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This paper addresses the study of the pre-experimental planning phase of the Design of Experiments
(DoE) in order to improve the final product quality. The pre-experimental planning phase includes a
clear identification of the problem statement, selection of control factors and their respective levels
and ranges. To improve production quality based on the DoE a new approach for the pre-experimental
planning phase, called Non-Conformity Matrix (NCM), is presented. This article also addresses the key
steps of the pre-experimental runs considering a consumer goods manufacturing process. Results of the
application for an industrial case show that this methodology can support a clear definition of the problem
and also a correct identification of the factor ranges in particular situations. The proposed new approach
eywords:

re-experimental runs
on-Conformity Matrix
esign of Experiments

allows modeling the entire manufacturing system holistically and correctly defining the factor ranges
and respective levels for a more effective application of DoE. This new approach can be a useful resource
for both research and industrial practitioners who are dedicated to large DoE projects with unknown
factor interactions, when the operational levels and ranges are not completely defined.

© 2015 AEDEM. Published by Elsevier España, S.L.U. This is an open access article under the
CC
. Introduction

Design of Experiments (DoE) is one of the most powerful
ools for process improvement and optimization in the scientific
nd engineering disciplines. It is widely used to develop robust
rocesses, so that they are less affected by external sources of vari-
bility. Objectives of DoE are to study the performance of processes
nd systems and to better understand the behavior of the process
actors, as well as their impact on the quality characteristics of
he product and process under analysis. In other words, experi-

ents are performed to (Montgomery, Keatsa, Perrya, Thompsonb,
Messinab, 2000):

Determine which controllable factors have most influence on the
response(s);

Determine where to set the significant controllable factors in
order to assure that the response(s) are close to their target value;
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• Determine where to set the significant controllable factors in
order to assure that the effects of the uncontrollable and noise
factors on the response(s) are minimal.

Application of DoE in process improvements can result in
improved process yields, reduced process variability and reduced
overall costs (Montgomery, 2008). Over the past many years,
industries have successfully applied DoE to improve process per-
formance and reduce variability (Javorsky, Franchetti, & Zhang,
2014; Montgomery et al., 2000). However, other applications of
DoE are also realized in the areas of product development (Fowlkes
& Creveling, 1996) and performance optimization of automation
technologies (Subulan & Cakmakci, 2011).

DoE consists of three important phases: pre-experimental plan-
ning; execution of the experiments; and statistical analysis of the
data collected. Pre-experimental planning is a key phase for the
successful implementation of the experiments because final con-
clusions largely depend on the way in which the experiments are
planned. At the end of the pre-experimental planning phase, it is
expected that the objectives of the experiment, the selection of

response variables, factors and their levels and ranges required are
clearly defined.

Definition of the problem and selection of factors and their lev-
els and ranges are thus critical steps in any DoE analysis. Incorrect
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dentification of the problem will lead to final recommendations
hat are not meaningful. Typically, in order to define and character-
ze the problem, cause-and-effect-diagram and Failure Mode and
ffect Analysis techniques are applied as simple and straightfor-
ard methods to identify potential design factors. However, these

echniques are applied once the region of interest is identified
Taguchi, Chowdhury, & Wu, 2005). In order to better identify this
egion, a Systems Engineering tool called Non-Conformity Matrix
NCM) is presented in this paper. This tool enables to model the
ntire system (e.g. industrial process) holistically, also allowing a
ystematic analysis of the interactions between its elements that,
n our particular case, are the non-conformities identified along the
roduction process.

After the region of interest is clearly defined, it is important
o select the right factors and ranges that will be the subject of
ptimization through DoE, thus improving the quality of the final
roduct. Factors are the input variables of a process that affect
irectly the response variables. In order to select factors and their

evels and ranges, it is required that the experimenter has a deep
rocess knowledge, based on a combination of practical experience
nd theoretical understanding, as well as historical data and/or
revious experimental results, though, even considering all these

nformation, there are still particular situations where the correct
dentification of factor levels and ranges is hard to accomplish. This

ight be due to a variety of causes, such as a certain immaturity of
he process, a random behavior of the factor levels and ranges each
ime the production is run or even to the presence of unpredictable
oise factors. The ideal way to address these problems consists in
erforming the pre-experimental runs to identify the factor lev-
ls and ranges for the above-discussed situations. In fact Czitrom
2003) and Coleman and Montgomery (1993) have also mentioned
hat if additional information is required on factor levels and ranges
t is advisable to consider performing pre-experimental runs.

