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Abs t rac t  
The assumption behind discrete hours labour supply modelling is that utility-maximising 
individuals choose from a relatively small number of hours levels, rather than being able to 
vary hours worked continuously. Such models are becoming widely used in view of their 
substantial advantages, compared with a continuous hours approach, when estimating 
and their role in tax policy microsimulation. This paper provides an introduction to the 
basic analytics of discrete hours labour supply modelling. Special attention is given to 
model specification, maximum likelihood estimation and microsimulation of tax reforms. 
The analysis is at each stage illustrated by the use of numerical examples.  
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K E Y W O R D S  Discrete hours labour supply, multinomial logit, maximum likelihood 
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Discrete Hours Labour Supply 
Modell ing: Specif ication, Estimation 

and Simulation 

1 In t roduc t ion  
This paper provides an introduction to the basic analytics of discrete hours labour supply 
modelling.

1
 Discrete hours models are popular in tax policy microsimulation, because it is 

relatively easy (compared to the continuous models) to incorporate taxation and social 
security details. To get to the stage where a policy change, such as a change in income 
taxation rates, can be simulated, several steps are needed. First, a model needs to be 
specified explaining labour supply behaviour. Second, taxation and social security 
parameters and individual information on incomes, wages and household composition are 
needed to calculate net incomes at all possible labour supply levels. Third, the model is 
estimated using information on individual labour supply, net income at the different labour 
supply levels and other relevant characteristics. Fourth, once the parameters of the model 
are estimated, they can be used to predict the effect of policy changes through simulation. 
In this paper, special attention is given to the three steps of model specification, 
estimation and microsimulation.  

The assumption behind discrete hours labour supply modelling is that utility-maximising 
individuals choose from a relatively small number of hours levels, rather than being able to 
vary hours worked continuously. The discrete approach is perhaps more realistic, in that 
typically only a finite number of part-time or full-time working options are available.

2
 It also 

substantially simplifies the nature of the budget set faced by each individual, who is 
assumed to face a fixed gross hourly wage. It is assumed that the same set of hours is 
available to each individual. In the continuous hours context the analysis of choices under 
piecewise-linear budget lines must deal with the complexities arising from budget sets 
displaying convex and non-convex ranges, and multiple local equilibria.

3
 In practice, the 

evaluation of the complete range of each individual�s unique budget set is cumbersome, 
given the complexity of most tax and transfer systems.

4
 With discrete hours models it is 

                                                                 
1Early influential papers on discrete choice modelling include McFadden (1973, 1974) and it seems that the first to use a discrete 
approach to labour supply modelling were Zabalza, Pissarides and Barton (1980). 
2Van Soest, Woittiez and Kapteyn (1990) and Tummers and Woittiez (1991) show that a discrete specification of labour supply can 
improve the representation of actual labour supply compared to a continuous specification. 
3Simulation requires either a search over all segments and corners of each individual�s constraint, or the use of an algorithm such as 
that described by Creedy and Duncan (2002). 
4This is further complicated in the case of couples and joint utility maximisation, where the budget constraint is three-dimensional. 
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simply a question of evaluating utility at a small number of points, none of which 
represents a standard tangency solution.  

The advantages of discrete hours modelling are perhaps even stronger in the context of 
the empirical estimation of individuals� preference functions. With continuous hours 
modelling several approaches have been adopted.

5
 Often a reasonably flexible labour 

supply function (relating hours worked to net wage rates, non-wage incomes and a range 
of individual characteristics) is estimated, and then the utility function is found by 
appropriate integration methods. Alternatively a supply function is derived from either a 
direct or (more commonly given the greater flexibility allowed) an indirect utility function. 
However, considerable problems arise because of, for example, the fact that net wages 
and hours are jointly determined, and problems exist concerning the determination of 
virtual non-wage incomes for each linear segment. Indeed, empirical continuous hours 
models have found it extremely difficult to capture the complexities arising from supply 
behaviour under piece-wise linear constraints.  

Section 2 describes the discrete choice modelling framework. In practice, the 
determinants of any individual�s behaviour can never be known with certainty. A feature of 
the discrete hours approach is that the stochastics are introduced at the initial discrete-
choice modelling stage in the utility function rather than in the derived labour supply 
model; measured utility differs from true utility as a result of measurement, optimisation 
and other errors. This generates a crucially important probability distribution over the set 
of hours available for work. Section 3 provides a simple numerical example of the way in 
which such a probability distribution is generated, where the error terms follow a 
hypothetical discrete distribution. A more detailed and formal examination of the error 
specification, and its implications for the probability distribution of an individual�s hours 
worked, is given in section 4. Estimation of the parameters of specified preference 
functions, using the method of maximum likelihood, is considered in section 5. A 
numerical example of estimation is given in section 6. Alternative specifications of the 
model are discussed briefly in section 7. The use of discrete hours labour supply models 
in behavioural microsimulation is examined in section 8, where a numerical example of a 
tax reform is presented. Brief conclusions are in section 9.  

2  The  bas ic  mode l  
This section presents the basic model of utility maximisation and discusses the 
determination of the probability distribution of hours worked. Subsection 1 discusses the 
discrete choice framework, involving the introduction of a random term reflecting the 
difference between actual utility and measured utility for an individual. In contrast with a 
deterministic approach, this gives rise to a probability distribution of hours worked for each 
individual, as discussed in subsection 2 and more formally in subsection 3. The 
measurement of labour supply elasticities in this framework is examined in subsection 4.  

                                                                 
5A first generation of labour supply models linearised the budget constraint by taking the average net wage rate or the marginal wage 
rate in the observed hours. This results in a simple regression model if an appropriate utility function is chosen. This type of model is of 
limited use when interest is in policy analysis related to the tax and benefit system. A second generation of models examines the full 
budget constraint when searching for optimal labour supply, allowing for any nonlinearities and nonconvexities. Burtless and Hausman 
(1978) were the first to use this approach; see Hausman (1979, 1985) or Moffitt (1986) for a discussion of the approach. 



 

W P  0 3 / 2 0  |  D I S C R E T E  H O U R S  L A B O U R  S U P P L Y  M O D E L L I N G  3  

2 .1  Ut i l i ty  maximisat ion 

Consider an individual with a set of measured characteristics, X . The individual (who 
faces a fixed gross wage rate) maximises utility by selecting the number of hours worked, 
h,  subject to the constraint that only a discrete number of hours levels, ih ,  ( )1i n= ,...,  
are available for work. The level of utility is determined by the amount of leisure and net 
income. Utility is increasing in both arguments and is bounded by the time and budget 
constraints. That is, the amount of leisure per week cannot be more than the total amount 
of time available per week minus the hours of work.

6
 Total weekly income is restricted by 

the available amount of nonlabour and labour income. The latter is the individual�s wage 
rate multiplied by hours worked (the total available time minus the time spent on leisure). 
Instead of leisure, hours of work are often used as the argument in the utility function 
because labour supply is typically the key variable of interest in economics. The individual 
balances leisure and net income to obtain the highest utility possible, more leisure means 
less income and vice versa.  

The utility associated with each hours level is denoted iU
∗  and is a function of �measured� 

utility ( )iU h X  plus an �error term�, iv ,  so that:
7
  

( )i i iU U h X v∗ = +  

i iU v= +  (1) 

The term iv  arises from factors such as measurement errors concerning the variables in 
X ,  optimisation errors of the individual or the existence of unobserved preference 
characteristics. Any observation on h  is of course associated with a set of possible 
�draws� of the n  random variables iv  from their respective distributions. Within this 
framework, there exists a probability distribution over available hours levels that is 
influenced by the properties of the iv .8

 Without these error terms, the model would be 
deterministic and knowledge of the form of U  and the vector X  would be sufficient to 
determined the precise utility-maximising choice of hours level.  

The issue considered here is how to generate the probability distribution for labour supply, 
( )i ip h h p= = ,  for 1i n= ,..., , given assumptions about the distributions iv .   

2.2 Probabi l i ty  d is t r ibut ions  

The framework, summarised by equation (1), is one in which there is a distribution of utility 
for each discrete hours level, depending on the distributions of the iv . Suppose for 

convenience that there are only three hours points. The three distributions of iU
∗ ,  for 

1 2 3i = , , , are shown in Figure 1, where in each case increasing utility involves moving 
upwards along each axis. The choice of any particular hours level is associated with 

                                                                 
6Most models implicitly allow for home production by assuming that leisure includes home production time. Few articles explicitly allow 
for home production given the measurement problems. Exceptions are, for example, Becker (1965), Wales and Woodland (1977), 
Kooreman and Kapteyn (1987), Apps (1994), and Apps and Rees (1996, 1997). 
7Although utility is considered to be a function of net income and hours worked, it is not necessary here to refer to net income, since 
this is determined directly from the associated hours level and the wage and other characteristics of the individual. 
8In the next sections, emphasis is given to the case where the errors are independent and identically distributed. 
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�draws� from these three distributions, where the hours level producing the highest iU
∗  is 

chosen.  

