporate consequences of envi-
onmental changes (Berger, Kashyap, Scalise, Gertler, & Friedman,
995; Calomiris, 2000; Lounsbury, Hirsch, & Klinkerman, 1998;
arquis & Lounsbury, 2007).

. Method and data

For the purpose of this research, we use the software WEKA,
hich is the short form for Waikato Environment for Knowledge
nalysis, a famous solution deployed with Java technology by
he University of Waikato and distributed as free software under
he GNU General Public License, with remarkable applications for

achine learning. The WEKA software includes a specific algorithm
or genetic search, which is the simple genetic algorithm described
ement and Business Economics 22 (2016) 162–166 163

in Goldberg (1989). This method estimates chromosomes consid-
ering certain parameters previously stablished, including learning
rate and momentum. For each chromosome, a merit indicator is
provided, as a measure of the classification error rate. In addition,
a scaled fitness measure for each chromosome is also supplied
(Larose, 2006). As a next step, the algorithm crosses over taking
pairs of the best estimated chromosomes, and it also considers the
presence of mutations affecting descendants (Ahmed & Zeeshan,
2014). Consequently, this technique results useful when it comes
to build a subset of key attributes from a large dataset (Larose,
2014).

The data used in this study comprise votes emitted by the
largest large cap funds and by socially responsible investing funds
regarding managerial proposals about directors’ election and exec-
utive compensation presented in corporate meetings organized
by companies in the United States banking sector from 2003 to
2013. These voting data are collected from official SEC N-PX fillings
by the non-profit and non-partisan organization ProxyDemocracy,
which has been recently referred as a suitable data provider for
research purposes (Burns & Minnick, 2013). The final dataset is
formed by 95,234 votes corresponding to 309 United States banks.
In addition, we pick different accounting and financial indicators
concerning the companies in our research from the Bankscope
database, with the aim of discovering how these indicators affect
the vote direction disclosed in corporate meetings. As a result,
this is the list of the variables considered in this investigation
(Table 1).

Beyond the reported calculations, no additional data transfor-
mation is accomplished.

4. Results and discussion

As a first step, we provide summary statistics for the numeric
attributes of this research (Table 2).

In order to apply the genetic search algorithm available in WEKA
to our set of data, we begin by selecting the full training test mode
with the following parameters: population size, 20; number of gen-
erations, 20; probability of crossover, 0.6; probability of mutation,
0.033. The results of this first experiment are reported in the fol-
lowing table (Table 3).

This table shows the attributes subset in the third column. Each
individual in the population represents one possible solution (one
attributes subset). Those with a highest fitness (0.12746) corre-
spond to a better solution (attributes: 1, 3, 13). Thus, the algorithm
ends selecting the attributes “Year (1)”, “Total number of funds (3)”
and “Market capitalization (13)”. To test the stability of the results,
we carry out different experiments changing the initial parameters
(Table 4).

As we can see, the results are consistent throughout all the
experiments, and the selected subset of attributes is always the
same. Finally, using the initial parameters, we accomplish a final
experiment using a 10-fold cross validation mode (Table 5).

The results reinforce the previous conclusions and they show
that the three main attributes still are “Year (1)”, “Total number
of funds (3)” and “Market capitalization (13)”, since they appear
in 100% of the cases. However, a fourth attribute shyly arises, and
“Tobin’s q (11)” is included in 20% of the folds.

Ultimately, all the consummated experiments point out the pre-
dominance of three attributes in explaining the direction of the
aggregated voting behavior observed in corporate meetings. Thus,
the market capitalization appears as one of these main explana-

tory factors, indicating that the market value of the firm influences
the global vote direction. In addition, the total number of funds
voting is also relevant, showing that the degree of activism dis-
closed by institutional investors is a key determinant of the whole
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Table 1
Description of the attributes.

Number Name Description

Feature 1 Year This is a nominal variable with eleven values, one for each of the years contained in the sample.
Feature 2 Vote direction This is a dichotomous variable that can hold the class “sustain” or “not sustain”. For each bank and year in our

sample, we count the pro votes and the non-pro votes regarding the corporate performance during that year.
The non-pro votes include both abstains and against votes, since this is a common practice in the governance
industry (Gregory-Smith & Main, 2013). If the pro votes overcome the non-pro votes, we give the class
“sustain” for that bank and year. In other case, we assign the class “not sustain”.

Feature 3 Total number of funds We calculate the total number of funds disclosing at least one vote for each bank and year.
Feature 4 Total assets This variable shows the natural log of the total volume of assets for each bank and year.
Feature 5 Age We calculate the number of years lapsed since the date of the first corporate meeting of a given bank collected

in ProxyDemocracy.
Feature 6 Return on assets For each bank and year, we compute this ratio by relating operating profit to total assets.
Feature 7 Operating income growth For each bank and year, we calculate the inter-annual growth of the operating income.
Feature 8 Leverage For each bank and year, we compute this ratio by relating the book value of liabilities to the book value of

equity.
Feature 9 Dividend yield For each bank and year, we relate the amount of dividends paid to the market capitalization.
Feature 10 Operating margin For each bank and year, we compute this ratio by relating the operating profit to the operating income.
Feature 11 Tobin’s q For each bank and year, we relate the market value of assets to the book value of assets. The market value of

assets is computed as the book value of assets plus the difference between the market value of equity and the
book value of equity. This calculation of the Tobin’s q ratio, and a variant that considers deferred taxes, is
frequently used in academic research (Bebchuk & Cohen, 2002; Gompers, Ishii, & Metrick, 2003; Jiao, 2010;
Kaplan & Zingales, 1997) as an alternative to a more formal calculation (Lindenberg & Ross, 1981), which is
difficult to use in practice. There is empirical evidence supporting the similarity between the formal and the
light definition of the Tobin’s q (Chung & Pruitt, 1994)

Feature 12 Price to earnings ratio For each bank and year, we relate the market capitalization to the net profit.
Feature 13 Market capitalization For each bank and year, we compute the natural log of the market capitalization.
Feature 14 Return on equity For each bank and year, we calculate this ratio by relating the net profit to the book value of equity.