The objective of this paper is to study the pre-experimental
lanning phase of the DoE for an industrial case in order to

mprove the final product quality. The pre-experimental plan-
ing phase includes: (1) a clear identification of the problem, that
as better achieved with the help of the NCM, as well as (2)

he correct selection of control factors and their respective levels
nd ranges. Furthermore, application to the industrial case com-
rises studying practical problems typically faced while performing
re-experimental runs and selecting factor levels and ranges, high-

ighting the most important problems and cautions that should be
aken into account at this phase of the experiment.

In the following sections, a brief introduction is presented
n Design of Experiments and the techniques used in the pre-
xperimental planning phase. Also in this section an overview of
he basics and principles of the Non-Conformity Matrix (NCM) is

resented. Then, a comprehensive study is provided for the expe-
imenters (scientists or engineers) in order to determine when the
re-experimental runs are required and what the key steps for its
uccessful implementation are.

Table 1
Guidelines for design of experiments.

1. Problem statement and/or definition 

2. Select factors and their levels and ranges 

3. Select the response variable(s) 

4. Choose the experimental design 

5. Perform the experiment 

6. Statistical analysis of the acquired data 

7. Results validation using confirmatory run

8. Conclusions and recommendations 
nt and Business Economics 22 (2016) 155–161

2. Guidelines for Design of Experiments (DoE)

The successful implementation of DoE is comprised of eight
steps, as summarized in Table 1. The first four steps are normally
termed as the pre-experimental planning phase (Montgomery,
2008).

The pre-experimental planning phase is one of the most impor-
tant and critical phases of a DoE analysis that compromises the
validity of the final results. In this phase, the statisticians or con-
sultants, who design the experiments together with engineers
and experimenters, have to bridge a gap in experience, available
resources and knowledge. The current paper discusses in detail
what is critical in steps I and II from Table 1, applying the defined
procedures to an industrial example.

2.1. Pre-experimental planning phase techniques

Cause-and-effect-diagram techniques (Ishikawa diagrams),
Quality Functional Deployment (QFD), and Failure Mode and Effects
Analysis (FMEA) are typically used in the pre-experimental plan-
ning phase (Fahmy et al., 2012; Montgomery, 2008; Taguchi et al.,
2005) to identify potential design factors. These techniques are
often applied once the region of interest (where DoE is performed)
is identified (Taguchi et al., 2005). In cause-and-effect-diagrams,
first, all the controllable and uncontrollable factors that could
influence the quality of the product are identified. This process is
normally held in brainstorming sessions bringing together process
engineers, quality engineers and line operators, and then these fac-
tors are hierarchically organized. This technique is also referred as
fishbone diagram, because the effect of interest is drawn along the
spine of the diagram and the causes are written along the ribs. The
causes listed in the fishbone diagram are a big help in the correct
identification of the potential failure modes.

FMEA can also be used instead of cause-and-effect diagram
with additional advantages of identifying the seriousness of effects,
how frequently effects occur, and how they can be detected. These
metrics are represented by a risk priority number (RPN) for each
effect and are calculated on a subjective basis (Fahmy et al., 2012).

Another technique that can be utilized to develop process matrix
exhibiting interactions between the system elements is Quality
Functional Deployment (QFD) (Browning, 2001). This technique is a
four-phase process: understanding customer requirements (prod-
uct planning), develop design planning matrix, develop process
planning matrix, and develop operations planning matrix (Hassan,
Siadata, Dantana, & Martina, 2010; Taguchi et al., 2005).