Consider the probability that hours level 1h  is chosen, given that the value 1U A∗ =  has 

been selected from the distribution of 1U
∗ . This can only be chosen if it is higher than the 

values of 2U
∗  and 3U

∗  selected from their respective distributions. From Figure 1, the 

probability that 2U A∗ <  is given by the area B. Similarly the probability that 3U A∗ <  is the 

area C. The joint probability that 1h  is chosen, given the selection of 1U A∗ = , is the 

probability that 2U A∗ <  and 3U A∗ < . If the �draws� from the distributions are independent, 
this probability is the product, BC, of the two areas.

9
  

This relates only to one draw, of 1U A∗ = , from the distribution of 1U
∗ . It is necessary to 

consider the overall probability of 1h  being chosen. This is obtained by adding together all 

the conditional probabilities, for all possible values of 1U
∗ .

10
 Even for the higher values of 

1U
∗ , Figure 1 suggests that the conditional probabilities of 1h  being selected would in most 

cases be low. Overall, the probability of 1h  producing maximum utility is small. 

Figure 1 � Three Hours Levels and Utility Distributions 

B

U*
1 U*

2 U*
3

A

C

h1 h2
h3  

2 .3  A more formal  s ta tement  

The procedure discussed in the previous subsection is set out more formally here. 
Consider the hours level, i. Utility maximisation implies that this hours level is chosen if:  

for alli jU U j∗ ∗≥  (2) 

                                                                 
9The standard rule for independent probabilities is that  P(A and B) = P(A) P(B).  
10The appropriate combination of probabilities here follows the general rule that P(A or B) = P(A) + P(B). 
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Substituting for iU
∗ , using (1), and rearranging, this condition is equivalent to the 

requirement that:  

for allj i i jv v U U j≤ + −  (3) 

Hence, for any given value of iv ,  the probability of iU
∗  exceeding all other values is equal 

to the joint probability that 1 1i iv U U v+ − ≥  and 2 2i iv U U v+ − ≥  and so on for all j.  If the 
various distributions are independent, this joint probability is the product of the separate 
probabilities, j i i jP v v U U 

 
 

≤ + − . Therefore, for any given value of iv ,  the probability that 

hours level i  produces maximum utility is equal to:  

j i i j
j i

P v v U U 
 
 

≠

≤ + −∏  (4) 

This is the conditional probability, for a given value of iv . The overall probability is found 
by aggregating terms like (4) over all possible values of iv . The analysis of this problem is 
considerably simplified by assuming that the form of the distribution of iv  for each i  is the 
same. An example is given in the next section, and this is followed by a more detailed and 
analytical treatment of the error specification. First, it is necessary to consider the concept 
of the wage elasticity of labour supply in the discrete context.  

2 .4  Labour  supply  e last ic i t ies  

The structural basis of the discrete model means that there is no explicit labour supply 
function which depends on wage and other characteristics of the individual. This contrasts 
with the continuous hours approach where a supply function arises from utility 
maximisation subject to the budget constraint.

11
 The estimated parameters are parameters 

of the utility function, which determine labour supply in terms of a distribution of hours 
worked. This raises the question of how the concept of the wage elasticity of labour supply 
can be applied in the discrete hours context.  

An elasticity measure may be based on expected hours worked rather than a standard 
supply curve. Consider an individual with known characteristics, including the hourly wage 
and the net incomes associated with each hours point, from which the probabilities of 
being at each of the discrete hours points can be calculated.

12
 Using these probabilities 

the expected value of labour supply can be computed. Next, the individual�s gross wage is 
increased by a small amount, keeping all other characteristics the same, and the new 
expected labour supply is calculated. An elasticity can be produced by dividing the 
percentage change in expected labour supply by the imposed percentage change in the 
wage. Such elasticities will in general vary according to the initial wage rate and the 
individual�s characteristics, as well as the net incomes at the hours points, which are 
determined by the tax and benefit system.  

In some models with more complex error specifications (as discussed in section 7), it is 
not possible to determine the probabilities analytically. However, a simulation approach 
can be taken. Values from the relevant error distributions are drawn for all labour supply 

                                                                 
11The need to be able to �move between� utility and labour supply functions in continuous hours microsimulation places a severe 
restriction on the range of functions used. 
12As shown in more detail in section 4. 
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points, after which the optimal choice of labour supply can be determined by finding the 
highest U ∗ . If this process is repeated several times the distribution of labour supply for a 
particular individual can be determined by counting the number of times each discrete 
point is the optimal point. Given the probabilities at each of the discrete hours points the 
expected value of labour supply can be calculated and the process of deriving wage 
elasticities is then the same as described above.  

3  A  numer ica l  example  o f  hours  p robab i l i t i es  
This section shows how the probability distribution of an individual�s hours of work is 
generated, using a simple hypothetical numerical example. Suppose for the purposes of 
this example that v  takes only discrete values, kv ,  for 1k K= ,..., . In general, let ( )kf a  

denote the proportion of values equal to ka  and let ( )kF a  denote the proportion less than 

or equal to ka .  The value of ip  (the probability of ih  producing the highest utility) is thus 
obtained as the addition of terms corresponding to (4):  

( )
1

K

i k i j k
k j i

p F a U U f a
 
   
  

  
= ≠  

= + −∑ ∏  (5) 

Consider a situation in which there are just four hours levels of work available, so that 
4n = .  The values of iU  associated with each hours level, 1h  to 4h , are respectively 5, 

7.5, 10 and 9. For the purpose of this example for a single individual, it is not necessary to 
specify either the form of the function, U , or the precise discrete hours levels. Clearly, if 
the iU s were to represent utility precisely, 3h  would always be unambiguously chosen.  

As above, suppose that all values for v  are drawn independently from the same discrete 
distribution with four possible outcomes, so 4K = ,  and let v  take the values shown in 
Table 1. In this hypothetical example the arithmetic mean value of v  is non-zero. 

Table 1 � Hypothetical discrete distribution of the error term 

k  1 2 3 4 
v  -2.0 0.0 2.0 3.5 

( )f v  0.1 0.3 0.4 0.2 

( )F v  0.1 0.4 0.8 1.0 

The selection of an hours level is, as explained in section 2, associated in this case with 
the �random draws� from the four distributions, each identical to the one shown in Table 1. 
For example, a set of random values for 1v  to 4v  may be say 2, 0, -2 and 2 respectively. 

These give rise to utilities, iU
∗ , of 7, 7.5, 8, and 11 for the hours levels 1h  to 4h  

respectively. Hence it is clear that 4h  is chosen in this case. It can be seen that, given a 

draw of -2 from the distribution of 3v ,  the option 4h  can dominate 3h  (that is, 4 3U U∗ ∗> ) if 

4v  takes either of the values 0, 2 or 3.5. The conditional probability of 4h  dominating, 
given this selection from 3v ,  is thus 0 3 0 4 0 2 0 9. + . + . = . , found by adding the relevant 
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values of ( )f v  in Table 1. The enumeration of all possible combinations of this type is 
most efficiently carried out following the approach underlying equation (5).  

Consider the probability of selecting hours level 3h . The relevant values are shown in 
Table 2. The second column, headed 3 jU U−  shows the differences in the values of U ; 
these are all positive, as hours level 3 has, by assumption, the highest value of U . The 
column headed 1k =  relates to the values and probabilities when 1a is drawn for 3v . The 
first row shows that when 1k = , that is when 3 1 2v a= = − , the term 1v  must be less than 

1 3 1 3a U U+ − =  in order to ensure that hours level 3 has a higher value of U ∗ .  From the 
assumed distribution in Table 1, there is a probability of 0.8 that v  is less than 3. This is 
shown in the second row of Table 2. Similarly, when 1k = , hours level 3h  gives higher 
utility than 4h  only if 4 1v < − ; this has a probability of 0.1. 