Table 2
Summary statistics for the numeric attributes.

Attribute Mean Min Max

Total number of funds 7.369 1 121
Total assets 8.059 1.194 15.981
Age 3.856 1 10
Return on assets 0.013 −0.353 0.689
Operating income growth 1.083 −2.033 6.881
Leverage 0.863 0 1
Dividend yield 0.393 0 144.696
Operating margin 0.169 −21.07 2.991
Tobin’s q 1.058 0.128 7.806
Price to earnings ratio 16.474 −2913.15 3184.739
Market capitalization 5.904 0.974 12.385
Return on equity 0.112 −9.609 157.439

Table 3
Results of the genetic search algorithm.

Generation: 20

Merit Scaled Subset

0.10821 0.12746 1 3 13
0.10821 0.12746 1 3 13
0.05858 0.00068 1 3 9 11 13
0.10821 0.12746 1 3 13
0.09891 0.1037 1 3 11 13
0.10821 0.12746 1 3 13
0.10821 0.12746 1 3 13
0.06323 0.01256 1 3 12 13
0.10111 0.10931 1 3 8 13
0.10821 0.12746 1 3 13
0.09012 0.08125 1 3 14
0.10821 0.12746 1 3 13
0.10821 0.12746 1 3 13
0.09891 0.1037 1 3 11 13
0.10821 0.12746 1 3 13
0.05868 0.00093 1 3 4 5 8 12 13
0.10821 0.12746 1 3 13
0.09839 0.10238 1 3 13 14
0.10821 0.12746 1 3 13
0.05831 0 1 3 12 13 14

Population size: 20; number of generations: 20; probability of crossover: 0.6; prob-
ability of mutation: 0.033.

Table 4
Results for different values of parameters.

NG PS PC PM SA

20 20 0.6 0.033 1, 3, 13
50 20 0.6 0.033 1, 3, 13

100 20 0.6 0.033 1, 3, 13
500 20 0.6 0.033 1, 3, 13

1,000 20 0.6 0.033 1, 3, 13
5,000 20 0.6 0.033 1, 3, 13

100 20 0.6 0.033 1, 3, 13
100 40 0.6 0.033 1, 3, 13
100 60 0.6 0.033 1, 3, 13
100 80 0.6 0.033 1, 3, 13
100 20 0.2 0.033 1, 3, 13
100 20 0.4 0.033 1, 3, 13
100 20 0.6 0.033 1, 3, 13
100 20 0.8 0.033 1, 3, 13
100 20 0.6 0.011 1, 3, 13
100 20 0.6 0.033 1, 3, 13
100 20 0.6 0.055 1, 3, 13
100 20 0.6 0.077 1, 3, 13

NG, number of generations; PS, population size; PC, probability of crossover; PM,
probability of mutation; SA, selected attributes. The values for the changing param-
eter in each experiment are presented in bold.

Table 5
Results for the 10-fold cross validation mode.

Folds (%) Attribute

10 (100%) 1
10 (100%) 3

0 (0%) 4
0 (0%) 5
0 (0%) 6
0 (0%) 7
0 (0%) 8
0 (0%) 9
0 (0%) 10
2 (20%) 11
0 (0%) 12

10 (100%) 13
0 (0%) 14

Population size: 20; number of generations: 20; probability of crossover: 0.6; prob-
ability of mutation: 0.033.
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upport or rejection to managerial proposals. Moreover, the year
ppears as another significant feature, indicating that the moment
t which the votes refer is relevant in explaining their direction. In
rder to understand this last influential relation, it must be taken
nto account that the time horizon considered in our sample cov-
rs some critical moments for the United States banking sector,
ncluding bankruptcies, severe reputational failures, and mergers
nd acquisitions. Thus, our results suggest that these critical events
ay have influenced the aggregated vote direction.

. Conclusions

Using a sample of 309 companies from the United States bank-
ng industry, and collecting votes issued by the largest large cap
unds and by socially responsible investing funds about manage-
ial proposals presented in their corporate meetings during the
1-year period from 2003 to 2013, we investigate the determinants
f the vote direction among an extensive set of financial variables
y means of a genetic algorithm.

Our findings suggest that there are three main attributes that
ontribute to explain the global voting support or rejection. First,
he market capitalization of the firm appears as a key explanatory
actor, indicating that the corporate market value is an influ-
ntial feature. Second, the number of funds voting also arises,
uggesting that the shareholder activism is a key feature as well.
inally, the moment at which the votes refer is also impor-
ant, suggesting that the critical events affecting the banking
ndustry in recent times may have affected the aggregated vote
irection.

Considering that voting behavior has been previously con-
ected to reputational harm, our findings provide some interesting

nsights about key aspects that should be considered in order to
uild an effective reputational risk management strategy.
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