The technique proposed in this paper to identify potential key
area consists of a systems engineering tool called Non-Conformity
Matrix (NCM). This matrix models the entire system holistically,

presenting the cause-and-effect relations between the system ele-
ments in a matrix form. The proposed tool, once compared to the
more traditional quality tools, has three additional advantages: (i)
Identification of the region of interest by analyzing the entire man-

s 

Pre-experimental 
planning phase 

Execution phase 

Statistical analysis 
and recommendation 
phase 
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facturing system (QFD has been used for similar purpose, however
n different context); (ii) Cause-and-effect relations are identified
n a systematic and innovative manner, i.e. if the relations need
o be updated then they can be easily modified; (iii) It also allows
pplying mathematical operations and algorithms to the matrix,
hus reinforcing what are the most relevant interactions between
he elements.

.2. Non-Conformity Matrix

The Non-Conformity Matrix (NCM) is a Design Structure Matrix
DSM) (Browning, 2001; Eppinger & Browning, 2012) based tool
eveloped to systematize all non-conformities (NCs) originated
long a production line in a matrix form, highlighting relations and
nteractions between them. This is the first time that DSM based

ethodology is used for the process improvement phase. Tavares,
arooq, Araújo, and Nóvoa (2013) developed a ten-step method-
logy for the application of a NCM to a manufacturing system.
pplying the DSM principles on a NCM tool allows identifying clus-

ers of NCs for prioritizing quality improvement actions. Farooq,
avares, Nóvoa, and Araújo (2014) discusses comprehensively how
NCM is built and what are the relevant phases of this process

n order to effectively capture the knowledge from the industry
xperts. The ultimate goal is to use this tool to highlight critical
anufacturing process points and then applying quality improve-
ent techniques to improve the final product quality.

. Industrial application

Three-piece tin plate aerosol cans are a mass produced product
n the consumer goods packaging industry. Although the aerosol
an seems simple at a first glance, customer requirements are var-
ed and demanding. In fact, a simple aerosol can must satisfy a
ariety of internal and customer technical requirements includ-
ng leak tightness, appearance, as well as safety requirements to

ithstand under certain pressure. Although packaging industries
roducing this type of aerosol cans are obliged to follow strict inter-
ational rules and regulations, customers are always demanding

or even higher quality levels. Like many such firms, the industry
nder analysis is also constantly pursuing quality improvement of

ts products and processes.
Application of DoE to other similar problems in the electron-

cs, pharmaceutical, automotive and semiconductor industries has
hown convincing results and successfully found the operational
onditions that simultaneously minimize the variation and main-
ain an average value of the process (Antony, 1999; Javorsky et al.,
014; Konda & Guha, 1998; Montgomery et al., 2000). Therefore, in
he case of three-piece tin plate aerosol can, application of DoE to
specific problematic step of the industrial process seemed as the

orrect approach to improve the final product quality of the man-
facturing process. The first step in any DoE implementation is to
efine clearly the problem statement: in the case under analysis,
NCM was applied to obtain a more thorough understanding of

he process, acting as a key input in the pre-experimental planning
hase of DoE. In the following sections, first a brief introduction is
iven about the product and its manufacturing process and then
he application of NCM is presented.

.1. Description of the product

An aerosol can have the objective of containing a product that
s dispensed with the aid of a propellant. The product can be dis-

ensed in the form of a mist of liquid particles or foam, depending
n the propellant and on the product properties. The aerosol can
roduced by the company is a three-piece tin plate aerosol can, a
imple product composed mainly by three major parts: the top, the
Fig. 1. Three-piece tin plate aerosol can.

bottom and the body, as shown in Fig. 1. The company manufac-
tures both the empty and filled aerosol cans. However, the objective
is to improve the final quality of an empty aerosol can, therefore
study of the valve, actuator and cup, which are the additional parts
in filled aerosol can, are out of scope for this research.

3.2. Description of the production process

The complete aerosol manufacturing process is fairly complex
and with a high number of intricate steps, but for the current
research, a comprehensive understanding of the high-level pro-
duction processes is sufficient. A three-piece tin plate aerosol can
passes successively by the following production areas: primary cut-
ting, varnishing & lithography, secondary cutting and stamping &
assembly.

In the primary cutting step of the production process, the tin
plate is unrolled from a large coil, straightened and cut into smaller
sheets. The top and the bottom are made up from tin-plates with
the same thickness whereas the body, according to specifications,
has always a relatively lower thickness.