Table 2 � Conditional probabilities for hours level 3  
j  

3 jU U−
 

  1k =  2k =  3k =  4k =  

1 5 
3 1ka U U+ −  

( )3 1kF a U U+ −  

 3 

0.8 

5 

1 

7 

1 

8.5 

1 

2 2.5 
3 2ka U U+ −  

( )3 2kF a U U+ −  

 0.5 

0.4 

2.5 

0.8 

4.5 

1 

6 

1 

4 1 
3 4ka U U+ −  

( )3 4kF a U U+ −  

 -1 

0.1 

1 

0.4 

3 

0.8 

4.5 

1 

Conditional probability that  
* *
3 1U U>  and * *

3 2U U>  and * *
3 4U U>  

 
0.032 

 
0.320 

 
0.800 

 
1.0 

 

The conditional probability that 3h  is chosen, when 3 2v = − , is therefore 

( )( )( )0 8 0 4 0 1 0 032. . . = . . The final column of Table 2 shows that when 4k = ,  so that 

3 4 3 5v a= = . , hours level 3 always dominates and the conditional probability of it being 
chosen is 1. The overall probability 3p  is thus given by:  

4

3 3 3 3
1
3

( for all 3 ) ( )j k k
k
k

p P U U j v a p v a∗ ∗

=
≠

= > , ≠ | = =∑  (6) 

4

3
1 3
3

( ) ( )k j k
k j
k

F a U U f a
= ≠
≠

 
= + − 

 
∑ ∏  (7) 

( )( ) ( )( ) ( )( ) ( )( )0 032 0 1 0 32 0 3 0 80 0 4 1 0 0 2= . . + . . + . . + . .  

0 619= .  (8) 
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Similar calculations show that 1 0 003p = . , 2 0 080p = .  and 4 0 298p = . . The resulting 
probability distribution of hours clearly depends in a complex way on the distribution of the 
�error� term.  

This example has been constructed in order to illustrate the way in which the hours 
distribution for an individual is derived from the underlying stochastic specification and 
utility levels. In practice more structure has to be imposed by specifying a precise form for 
the error distribution ( )f v . A special case using a continuous distribution is examined in 
the next section, which is necessarily more technical than the previous discussion.  

4  Spec i f i ca t ion  o f  the  e r ro r  d is t r ibu t ion  
This section derives the probability distribution of hours worked for a special case of the 
distribution of error terms. This special distribution results in a multinomial logit model for 
utility. The multinomial logit model has been used extensively in discrete choice modelling. 
The discrete error distribution in the previous section was used only for convenience, and 
it is first necessary to state the problem where v  is considered to be a continuous random 
variable. Hence, ( )f v  and ( )F v  are now the density and distribution functions 
respectively of v . It is possible to convert the result in equation (5) into the following form 
for continuous v , remembering that hours continue to be discrete:  

( )i i i j i i
j i

p F v U U f v dv
 +∞    
  

  −∞
≠  

= + −∏∫  (9) 

Essentially, the expression in (9) takes all the possible conditional probabilities, 
represented by i i jj i

F v U U 
 
 ≠

+ −∏ , and integrates iv  out to obtain the required 

marginal distribution ip . Given that the conditional probabilities require the product of 

distribution functions, ( )F . , it cannot be expected that an arbitrary choice of ( )f v  will be 
tractable. This section considers a special case generating a highly convenient form for 
the hours distribution.  

4 .1  A spec ia l  case:  The ext reme va lue d is t r ibut ion 

Suppose the distribution of v  is described by the following density function:  

( ) vv ef v e e
−− −=  

exp vv e− 
 
 

= − −  (10) 

for which the distribution function is:  

( ) veF v e
−−=  (11) 
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The choice of this �thin-tailed� distribution has the obvious advantage that no further 
parameters need to be estimated.

13
 This is known as an Extreme (Maximum) Value Type I 

distribution, which is often abbreviated to �extreme value� distribution.
14

 It is highly tractable 
in the present context. These qualities have generally been (implicitly) taken as sufficient 
justification for its use, though section 7 briefly discusses some alternatives.  

The arithmetic mean of this distribution is non-zero, being equal to 0.5772 (Euler�s 
number); the mode is zero and the median is ( )ln ln 2− . The shape of the distribution is 
illustrated in Figures 2 and 3, showing the density and distribution functions respectively. 
In Figure 3, the distribution function used in the numerical example of section 3 is shown 
for comparison: this is obviously a step function for the discrete distribution. 

Figure 2 � Extreme value probability density function 
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13If, instead of the additive form used here, the multiplicative form i i iU U v∗ =  were adopted, with ( ) ( )1 1expv vf v = −
, 

equivalent results would be obtained (as can be seen by taking logarithms and transforming the distribution). 
14This is because it has been found useful in many applications involving extreme values. If a process generating values of a variable 

is observed over a period, and the maximum value observed is set equal to x,  the resulting distribution of x  can often be described 

by the above form. The more general form is 
( )1( ) exp exp

x
xf x e

µ
βµ

β β

− −−  
 
 

= − −
. The standardised form therefore has 

0µ =  and 1β = . This distribution is also referred to as a Gumbel, or double exponential, or Fisher-Tippett Type I distribution. 
There is a corresponding extreme minimum value distribution. 
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Figure 3 � Extreme value cumulative distribution function and the discrete 
distribution from Table 1 
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Substitution into ( )i i j ij i
F v U U f v  

  
 ≠  

+ −∏  gives:  

exp exp i ji i U Uv v
i

j i

v e e e
     
       

− +− −

≠

− − −∏  (12) 

Noting that the logarithm of exp i ji U Uv
j i

e e
 
 
  
 

− +−
≠

−∏  can be expressed as 
i j ji i iU U Uv v U

j i j i
e e e e e− +− − −

≠ ≠
− = −∑ ∑ , and using ( )exp logx x= , the expression in (12) 

becomes:  

exp 1 ji i Uv U
i

j i
v e e e

  
  
  
  
  
  

    

− −

≠

− − + ∑  (13) 

Furthermore, 
1

1 j j ji i i i i i
nU U UU U U U U

j i j i j
e e e e e e e e eλ− − − −

≠ ≠ =
+ = + = =∑ ∑ ∑ , say. Hence (13) 

can be rewritten more succinctly as ( )exp i iv
iv e λ 

 
 
  

− −− − . Thus:  

( )exp i iv
i i ip v e dvλ 

 
 
  

+∞ − −

−∞
= − −∫  (14) 

Further simplification is achieved using the variate transformation, i i iv v λ′ = − , so that 

i i iv v λ′= +  and i idv dv′= , whereby:  

exp iv
i i i ip v e dvλ

 ′
 
 
  

+∞ −′ ′

−∞
= − − −∫  
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expi iv
i ie v e dvλ  ′

 
 
  

+∞− −′ ′

−∞
= − −∫  

i
i ie f v dvλ +∞− ′ ′ 

 
 −∞

= ∫  

ie λ−=  

1

i

j

U

n U

j

e
e

=

=
∑

 (15) 

In this special case, the probability distribution of hours of work for an individual depends 
in a very simple way on the measured utility levels associated with each hours level.

15
 The 

discrete choice model flowing from the assumption of an extreme value distribution is 
called a multinomial logit model.

16
  

For the numerical example considered earlier, the hypothetical measured utility levels for 
the four hours points are 5, 7.5, 10 and 9. Substitution into (15) gives the probabilities 
0.005, 0.056, 0.686, and 0.253.  

5  Parameter  es t imat ion  
The previous sections have examined the discrete choice model underlying an individual�s 
labour supply behaviour. The basic assumptions are that individuals maximize their utility 
and that utility depends on two arguments, income and hours of work. Utility is expected 
to increase with income and to decrease with hours of work (or increase with the 
complement of working hours, leisure time).  

This section discusses how this model can be estimated with the help of data, using the 
method of maximum likelihood. An advantage of the discrete hours framework, in contrast 
to the continuous approach, is that it can be applied to any legitimate utility function. 
Hence, no explicit assumption about utility functions is made in the present section: their 
specification is discussed in section 7. The extreme value error distribution, examined in 
the previous section, is used. The construction of the likelihood function is described in 
subsection 1 and its maximisation is considered in subsection 2.  

5 .1  The l ike l ihood funct ion 

The notation used in the previous sections did not need to distinguish between 
individuals, since only a single individual was examined. However, estimation uses 
information from a cross-section of individuals. Suppose there are M  individuals and the 
index k  is used to refer to individuals 1k M= ,..., . There are, as before, n  discrete hours 
levels ih ,  for 1i n= ,..., . It is first necessary to indicate the optimal hours level for the k th 
person; denote this by 

ki
h , so that ki  indicates the chosen value of i  (the hours index) for 

person k . Consistent with this notation, the probability of selecting this hours level is 
ki
p  

                                                                 
15In the deterministic framework, monotonic transformations of the utility function have no effect on the choice of optimal hours worked. 
However, in the present context such transformations (other than the addition of a constant) affect the probabilities associated with 
each hours level. 
16For an extensive comparison of alternative discrete choice models, see Maddala (1983). 
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and the corresponding optimal utility level is 
ki k

U ∗
, . All other utility levels (associated with 

other hours levels) are denoted j kU ∗
,  for 1j n= ,..., .  