In the varnishing and lithography step, the visual attributes
of the aerosol are printed on the tin plate and, according to the
customersŕequirements, different types of varnish protection are
applied to the body before it is cut. The top and the bottom are
generally not lithographed.

In the stamping stage, the top and the bottom cup are stamped
from a tin-plate sheet. These parts are then transported to the
assembly line where the body, which is generally not lithographed,
is winded to give a cylindrical shape and then welded. Then the
cylindrical shape is assembled together with the top and bottom
parts via seaming joints (one seaming joint between top and body,
and another seaming joint between bottom and body).

3.3. Non-Conformity Matrix

The application of NCM to the three-piece tin plate aerosol can
has begun through modeling the entire production system in fine
detail, highlighting all the quality control points and the NCs traced
in each of the quality control points. Fig. 2 shows a 44 × 44 NCM
obtained after interviewing comprehensively the experts of the
industry (Farooq, Tavares, Nóvoa, & Araújo, 2013; Farooq et al.,
2014). NCM is an N × N square matrix with corresponding rows and
columns. The matrix elements represent non-conformities and are
listed in time sequence from left to right in the horizontal axis.
Non-conformities in the vertical axis represent the same elements

as in horizontal axis from top to bottom. Off-diagonal cells indicate
the dependency of one non-conformity on other non-conformity.
Reading across a row shows input sources; reading down a column
shows output sinks. When a non-conformity depends on another
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Table 2 shows the final list of identified controllable factors, which
corresponds to the first part of step II of DoE in Table 1.

The second part of step II of DoE is to select factor levels and
ranges, which are inputs to the experiments that determine the

Table 2
Control factors.
Fig. 2. Non-Conformity Matrix – b

on-conformity, then the corresponding matrix cell is marked with
otherwise left blank.

Fig. 3 shows a NCM obtained after application of the sequenc-
ng algorithms. These algorithms are applied within each of the
igh-level production process, so that the non-conformities remain
ithin their production process. Furthermore, type of the sequenc-

ng algorithm applied is the lower block triangular matrix algorithm
hat organizes most of the NCs below the diagonal. The NCs that
emained above the diagonal show complex feedback relations.
oreover, these mathematical algorithms identified four impor-

ant clusters of NCs. Varnishing and Printing NCs are influenced
ainly by primary cutting NCs. Secondary cutting NCs are influ-

nced mainly by varnishing and printing NCs and also Secondary
utting NCs. Flanging and seaming NCs are mainly influenced by
hemselves, which is called modularity. Finally, it can also be seen
hat the output quality parameters, which logically appear at the

atrix end, are influenced by NCs generated all along the produc-
ion process.

Among the four key areas highlighted, the most influenced area
output quality parameters) was further analyzed through Pareto
hart analysis. The analysis, which is made hidden due to con-
dentiality clause, has shown that the high majority of aerosol
an defects is due to problems related with the welding process.
herefore, welding process was elected as the primary area of anal-
sis to further improve the final quality of the process.

The second step of DoE is to select the right factors to analyze, as
ell as their levels and ranges. In the case under analysis, this step

nvolved a complete understanding of the welding process. In fact,

fter a careful analysis of this process, experimenters found that
he current operating conditions of the welding process could be
ignificantly improved, thus enabling a finer control of the process.
urthermore, due to the presence of a considerably number of noise
pplying mathematical operations.

factors, it was not possible to replicate similar operating conditions
each time the production is run and it was not possible to define
the correct ranges of the selected welding factors unambiguously.

In order to solve this problem, an approach of pre-experimental
runs was put in place, enabling a better definition of the ranges of
the factors. As to what should be the correct levels of the factors,
they were initially set based on expert opinion and process knowl-
edge. In the next sections, the approach used is further explained.

4. An approach to selecting factors and their levels and
ranges

The NCM and Pareto Chart analysis facilitated the process
of identifying the key areas of the manufacturing process that
required particular attention, also helping in a better definition of
the problem. These analyses, together with brainstorming with key
experts, helped in listing down the controllable, uncontrollable and
noise factors that affect the problem. At a second stage, and after
all the factors have been identified, brainstorming further reduced
the number of factors, simplifying the subsequent DoE analysis.
Welding current
Welding force
Welding speed
Space between welding bodies
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Fig. 3. Non-Conformity Matrix – a

agnitude and direction of each factor’s effect on the response
ariable(s), therefore directly affecting the results. If the factor lev-
ls and ranges are not correctly chosen, the subsequent statistical
nalysis and final recommendations might be misleading.