Using this notation:  

( )for all
k ki i k j kp P U U j∗ ∗

, ,= ≥  (16) 

Thus when all iv  are assumed to follow the extreme value distribution discussed in 
Section 1, the probability associated with the optimal hours chosen by person k  is 
expressed as:  

1

i kk

k j k

U

i n U

j

ep
e

,

,

=

=
∑

 (17) 

The joint probability that individual 1 selects 
1i
h  and individual 2  selects 

2i
h  and individual 

3  selects 
3i
h  and so on, is given, assuming that the decisions are made independently, by 

the product:  

1 1 2
1

1

( )
i kk

M M j k

UM

i i i i i n U
k

j

eP h h p p p
e

,

,
=

=

,..., = ... =∏
∑

 (18) 

This joint probability concerns the probability of the set of hours levels, 
ki
h  for 1k M= ,..., , 

being chosen by the M  individuals, given their preferences and other personal 
characteristics, and assuming that all v  follow identical extreme value distributions.  

The situation facing researchers is that they do not know the parameters of (the assumed 
form of) preference functions, but have information about the hours worked by each 
individual in a random sample taken from the population. In addition, data are available on 
personal characteristics and net incomes of each individual at each discrete hours point. 
The net incomes are not observed directly but are obtained from knowledge of each 
individual�s wage rate and the details of the tax and transfer system.

17
  

The probability in (18) can be viewed from another perspective. Given an assumption 
about the general form of the utility functions, it is possible to find parameter values that, if 
true, would produce the highest probability of observing the actual hours values. The 
expression in (18) is reinterpreted as being a function of the unknown parameter values, 
for a given set of observed hours. Since the framework is one in which a particular �true� 
set of parameters is assumed to exist, and any variations are attributed to sampling 
variations, it is not appropriate, when discussing the function in terms of parameters, to 
refer to a �probability� of parameters taking particular values. Rather, it is necessary to 
refer to the probability of observing this particular sample of individuals (with their 
combinations of characteristics and hours worked) conditional on the parameter values. 

                                                                 
17The taxation and benefit rules are applied to the gross income of each individual at each of the discrete points to obtain the 
associated net income. Depending on the complexity of the rules and the data available, it may not be possible to include all benefits. 
Furthermore, the wage rates of those who are not in employment at the time of the survey cannot be observed, so it is necessary to 
impute wage rates using estimated wage functions. An alternative is to estimate a joint wage and labour supply model (see for 
example, Gerfin, 1993). 
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Suppose that each individual�s utility function depends on a vector of coefficients β , with 
elements βl , for 1 S= ,...,l . The probability statement in (18) can be rewritten as:  

( )1
1

1

i kk

j k

UM

S n U
k

j

eL
e

β β
,

,
=

=

,..., =∏
∑

 (19) 

where ( )1 SL β β,..., , a function of the unknown parameters (for a given sample of 
observed hours worked), is referred to as the Likelihood Function. Here the (fixed) 
parameters are effectively treated as if they were variables. The estimates,  

1 Sβ β,...,  

produced by finding values for 1 Sβ β,...,  that maximise the value of this function are 
referred to as maximum likelihood estimates.  

Taking logarithms gives the log-likelihood for this model:  

1 1
log log j k

k

M n
U

i k
k j

L U e
  
  
  ,  
  
  

    

,
= =

= −∑ ∑  (20) 

This monotonic transformation does not affect the maximum likelihood estimates but, by 
converting products into sums, makes analysis easier.  

5 .2  Maximum l ike l ihood est imat ion 

The log-likelihood is maximised when the following first-order conditions are satisfied:
18

  

log 0 for all 1L S
β

∂ = = ,...,
∂ l

l  (21) 

Differentiation of (20) gives:
19

  

1 1
1

log 1 j k
k

j k

UM n
i k

n U
k j

j

UL e
eβ β β

,

,

,

= =
=

  ∂∂ ∂  = −
  ∂ ∂ ∂

  
∑ ∑

∑l l l

 

1 1
1

j k
k

j k

UM n
i k j k

n U
k j

j

U Ue
eβ β

,

,

, ,

= =
=

  ∂ ∂  = −
  ∂ ∂

  
∑ ∑

∑l l

 (22) 

In considering the terms in (22) it should be remembered that, even if every individual has 
the same general form of utility function, the individual utilities depend on the personal 
characteristics in X .  

                                                                 
18The second-order sufficient conditions for the solution to represent a maximum are not examined here. 
19Remembering that  log 1x x x∂ /∂ = / , and using the function of a function rule. 
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It is of interest to rewrite the first-order conditions, using (21) and (22) as giving, for all l :  

1 1
0k

M n
i k j k

j k
k j

U U
p

β β
, ,

,
= =

∂ ∂ 
− = ∂ ∂ 

∑ ∑
l l

 (23) 

This has the simple interpretation that the aim of this method is to make the first 
derivatives of utility in the observed hours points on average equal to the weighted 
average of derivatives of utility over all possible hours points. The weights for each 
individual are equal to the probabilities of each discrete hours level. Although this is an 
interesting interpretation of the first-order conditions, it does not provide any practical help 
in trying to solve the highly nonlinear set of equations.  

The solution (the set of maximum likelihood estimates for all βl s) can be obtained using 
numerical methods involving a sequence of iterations which lead efficiently from an 
arbitrary starting point to the solution. A discussion of Newton�s method, which is often 
used to maximise functions, can be found in the appendix.  

The iterative method involves repeatedly solving the following matrix equation, where [ ]Iβ  
denotes the vector of parameters in the I th iteration:  

[ ] [ ]

12
[ 1] [ ] log log

I I

I I

s

L L

β β

β β
β β β

−
+    ∂ ∂= + −   ∂ ∂ ∂   l l

 (24) 

and the first and second derivatives are evaluated using the parameters [ ]Iβ . 
Furthermore, it can be shown that the inverse of the matrix of second derivatives at the 
final iteration provides an estimate of the variance-covariance matrix of parameter 
estimates. The application of Newton�s method in the present context therefore requires 
the second derivatives of the likelihood function. Differentiating (22) again with respect to 
parameter sβ ,  gives:  

2 22

1 1

log k
M n

i k j k j k j k
j k

k js s s s

U U U pL p
β β β β β β β β

, , , ,
,

= =

  ∂ ∂ ∂ ∂∂  = − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
∑ ∑

l l l l

 (25) 

where  

1

n
j k j k t k

j k t k
ts s s

p U U
p p

β β β
, , ,

, ,
=

∂ ∂ ∂ 
= − ∂ ∂ ∂ 

∑  (26) 

An example using this procedure is described in the following section.  

6  A  numer ica l  example  o f  es t imat ion  
This section illustrates the application of the maximum likelihood method using a simple 
numerical example involving a linear form of utility function. Although the example has few 
individuals and a simple utility specification, the general approach is no different in a more 
realistic example. Utility is assumed to be independent of an individual�s characteristics 
except for hours worked, wage and other income; appropriate allowance for dependence 
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on characteristics is discussed in section 7. Hence, all individuals have the same utility 
function with the same parameters, and this takes the form:  

h yU h y vβ β∗ = + +  (27) 

This does not mean that all individuals are expected to have the same optimal level of 
hours. Firstly, people with different wage levels have different levels of income y  at the 
hours points h  and so optimal hours are located at different points and, secondly, the 
error term v  introduces random differences in utility caused by unobserved factors. In this 
simple linear form, the marginal utility of net income is constant and equal to yβ  and the 

marginal utility of hours worked is constant and equal to hβ , so the latter coefficient is 
expected to be negative. For each individual, the chosen hours point is observed and the 
value of y  for each discrete labour supply point h  can be calculated, given information 
on the gross wage of each individual and knowledge of the tax and transfer system.  

Suppose also that there are only three individuals, whose details are shown in Table 3. 
There are just three hours levels available for work, 0, 20 and 40 hours, corresponding to 
not working at all, working part time and working full time respectively. The observed 
gross wage rates, given the observed hours of work for each individual, give the gross 
income shown in the final column. In this example, the individual with the highest wage 
rate works longer hours.

20
 

Table 3 � Three individuals and three hours levels 

Person Gross wage Chosen hours Gross income 

1 4 0 0 

2 8 20 160 

3 10 40 400 

 
Assuming for simplicity that there are no income taxes or benefit payments, the net 
income is simply equal to gross income. Substitution of these values, along with (27), into 
the first-order conditions in (22) give:

21
 



   

   

20exp( 20 80) 40exp( 40 160)ln
1 exp( 20 80) exp( 40 160)

h y h y

h h y h y

L

β

β β β β
β β β β β

+ + + ∂ = − ∂ + + + + 
 

   

   

20exp( 20 160) 40exp( 40 320)
20

1 exp( 20 160) exp( 40 320)
h y h y

h y h y

β β β β
β β β β

+ + +
+ −

+ + + +
 

   

   

20exp( 20 200) 40exp( 40 400)
40

1 exp( 20 200) exp( 40 400)
h y h y

h y h y

β β β β
β β β β

+ + +
+ −

+ + + +
 

0=  (28) 

                                                                 
20If allowance were made for other characteristics and given the error term, this would not necessarily always be the case; some low-
wage individuals work long hours, and vice versa. 

21This specification for ν automatically takes care of the scaling of utility, because 
1 1

1 2 1 2

exp( ) exp( )
exp( ) exp( ) exp( ) exp( )

U aU
U U aU aU+ +≠

. Therefore 
no normalisation is needed when using this approach. 
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

   

   

80exp( 20 80) 160exp( 40 160)ln
1 exp( 20 80) exp( 40 160)

h y h y

y h y h y

L

β

β β β β
β β β β β

+ + + ∂ = − ∂ + + + +  
 

   

   

160exp( 20 160) 320exp( 40 320)
160

1 exp( 20 160) exp( 40 320)
h y h y

h y h y

β β β β
β β β β

+ + +
+ −

+ + + +
 

   

   

200exp( 20 200) 400exp( 40 400)
400

1 exp( 20 200) exp( 40 400)
h y h y

h y h y

β β β β
β β β β

+ + +
+ −

+ + + +
 

0=  (29) 

The result is two nonlinear equations in the two unknowns 
yβ  and 

hβ . Using an iterative 

solution procedure, as described in section 2, the maximum likelihood estimates were 
found to be  15 41

hβ = − .  and  1 93
yβ = . .

22
  

Consider the wage elasticity of labour supply for person 2, defined as in subsection 4 in 
terms of changes in expected hours. At the observed wage level, the hours and 
corresponding net incomes (equal to gross incomes since by assumption there are no 
taxes) in Table 3 are used, with the parameter estimates, to obtain the utilities 
corresponding to each hours point, by appropriate substitution in  

2 2i i ih y
U h yβ β= + . From 

these, the probabilities of being at each of the labour supply points are given by 
2 2 2exp( ) exp( )i i jj
p U U= /∑  and expected labour supply ( (2))E h  is calculated using 

2( (2)) i ii
E h p h=∑ . In this example ( (2)) 0 16 0 0 30 20 0 54 40 27 6E h = . × + . × + . × = . . After 

increasing the wage by 1 per cent, new net incomes and hence new utilities for each 
discrete hours point are obtained. Using the resulting new probabilities, expected hours 
are found to be 39 5. . This implies a very high elasticity of 43.  

7  A l te rna t i ve  spec i f i ca t ions  
This section presents a number of alternative specifications of the basic model discussed 
above. The discussion in this section is meant as an overview only and provides much 
less detail than the discussion in the previous sections. First, the form of utility functions is 
examined in subsection 1. Allowance for participation in welfare programmes, often 
described in terms of the �take-up� of benefits, is examined in subsection 2. Alternative 
ways in which allowance may be made for individuals� personal characteristics are 
discussed in subsection 3. The effect of characteristics of a particular discrete hours point 
is described in subsection 4. Finally, alternatives to the use of the extreme value 
distribution are briefly discussed in subsection 5.  

                                                                 
22The iterative process was started from a value of 0.01 for both parameters. The only prerequisite for starting values is that the 
function is defined for those values. When dealing with exponentials, as in this example, large starting values are not recommended 
because of potential overflow problems. No standard deviations are calculated given that the example consists of three individuals 
only; the matrix of second derivatives is poorly-conditioned. 
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7 .1  Ut i l i ty  funct ions 

It has been mentioned that the discrete hours approach offers considerable flexibility in 
the form of utility function that can be used. The linear form used in the numerical example 
of estimation is obviously highly restrictive. The assumption of constant marginal utilities is 
implausible and in empirical applications, utility functions usually allow for diminishing 
marginal utility. A popular extension in applied work is the quadratic utility function:

23
  

2 2
y h y h yhU y h y h yhβ β α α α= + + + +  (30) 

where the marginal utility of income is:  

2y y yh
U y h
y

β α α∂ = + +
∂

 (31) 

An alternative is the translog specification in which the arguments of utility are income and 
leisure ( l T h= − ), rather than income and hours worked:

24
  

2 2ln ln( ) (ln ) (ln( )) ln ln( )y l y l ylU y T h y T h y T hβ β α α α= + − + + − + −  (32) 

where the marginal utility of income is:  

2 ln ln( )y y yly T hU
y y

β α α+ + −∂ =
∂

 (33) 

Both specifications allow for diminishing returns through the quadratic terms. Thus, if yα  
is negative the marginal utility of income decreases with the amount of income. 
Furthermore the cross-product term allows for complementarity (if yhα  is negative or ylα  

is positive) or substitutability (if yhα  is positive or ylα  is negative) of income and leisure. 
For example, the value of income may increase if more leisure time is available, that is 
extra income may be appreciated less if there is no time for consumption.  

Neither the translog nor the quadratic utility function is automatically quasi-concave across 
the full range of possible parameter values. This is not a problem as long as the optimal 
parameter values result in a utility function that is quasi-concave in the observed labour 
supply points. This contrasts with continuous hours labour supply modelling, where the 
necessary restriction of the parameter space may bias substitution effects upwards and 
income effects downwards and which is cumbersome in maximum likelihood estimation.

25
 

In discrete hours labour supply modelling, it is sufficient to check for quasi-concavity after 
estimation, which is a straightforward check of two necessary conditions.

26
  

The quadratic and translog utility function can both be easily extended to allow for 
households consisting of couples, where both partners simultaneously determine labour 
supply. This is achieved by assuming that the couple maximises one utility function, which 
seems a reasonable assumption for households where the members pool their incomes. 
However, a common criticism of this type of model is that the assumption of one common 

                                                                 
23Examples of the use of this can be found in, for example, Keane and Moffitt (1998). 
24This has been used by, for example, Van Soest (1995). 
25See MaCurdy, Green and Paarsch (1990). 
26The two conditions are discussed by Van Soest (1995). The first is the basic requirement that utility increases with income. The 
second condition is more complicated but straightforward to check. 
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utility function for the household as a whole is not realistic. Unfortunately, alternatives 
using bargaining models and other types of non-unitary collective models require detailed 
data and their own set of assumptions which are needed, for example, to break down 
consumption into shared and private goods or to construct a sharing rule for income.

27
 

Such models need to be simplified in other areas. As a result, researchers who focus on 
tax and benefit policy issues and are interested in incorporating the full detail of tax and 
benefit systems have mostly chosen unitary utility functions.  

The quadratic utility function for a couple can be written as: 

2 2 2
y m m w w y m m w w ym m yw w wm w mU y h h y h h yh yh h hβ β β α α α α α α= + + + + + + + +

 (34) 

where the index m  denotes hours and parameters of the male and the index w  denotes 
hours and parameters of the female, and y  represents joint income. The parameter wmα  
indicates whether the male�s and female�s labour supply are complements or substitutes.  

7 .2  Wel fare par t ic ipat ion 

The utility function can be extended through addition of a term for welfare participation, or 
benefit take-up.

28
 The choice between discrete labour supply points is then extended to a 

choice between discrete labour supply points with and without welfare participation, 
whenever relevant. In these models, it is expected that disutility is attached to participation 
in welfare. This disutility could be caused for example by the costs of applying for welfare. 
These could be pecuniary costs or non-pecuniary costs, such as the time needed to travel 
to a social security office, or by a psychological effect of being on welfare, where people 
on welfare feel stigmatised. The latter explanation is more likely to be important when 
participation in welfare is clearly noticeable to the outside world, such as through payment 
in shops with Food Stamps in the U.S.  

A simple and popular way of adding welfare participation to the utility function is through 
the addition of a dummy variable for participation.

29
 For example, 1wd =  if the person 

participates and 0wd =  if the individual does not take-up the benefit, even if entitled to it. 
The coefficient on this variable indicates the disutility associated with participation in 
welfare; that is, a larger negative value indicates greater disutility. For the quadratic utility 
function, the specification would therefore be:  

2 2
y h y h yh wU y h y h yh dβ β α α α φ= + + + + +  (35) 

The participation parameter can be made dependent on individual characteristics in the 
same way as for the preference for work or income. This is described in the following 
subsection.  

An alternative approach is to estimate an unordered model of moving from one choice to 
another, where the amount of labour supply and participation in the welfare programme 
jointly determine choice. In this specification there is no explicit welfare participation 

                                                                 
27This approach has been used in, for example, Chiappori (1988), Bourguignon and Chiappori (1994), Browning et al. (1994), Apps 
and Rees (1997) and Blundell et al. (1998). 
28Moffitt (1983) introduced this idea. 
29Examples of this approach can be found in Fraker and Moffitt (1988), Hoynes (1996), Hagstrom (1996), Smith (1997), Keane and 
Moffitt (1998), Kalb (1999, 2000). 
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parameter, but the gain in utility from a choice with welfare participation compared with a 
choice without welfare participation can be determined conditional on the income gain 
associated with the move between these choices and other individual characteristics.