Selection of factor levels and ranges has to go through an iter-
tive process. The first iterations of factor levels and ranges may
ontain experimental design with too many experimental runs and
ight not be practically feasible. Therefore, it may require reducing

he experimental runs based on available resources and experimen-
al objectives. The tools used for a comprehensive selection of factor
evels and ranges are experimental objectives, theoretical knowl-
dge, expert opinion, process knowledge, available resources,
revious experimental results and performing pre-experimental
uns (Czitrom, 2003; Montgomery, 2008).

Generally, factor levels and ranges are selected based on the
efinition of the factors, namely whether it is a quantitative factor
r a qualitative factor. For the current industrial case and as shown
n Table 2, only quantitative factors are applicable. As the objective
f the experiment was to determine whether or not the factor has
n effect on the response variable, the size and direction (sign) of the
ffect, as well as to potentially study the curvature in the response,
hree levels for each factor were selected. Furthermore, it was the
rst time such experiments were performed in this industry and
herefore it was required to design and start with a simple model.

In order to select a proper range for a quantitative factor, pro-
ess knowledge, previous experimental results and expert opinion
re required. However, in the current industrial example, it was not
ossible to clearly identify the factor ranges due to presence of noise

actors (e.g. coil properties) and also due to the reason that the pro-
ess is not completely controlled. Therefore, in order to overcome
hese problems, it is advisable to proceed with pre-experimental
uns, further explained in the following section.
pplying mathematical operations.

4.1. Pre-experimental runs

Pre-experimental runs are the experiments that are performed
on specific situations. It is therefore essential to know when they
are required. Pre-experimental runs should be performed before
designed experiments, if the tools (process knowledge, expert opin-
ion, experimental objectives, theoretical knowledge and previous
experiments) are not sufficient enough to define clearly the levels
and ranges of a factor. Explicitly, there are the following two cases
when pre-experimental runs are required:

• When it is not completely known that a quantitative factor will
have a linear (2 levels) or a non-linear (3 or more levels) response
and also the objective of the experiment is depending on the nat-
ural effect of the factor. Generally, two levels are studied if the
objective of the experiment is to determine whether or not the
factor has an effect (size and direction) on the response. Three or
more levels are studied if the objective of the experiment is to
study also the full relation with the response;

• When it is not possible to define clearly the range of the levels
for quantitative factors, and it is required to explore the process
behavior over a wide area of factor ranges.

Practically, selection of factors and their levels and ranges, and
selection of response variable(s) are done simultaneously or in
reverse order as shown in Table 1. However, if it is required to
perform pre-experimental runs, then it is recommended to select
response variable(s) and study measurement system(s) prior to

selecting factor levels and ranges. This is because the response vari-
able(s) and measurement system(s) help in studying the process
behavior and defining the correct factor levels and ranges. Fur-
thermore, it is also recommended to list down all the noise factors
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Table 3
Control factors and their estimated values.

Control factors Estimateda values
(low-high)

Welding current 598–611
Welding force 117–130
Welding speed 151–169
Space between welding bodies 3.9–5.2
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Table 5
Control factors’ ranges.

Control factors Lowa Standarda Higha

Welding current 611 650 666
Welding force 104 112 115
Welding speed 120 151 166
Space between welding bodies 0.25 5.2 13

a Due to confidentiality clause, the exact figures are not presented (a scale of

a Due to confidentiality clause, the exact figures are not presented (a scale of

ertain value is adopted).

efore performing pre-experimental runs and then note down their
alues during the tests. These noise factors should be controlled as
ar as possible, in order to assure that they will have almost the
ame values while performing the pre-experimental runs as well
s on the designed experiment, enabling a better identification of
actor levels and ranges. Due to confidentiality clause, response
ariable(s), measurement system(s) and noise factor(s) are made
idden for the current industrial application.