30
  

7 .3  Personal  character is t ics  

Consider again the simple linear utility function:  

h yU h y vβ β∗ = + +  (36) 

It is straightforward to extend this to make the preference parameters dependent on 
personal and household characteristics. Characteristics such as education, number and 
age of children or an individual�s own age are likely to influence the preference for work 
and income. Including these characteristics in the preference for work parameter, the 
utility function could be presented as follows:  

{ }1 2 3h h h yU age d h y vβ β β β∗ = + + + +  (37) 

where, say, 1d =  if the age of the youngest child is 0 to 4, and 0d =  otherwise. In this 
case, two extra parameters for the preference for work are included, so the likelihood now 
depends on four unknown parameters which need to be estimated.  

This specification is more flexible than in the numerical example of section 6, where just 
one preference parameter for work was estimated. For example, individuals with young 
children are allowed to have different preferences compared with individuals without 
young children. This approach can be used to estimate the effect of an individual�s 
characteristics on preferences and may help to explain differences in behaviour between 
individuals with similar wages but different personal characteristics.  

This addition means that the effects on wage elasticities of labour supply (as defined 
above in terms of expected hours worked) of characteristics like age or household 
composition can easily be examined. Expected labour supply can be calculated for two 
individuals who are exactly the same except for the characteristic of interest. There is thus 
scope for a wide range of elasticities.  

The approach reflected in equation (37) does not incorporate unobserved heterogeneity of 
individuals because allowance is made only for the measured characteristics. This can be 
overcome by adding unobserved heterogeneity to the preference parameters. Hence the 
coefficient on h  is written as:  

1 2 3h h h hage dβ β β β ε= + + +  (38) 

This introduces an additional error term, ε , which is typically assumed to be normally 
distributed. This addition complicates the method of estimation somewhat, such that the 
method of simulated maximum likelihood is required. However, estimation of such models, 
including correlated error terms in the different preference terms, remains fairly 
straightforward using this method.

31
  

                                                                 
30See Bingley and Walker (1997, 2001), who estimate a three-point labour supply model where at all, some or none of the labour 
supply points there is the additional option of participation in a welfare programme. 
31See for example Van Soest (1995). 
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Some authors have chosen an alternative to the extreme value distribution for the random 
term to be added to measured utilities. This usually complicates estimation and a sign of 
the larger complexity is that in such cases it has been possible to distinguish only three 
discrete hours points. This contrasts with around ten hours points for each individual, 
when using the extreme value distribution.

32
 However, the advantage of the alternative 

approaches is that greater flexibility is allowed in modelling the relationship between the 
labour supply of two members of a couple or between labour supply and welfare 
participation.  

7 .4  Character is t ics  o f  hours  po in ts  

It is often observed that the probability of obtaining a job offer depends on the desired 
number of hours of work.

33
 For example, finding a job of 5 hours per week may be more 

difficult than finding a 40-hour job. As a result some discrete hours points are not well-
represented by the standard labour supply model, which does not allow for demand side 
restrictions. For example, it is often found that labour supply models overpredict part-time 
hours of work. Several methods have been used to overcome this lack of fit to the 
observed labour supply. Some examples of alternative approaches are discussed briefly 
here.  

First, an ad hoc approach of including a penalty parameter for particular hours of work in 
the utility function has been used to reduce the utility at certain hours points, so that the 
probability at these hours points is reduced.

34
 A second approach involves the inclusion of 

the probability of a job offer at the different discrete hours points in the model, which can 
be applied when desired hours of work are known.

35
 Third, a parameter measuring the 

fixed cost of working can be subtracted from net income in a quadratic utility function.
36

 
This approach is similar to the first approach but is expressed in dollars rather than units 
of utility. Thus it is intuitively more appealing, although the costs represented by this 
parameter are both pecuniary and non-pecuniary costs.  

In the fourth approach, the number of job offers in an interval associated with the discrete 
point is directly used to weight the probabilities derived by using the extreme value 
distribution.

37
 A final example is the approach where an adaptation of the multinomial logit 

model allows for captivity at particular discrete hours points.
38

 This increases the 
probability of observing an individual at particular hours points. It allows some hours 
points to have a high probability which does not need to depend on an individual�s 
characteristics; this may, for example, be expected at the standard full-time 40-hours 
point.  

                                                                 
32This remains possible even when labour supply is estimated jointly for couples. 
33Euwals (2001) shows that there is a discrepancy between observed and desired hours of work, which converge only to some extent 
over time. This indicates that some individuals work a suboptimal number of hours, which is however preferred over not working. 
34See for example Van Soest (1995), Callan and Van Soest (1996) or Kalb (2000). 
35See for example, Woittiez (1991) or Euwals and Van Soest (1999). The first uses the hours restrictions as a way of specifying a 
discrete model, that is, the discrete points have positive probability of being in the choice set of the individual. The latter takes desired 
labour supply as given and examines the probability of obtaining job offers at the different hours points separately. 
36See for example, Duncan and Harris (2002). 
37See Aaberge, Dagsvik and Strøm (1995), Aaberge, Colombino and Strøm (1999) and Kornstad and Thoresen (2002, 2003). 
38See Duncan and Harris (2002a). 
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7 .5  A l ternat ive er ror  d is t r ibut ions 

The use of the extreme value distribution contains an assumption that has, in previous 
sections, remained implicit. This form assumes that there is no correlation between the 
error terms of the different hours alternatives. This is usually referred to as the 
�independence of irrelevant alternatives� property, and means that taking out one of the 
choices would not affect the odds ratios of the other choices. For example, suppose that 
individuals can initially choose between 0, 5, 10, 15, ..., 45 and 50 hours of work. Taking 
out the 10 hours choice, it seems unlikely that the relative probabilities of the other 
choices would not change. If 10 hours were no longer an option, it seems likely that 
individuals previously preferring this discrete point would move to the neighbouring labour 
supply points, thus changing the odds between the choices. An obvious, but unpopular 
approach is to extend the extreme value distribution with fixed mean and variance to a 
version where these two parameters are estimated, allowing for correlation between the 
choices.  

A model related to the multinomial logit described in the previous sections is the nested 
multinomial logit. Hagstrom (1996) showed that this specification allows for correlation 
between some of the decisions in the model. In his application, correlation between the 
wife�s labour supply choice and welfare participation within the husband�s labour supply 
choice is allowed. This relaxes the independence assumption between all alternatives in 
the standard multinomial logit model, although some structure is still imposed on the 
covariance matrix. In addition, a distinction is made between choice-specific variables and 
individual-specific variables, imposing more structure on the way characteristics influence 
the different choices by individuals.  

An alternative to the extreme value distribution is a normal distribution, which would lead 
to a probit-type model instead of the logit-type model. However, multivariate probit models 
are difficult to estimate, even for as few as three categories. An additional problem is that 
it is impossible analytically to determine the limits of integration which indicate which 
discrete hours point is preferred. With the recent development of simulation techniques 
combined with more powerful computers, this type of model has become more feasible 
and some researchers have explored this option. Fraker and Moffitt (1988) estimate 
labour supply and participation in two welfare programs for female heads of household in 
a reduced form model. Three levels of labour supply are distinguished. The choice for 
these levels of income depends on the preference parameter for work, which depends on 
an individual�s characteristics, and an unobserved factor which is assumed to be normally 
distributed. No error terms are added directly to the utility function. The model can be 
estimated because the ranges for the preference parameter where each hours point is 
optimal can be written down.

39
 This only works when the budget constraint is not too 

nonconvex, which might otherwise make it impossible for part-time work to be optimal in 
this specification of the model. The problem of finding the limits of integration, which 
determine which discrete labour supply point and whether welfare participation is chosen, 
necessitated the reduced form approach by Fraker and Moffitt. A similar specification 
using a structural approach can be found in Keane and Moffitt (1998), who overcome the 
problems with the limits of integration by using advanced simulation techniques. With the 
simulation approach there is no need to determine analytically the limits of integration. 
However, estimation is cumbersome and time consuming.  

                                                                 
39The calculation of these boundaries is based on two indifference curves. The first obtains bounds such that U(0,y0) = U(20,y20) and 
the second imposes U(20,y20) = U(40,y40). 
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Bingley et al. (1995) use an approach where the difference between utility levels is 
modelled rather that the utility function itself. Under the assumption of normally distributed 
error terms on the utility function, a multinomial probit model can be derived. They 
distinguish three discrete points and model the probability of preferring non-participation 
over part-time employment and the probability of preferring non-participation over full-time 
employment. That is the distribution of the differences in utility between nonparticipation 
and part-time employment and between non-participation and full-time employment are 
modelled. They allow for correlation across the choices. The variance-covariance matrix is 
normalized by assuming that the variance of the difference between the part-time and full-
time error term has a variance of one. When more than three choices are specified, 
simulation techniques would be needed for the estimation.  

Finally, a flexible non-parametric approach was taken by Hoynes (1996) who added 
unobserved heterogeneity to the preference parameters for labour supply of husband and 
wife and for welfare participation. This approach uses a discrete factor representation, 
where sets of M  different pairs of unobserved heterogeneity for the husband�s and wife�s 
preferences for work parameter and for the preference for welfare participation 
( hk wk kθ θ µ, , ) are observed with a probability kπ  where 1k n= ,...,  and 

1
1M

kk
π

=
=∑ . The 

flexibility of this approach is appealing, but it adds a large number of additional 
parameters to be estimated ( 4 1M −  in addition to the number of parameters in a 
multinomial specification). For large M , any correlation between the different error terms 
can be represented by this specification. In addition to this discrete probability distribution 
which is meant to capture the correlation between the different preference terms, normally 
distributed independent error terms are added to the preference for welfare participation 
and the observed hours of work.

40
 Although the intuition behind this model is simple, 

estimation of the model is difficult, particularly for large M .  

8  Tax  re fo rms and  s imu la t ions  
The previous sections have all concentrated on the specification and estimation of the 
discrete hours labour supply model. This section turns to the use of such models in 
behavioural tax microsimulation. Microsimulation models are used to examine the effects 
of hypothetical or actual tax and benefit reforms, using a large cross-sectional data set 
that reflects the degree of heterogeneity found in the population. Policy changes for which 
this can be done are mostly of a financial type, such as a change in the amount of 
benefits, the withdrawal rate, eligibility for benefits, or the range of income where a 
withdrawal rate applies.

41
 Such changes result in a change in net income at each of the 

discrete hours points, which may result in a shift in the optimal choice for an individual.  

First, subsection 1 describes the method of calibration used to place individuals in their 
(pre-reform) observed discretised hours level under the tax system in operation at the time 
of the survey. The generation of a post-reform probability distribution of hours worked for 

                                                                 
40The use of error terms for the hours is an interesting approach to circumvent the need to group observed hours in categories with 
more or less arbitrary boundaries. Input in Hoynes�s model are continuous hours and the difference between these continuous 
observed hours and the discrete labour supply points is accounted for through a multiplicative factor ( )exp ε  where ε  is normally 

distributed with mean 2 / 2σ−  and variance 2σ . Hence zero hours are observed with certainty, but positive hours are observed 
with an error. 
41These contrast with, for example, changes in rules regarding the duration of benefits, residence requirement, willingness to accept 
training, the ability to refuse job offers, and reasons for job loss. These are important design features of a transfer system, but are 
difficult to accommodate in microsimulation. 
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each individual, conditional on them being at their observed pre-reform hours, is also 
described. Secondly, subsection 2 provides a small numerical example of a tax reform, 
using the three hypothetical individuals used in the illustration of maximum likelihood 
estimation.  

8 .1  Ind iv idual  ca l ibra t ion 

Once the parameters of the specified preference functions have been estimated, they can 
be used to simulate the effects on labour supply of policy changes.

42
 A common approach 

is to use a base data set and start from the labour supply observed in this data set to 
obtain a starting point for simulation based on the observed labour supply under a 
particular tax and benefit system. This is achieved by calibration, which means that error 
terms are drawn from the relevant distribution (for example, the extreme value distribution) 
and added to the measured utility in each of the hours points. If this results in the 
observed labour supply being the optimal choice for the individual, the draw is accepted; 
otherwise another set of error terms is drawn and checked. This is repeated until the 
required number of sets of error terms is drawn.  

These sets of error terms that resulted in the observed labour supply are then used to 
compute a distribution of labour supply after a specified reform.

43
 Given the individual�s 

characteristics and draws for the error term, utility at each hours level after the change 
can be determined. In this way, a probability of being in each of the discrete hours points, 
conditional on the pre-reform labour supply, can be derived for each individual.  

8 .2  A numer ica l  example 

This section presents a small tax policy simulation using the example from subsection 6, 
in order to illustrate the procedure described above. The utility for all individuals is the 
estimated utility function 15 41U h= − . +  1 93y. . In the simulation, a linear benefit and tax 
system is introduced. Individuals without income receive 15 units of income and gross 
income (excluding this basic income of 15) is taxed at 20 per cent.

44
 Table 4 presents the 

income and utility at the discrete hours points for all three individuals before and after the 
reform. 

                                                                 
42Creedy et al. (2002) discuss microsimulation modelling in detail. Examples of microsimulation studies are Bingley et al. (1995), 
Scholz (1996), Blundell et al. (2000), Bingley and Walker (2001), Duncan and Harris (2002), Creedy, Kalb and Kew (2003), Gerfin and 
Leu (2003). 
43The more error terms that are drawn, the more accurate is the computed distribution, especially for those points with low probability. 
44This is sometimes described as a basic income - flat tax structure, or a social dividend scheme, or a negative income tax. 
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Table 4 � Utility pre- and post-reform 

h  1y  1U  2y  2U  3y  3U  

Pre-reform 
0  0  0  0  0  0  0  
20 80 -153.8 160 0.6 200 77.8 
40 160 -307.6 320 1.2 400 155.6 
Post-reform 
0  15  28.9  15  28.9  15  28.9  
20 79 -155.7 143 -32.2 175 29.5 
40 143 -340.4 271 -93.4 335 30.2 

From the table it is clear that the introduction of the tax system has made work much less 
attractive. Adding draws from the extreme value distribution to the estimated utility 
function, in order to obtain the U ∗ s, results in different utility levels for each draw. Table 5 
presents, for each individual, ten sets of draws from the extreme value distribution which 
result in the observed hours being the optimal choice for each individual. The 
corresponding utility levels are presented below each value of v , where 0U ∗  indicates 
utility pre-reform.  

Calculation of the utility conditional on this draw, after the reform has been introduced, 
results in utility levels post-reform, indicated by 1U ∗ . From the utility levels in Table 4, it is 
clear that individuals 1 and 2 are most likely not to participate whereas individual 3 has 
utility levels at 0, 20 and 40 hours of work which are relatively close to each other. In 
Table 5 it can be seen that in draw 9 the utility of individual 3 is highest for 20 hours of 
work and in draw 4 it is highest at zero hours of work, whereas in the other draws the 
utility is highest when the person is working full time. For the other two individuals, non-
participation always results in the highest utility. 
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Table 5 � Utility pre-reform and post-reform for ten sets of accepted draws from the 
extreme value distribution 