A brainstorming session was conducted with the experts in
rder to estimate the values of selected factors. This helped in
aving some time during pre-experimental runs implementation
ecause it has provided valuable hints to set the factor around esti-
ated values. The selected factors and estimated factors’ values are

hown in Table 3.
Table 4 defines comprehensively the guidelines used for the

mplementation of pre-experimental runs.
After successful implementation of the pre-experimental runs
or the industrial case, ranges for all the selected control factors
ere clearly identified as shown in Table 5.

able 4
uidelines for pre-experimental runs.

1. Calibration of the selected response variable(s) and
measurement system(s);

2. Note down the values for all the possible noise factor(s);
3. Adjust the machine to standard operating condition and start

producing the units;
4. Note down the standard values for all control factors when

satisfactory units are produced;
5. Increase first control factor from the standard value

intermittentlya until the factor reaches a maximum value
while still producing relatively good units by analyzing the
response variable(s);

6. Maintain all other factors at the standard values for maximum
or minimum values;

7. Note down the value of the factor, this is the factor’s maximum
value;

8. Decrease the same control factor from the standard value
intermittentlya until the factor reaches a minimum value
while still producing relatively good units by analyzing the
response variable(s);

9. Note down the value of the factor, this is the factor’s minimum
value;

10. The range for two levels can be defined by low level (minimum
factor value) and high level (maximum factor value);

11. The range for three levels can be defined by low level
(minimum factor value), center point (standard value) and
high level (maximum factor value);

12. Adjust the minimum and maximum values so that the
standard value is at the center of both, which is highly
recommended. However there are situationsb when standard
value might not be adjusted at the center, therefore maintain
the settings to non-central values.

13. If the factor is required to perform with more than three levels
then take more center points between the levels or take points
where there is a region of interest;

a Increase the value of control factor by 5%, 10%, . . . of its value or randomly
epending upon the objective of the experiment.
b It is dependent on the objective of the experiment.
certain value is adopted).

The registered range of each control factor was then success-
fully modeled, in order to assist the selection of the experimental
design (fourth step in DoE), and subsequently, the performance of
the selected experiment (fifth step in DoE). These steps are not part
of the current paper and therefore are considered future work.

5. Conclusions

A clear definition of the problem and a correct selection of factor
levels and ranges are one of the key elements in any DoE’s imple-
mentation. FMEA, QFD and cause-and-effect techniques have long
been used as key tools for identifying the potential design factors
during the pre-experimental planning phase of the DoE, provided
that a region of interest was identified. For the same purpose and
in order to better identify this region, a new Systems Engineer-
ing tool is introduced in this paper, termed Non-Conformity Matrix
(NCM), a tool that is used for the first time in a quality improvement
project. This tool models the entire system holistically, highlighting
key problematic areas of the manufacturing system, through a sys-
tematic analysis of the interactions between the non-conformities
identified along the production process.

The NCM methodology is then applied to the three-piece tin
plate aerosol can product of a large consumer goods packaging
industry. The industry under analysis is constantly considering
improving its manufacturing process and final quality of its prod-
ucts, namely aerosol cans. Application of the NCM together with
Pareto chart analysis have shown that a high majority of the prob-
lems occurred due to the welding process, which is one of the key
elements in the improvement of the final product quality. How-
ever, while studying the welding process in detail for the DoE, it
was found that due to the unknown behavior of noise factors and
also due to the fact that the process is not completely monitored and
controlled, it was not possible to clearly define the factor ranges.
This particular problem was solved by the successful implementa-
tion of pre-experimental runs, thus further defining the appropriate
ranges for all the factors.

Future directions involve the execution of the following three
important aspects:

I Execution of the next steps of a DoE implementation (Table 2),
thus providing a valuable input to what should be the best
operating conditions for the welding process that minimize the
non-conformities of three-piece tin plate aerosol cans, as well
as increase the productivity.

II Formulating the Cost of Quality model that receives input
from DoE and evaluate per unit cost based on non-conforming
units sent to the customer and failure costs. In this par-

ticular study relation between external and internal failure
costs, and quality of non-conformance shipped to the customer
on the global cost savings for acceptance sampling will be
explored.

III Extrapolating this methodology into a general framework that
can be applied to other industries and products.
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