 Person 1 Person 2 Person 3 
 h = 0  20  40 0 20 40 0  20  40 

1v  -1.070 1.361  0.178 2.997 3.491 0.217 1.176  1.026  2.426 

0U ∗  -1.070 -152.439  -307.422 2.997 4.091 1.417 1.176  78.826  158.026 

*1U  27.880 -154.369  -340.232 31.947 -28.719 -93.153 30.126  30.576  32.576 

2v   -0.805 0.437  -0.012 0.777 0.241 -1.416 0.907  -0.781  5.678 

0U ∗  -0.805 -153.363  -307.612 0.777 0.841 -0.216 0.907  77.019  161.278 

*1U  28.145 -155.293  -340.422 29.727 -31.969 -94.786 29.857  28.769  35.828 

3v   0.233 -0.742  0.037 -0.168 1.285 0.080 0.801  1.232  0.992 

0U ∗  0.233 -154.542  -307.563 -0.168 1.885 1.280 0.801  79.032  156.592 

*1U  29.183 -156.472  -340.373 28.782 -30.925 -93.290 29.751  30.782  31.142 

4v   2.554 2.402  -0.022 -0.638 1.635 0.522 2.069  1.249  0.456 

0U ∗  2.554 -151.398  -307.622 -0.638 2.235 1.722 2.069  79.049  156.056 

*1U  31.504 -153.328  -340.432 28.312 -30.575 -92.848 31.019  30.799  30.606 

5v   -0.019 0.656  1.257 0.712 3.741 2.412 -0.715  -0.400  -0.329 

0U ∗  -0.019 -153.144  -306.343 0.712 4.341 3.612 -0.715  77.400  155.271 

*1U   28.931 -155.074  -339.153 29.662 -28.469 -90.958 28.235  29.150  29.821 

6v   0.062 1.628  -1.269 0.113 2.428 -0.412 -1.243  -0.673  -0.535 

0U ∗  0.062 -152.172  -308.869 0.113 3.028 0.788 -1.243  77.127  155.065 

*1U  29.012 -154.102  -341.679 29.063 -29.782 -93.782 27.707  28.877  29.615 

7v   -0.626 1.079  -0.550 1.196 0.844 -1.501 1.771  1.518  2.311 

0U ∗  -0.626 -152.721  -308.150 1.196 1.444 -0.301 1.771  79.318  157.911 

*1U   28.324 -154.651  -340.960 30.146 -31.366 -94.871 30.721  31.068  32.461 

8v   0.136 1.233  0.174 -0.507 1.855 1.036 -1.346  -0.555  1.123 

0U ∗  0.136 -152.567  -307.426 -0.507 2.455 2.236 -1.346  77.244  156.723 

*1U  29.086 -154.497  -340.236 28.443 -30.355 -92.334 27.604  28.995  31.273 

9v   2.745 -0.530  0.363 0.163 1.044 -0.216 0.633  0.433  -0.695 

0U ∗  2.745 -154.330  -307.237 0.163 1.644 0.984 0.633  78.233  154.905 

*1U  31.695 -156.260  -340.047 29.113 -31.166 -93.586 29.583  29.983  29.455 

10v   1.730 -0.330  -1.190 -1.240 1.479 -0.861 -0.497  0.187  0.229 

0U ∗   1.730 -154.130  -308.790 -1.240 2.079 0.339 -0.497  77.987  155.829 

*1U   30.680 -156.060  -341.600 27.710 -30.731 -94.231 28.453  29.737  30.379 

Note: iv  indicates the error term for draw i, which is added to the calculated utility level  before and after the reform 
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The results from these ten draws can be summarised in a transition table. Table 6 
presents such a matrix for this example. The last column presents the distribution of 
labour supply before the reform and the last row presents this distribution after the reform. 
The distribution before the reform consists of the percentages of individuals observed in 
each of the hours points. The distribution after the reform is constructed from the 
individual probabilities of being at each of the discrete hours points. After the reform an 
individual cannot be assigned to one of the discrete hours points, but has a positive 
probability of being at each of the hours points. However, some of these probabilities may 
be extremely close to zero. All these probabilities for an individual add up to one. The 
numbers inside the matrix are row percentages indicating the probability of individuals 
moving from one discrete hours point to another. Thus, the probability of moving from zero 
hours is nil, the probability of moving from 20 hours to zero hours is 100 per cent and the 
probability of remaining at 40 hours is 80 per cent. There is a probability of 10 per cent of 
moving out of the labour force and the probability of reducing labour supply to 20 hours is 
also 10 per cent. 

Table 6 � Labour supply transition matrix 
 Hours post-reform  
Hours pre-reform  0  20  40 Distribution 
0  100  0  0 33.333 
20  100  0  0 33.333 
40  10  10  80 33.333 
Distribution  70.000  3.333  26.667 100 

The predicted probability of person 3 being in zero hours, 20 hours and 40 hours is 15.4 
per cent, 28.1 per cent and 56.5 per cent respectively.

45
 These are unconditional 

probabilities, but given the large difference between utility at the different hours levels in 
the starting situation and the observed hours being the optimal hours, there should not be 
much difference between the conditional and unconditional probabilities in this case, 
because most draws from the extreme value distribution would be accepted. The 
simulation method using draws from the extreme value distribution provides results that 
are different from these expected probabilities. Table 6 shows that these were 10, 10 and 
80 per cent respectively for 0, 20 and 40 hours of work. However, by increasing the 
number of draws the approximation becomes more accurate.

46
  

Using a similar simulation approach, wage elasticities can be calculated for the three 
individuals in the example. These can be computed with and without calibration. Table 7 
show the results of using the alternative methods for each individual. At the wage levels of 
persons 1 and 3 a small change does not have any effect on the relative utility levels at 
each of the hours points. Therefore no change in labour supply is expected. However, for 
person 2 the utility levels of the three hours points are closer to each other. As a result, a 
small change in the wage level has a large effect on expected labour supply. It is only for 
person 2 that calibration has an effect on the outcomes, because for the other two 
persons nearly all possible draws of the error term result in the correct labour supply 
choice, whereas for person 2 the error term can shift the optimal outcome from one point 
to another. Here it is shown that calibration can make a difference to the result. Using 
calibration in this example, the expected wage elasticity is about twice as large as without 
calibration. 
                                                                 
45These probabilities are calculated by computing 1 1

1 1 2 1 3 1

exp( ) exp(28 9)
1 exp( ) exp( ) exp( ) exp(28 9) exp(29 5) exp(30 2)( ) 0 154U

U U UP h ,

, , ,

.
+ + . + . + .= = = . , and 

similar expressions for the other hours points. 
46For example for 20 draws, the percentages at 0, 20 and 40 hours are 20, 35 and 45 per cent respectively. 
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Table 7 � Expected hours and wage elasticities of labour supply: simulated 
approach 

 Person 1  Person 2  Person 3  
Wage rate  4 8 10 
 Calibrated results 
Expected hours at original wage  0 20 40 
Expected hours after 1% wage increase  0 38.42 40 
Wage elasticity of labour supply  0 92.1 0 
 Non-calibrated results 
Expected hours at original wage  0 27.72 40 
Expected hours after 1% wage increase  0 39.66 40 
Wage elasticity of labour supply  0 43.1 0 

9 Conc lus ions  
This paper has provided an introduction to the basic analytics of discrete hours labour 
supply modelling. Special attention was given to model specification, estimation and 
microsimulation. The paper has given several numerical examples to illustrate the more 
technical exposition of the methodologies used in this research field. It is suggested that 
the approach offers much potential for further interesting and valuable applications and 
extensions.  

Several developments are occurring with regard to the specification of the different 
random error terms in the utility function, which are aimed at increasing the flexibility of the 
labour supply model. Alternative models relax the assumption of particular restrictive 
patterns in the variance-covariance matrices of the error terms in use, such as 
independence between the different labour supply choices. An increase in computing 
power has made some of these extensions feasible, although they are often still quite 
burdensome to carry out.  

One area related to the discussion in this paper, that has received little attention in the 
literature so far, is concerned with the evaluation of simulation outcomes. When using 
discrete choice labour supply models in simulation, the outcomes of analyses are 
probabilistic in nature. Measures of welfare, inequality or poverty which can deal with 
these probabilistic outcomes need further development.

47
  

                                                                 
47Creedy, Kalb and Scutella (2003) propose an approach for calculating inequality and poverty measures in a discrete choice 
microsimulation setting. 
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Append ix :  An  i te ra t i ve  so lu t ion  p rocedure  

Suppose a function ( )F x ,with first derivative ( )f x , needs to be maximised with regard to 
x . To find the maximum, the first order condition ( ) 0f x =  needs to be satisfied. Most 
iterative methods are based on some form of Newton�s method. Consider finding the root 
of the equation ( ) 0f x = , where ( )f x  takes the form shown in Figure 4. Take an 

arbitrary starting point, 0x  and draw the tangent, with slope ( )0f x′ . 

Figure 4 � Newton�s method 

f(x)

0
x1 x0

f�(x0)

f(x0)

x

 

By approximating the function by the tangent, the new value is given by the point of 
intersection of this tangent with the x  axis, at 1x . It can be seen that selecting 1x  as the 

next starting point and drawing the tangent in this new point on f  with slope ( )1f x′  leads 
quickly to the required root. From the triangle in Figure 4, it can be seen that:  

( ) ( )0
0

0 1

f x
f x

x x
′ =

−
 (39) 

Hence, starting from 0I = , the sequence of iterations follows:  

( ) ( )1

1I I I Ix x f x f x
−′ 

 +  
= + −  (40) 

until convergence is reached, when 1I Ix x ε+ − <  with ε  depending on the accuracy 
required. This clearly works best when the function is nice and smooth, and it is necessary 
to check (by picking different starting points) that there are not multiple roots, in which 
case convergence could be at a local rather than a global maximum. In addition, the 
second derivative ( )f x′  needs to be negative in the maximum.  
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In the present context, Newton�s method is easily adapted to deal with a vector of 
parameters. An iterative method involves repeatedly solving the following matrix equation, 
where [ ]Ix  now denotes the vector of parameters in the I th iteration:  

[ ] [ ]

12
[ 1] [ ]

I I

I I

s x x

F Fx x
x x x

−
+    ∂ ∂= + −   ∂ ∂ ∂   l l

 (41) 

and the first and second derivatives are evaluated using the parameters [ ]Iβ . 
Furthermore, it can be shown that the inverse of the matrix of second derivatives at the 
final iteration provides an estimate of the variance-covariance matrix of parameter 
estimates. 
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