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1 Introduction

Modern oligopolistic markets often require building infrastructure with costly transportation on

it. This can vary from costs of postal services when purchasing from online shops to physical

infrastructure required to transport perfectly-divisible goods such as water, chemicals, electricity

and natural gas. Often, in such contexts, payments for goods consist of two parts: a price per

unit and a fee. Transportation costs may differ per supplier and per customer, for example

tariffs for postal services typically distinguish between domestic and foreign destinations. Also,

product modifications in the intermediate goods (B2B) markets to meet specifications set by

heterogeneous customers can be treated as relation-specific transport cost. The importance of

heterogeneous transportation costs in trade is not at par with standard microeconomics, with

the notable exceptions of Hotelling (1929), Salop (1979), or Economides (1986) for markets with

infinitely-many small customers and indivisible goods.

In our study, we analyze competition in both prices and fees in an oligopolistic market with

a finite number of concentrated buyers and suppliers, who are both heterogeneous and exercise

market power, on a given non-expandable infrastructure that transports some perfectly-divisible

good.1 Marginal costs of both production and transportation are constant and relation-specific.

One aim is to analyze how oligopolistic competition with two-part pricing is affected by the

infrastructure. Our results reflect real world patterns in e.g. natural gas production and its

transportation industry, where physical links between buyers and sellers are required, or in

intermediate goods markets, where B2B contracts play the role of links on an infrastructure.

We apply the Core concept to take into account the essence of market power or bargaining

power, including threats to switch orders from one supplier to another.2 We characterize all

stable market outcomes and show that these are bilaterally effi cient.3 Bilateral effi ciency implies

relation-specific marginal-cost pricing in order to realize the maximal bilateral joint welfare.

Stable market outcomes are also Pareto effi cient: the equilibrium quantities are the same as if

1Such markets are referred to as bilateral oligopolies and have been analyzed in e.g. Bloch and Ghosal (1997),
Bloch and Ferrer (2001), or Amir and Bloch (2009).

2Sotomayor (1999, 2002, 2007) implies that the appropriate stability concept is setwise stability, which induces
a subset of the Core. The model in our study is equivalent to a many-to-one assignment game for which both
concepts coincide. Therefore, application of the more familiar Core concept is without loss of generality.

3Bilateral effi ciency means that positive quantities in each pair-wise trade maximize the bilateral joint welfare
of this pair, which consists of the standard consumer and producer surplus, taking all other trades as given.
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all firms were price-takers. Thus, market power under oligopolistic competition in prices and

fees does not necessarily cause distortions as opposed to oligopolistic competition in prices,

where deadweight losses are unavoidable.4

The relation-specific fee distributes the joint welfare between the buyer and supplier. Zero

fees yield maximal consumer surplus and higher fees reflect higher supply-side market power.

In any stable market outcome, suppliers may trade with several buyers. Each buyer, however,

prefers exclusive trade with his most-effi cient (lowest-cost) supplier on the infrastructure in

order to achieve maximal bilateral joint welfare. This exclusive trade implies that our model is

equivalent to a many-to-one assignment game for which the Core has a lattice structure. Hence,

the set of stable fees has a lattice structure and results for indivisible goods are also relevant in

settings with continuous quantities.5 Obviously, exclusive trade makes each buyer vulnerable to

market power exercised by his most-effi cient supplier. Such market power, however, is limited

by each buyer’s threat to trade with his second-effi cient supplier. Therefore, a buyer’s maximal

fee is bounded from above by the difference of the maximal bilateral joint welfare levels that

can be achieved by trading with his most-effi cient supplier and second-effi cient supplier.

In our study, we model extreme market or bargaining power by one side of the market as a

modified negotiation model similar to e.g. section 6.2 in Roth and Sotomayor (1990) or Dam

and Perez-Castrillo (2006). The modified negotiation model features simultaneous price-fee

proposals by agents from one side of the market to all connected agents on the opposite side

of the market and, if accepted, the agents who accept choose quantities. We are especially

interested in the supply side making such proposals and compare the outcomes to those arising

from oligopolistic (differentiated Bertrand) price competition. Suppliers propose marginal-cost

pricing and the maximal stable fees, all relation-specific. Buyers accept the offer from their most-

effi cient supplier and demand the joint-welfare maximizing quantities. Compared to oligopolistic

price competition, competition in both prices and fees improves aggregate joint welfare but

buyers are not better off. When buyers propose, we have the relation-specific marginal-cost

4This result is similar to those reported in e.g. Oi (1971), but different from the results in e.g. Calem and
Spulber (1984), or Harrison and Kline (2001).

5The intuition is that suppliers offer marginal-cost pricing contracts with unrestricted supply, contract prices
equal fees and buyers only need one "indivisible" contract. This insight is similar to the analysis of matching
with competition for contracts between principals and agents in Dam and Perez-Castrillo (2006).
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pricing and no (or zero) fees, which can be seen as the outcome under perfect competition.

We also demonstrate how assignment games can be employed as a tool in competition eco-

nomics to analyze complex and policy-relevant environments, market effi ciency and buyers’

vulnerability to market power in spot-markets on infrastructures that cannot be expanded in

the short run, such as infrastructure for natural gas. To address this we identify the mini-

mal infrastructure that generates maximal aggregate joint welfare among all infrastructures.

This infrastructure only requires that each buyer is linked to his most-effi cient supplier. To

reduce vulnerability of buyers to market power exercised by the supply side, we also identify

the minimal infrastructure that generates the maximal aggregate consumer surplus among all

infrastructures. This requires that each buyer is linked to his most-effi cient and his second-most

effi cient supplier. In such setting, even though each buyer will never utilize one of his two links,

the unused link needs to be present in order to have a credible threat of switching.

Our study is organized as follows. Section 2 outlines the model. Section 3 provides motivating

examples. Oligopolistic competition in prices and fees with costly transportation on a non-

expandable infrastructure is analyzed in Section 4. Section 5 concludes.

2 The model

Consider a market of some good with a finite set S of suppliers, |S| ≥ 1, and a finite set B of

buyers, |B| ≥ 1. We denote an individual supplier as i and an individual buyer as j. The set of

all agents is N = S ∪B, where the sets S and B are disjoint, i.e. S ∩B = ∅.

Bilateral trade requires infrastructure that links supplier i and buyer j. Without such a

link, a pair of buyers and suppliers cannot trade. The link between supplier i and buyer j is

denoted ij ≡ (i, j) ∈ S × B, and often we call ij a pair. The set of all potential links ij is

denoted by gN = {ij|ij ∈ S ×B}, which is an undirected graph. An infrastructure g on N is an

arbitrary set of links g ⊆ gN . The collection of all networks is denoted by GN = {g|g ⊆ gN}. In

what follows, we think of infrastructures as some non-expandable infrastructure inherited from

the past whose building costs are sunk. For explanatory reasons, we assume that links are of

unlimited capacity. Its operating and managing costs are assumed to be included in the variable

transportation costs, which are defined below.
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In this market, we keep track of trade flows between pairs of linked suppliers and buyers. For

a given infrastructure g ⊆ gN and a pair ij ∈ g, the quantity qij ≥ 0 denotes the flow of output

from supplier i to buyer j. For convenience, we set qij = 0 to represent the infeasibility of trade

for any pair ij /∈ g, and we denote the matrix of all trades on g ⊆ gN as Q|g = (qij)ij∈S×B ∈

R|S×B|+ . Supplier i’s total production or quantity sold is qi =
∑

j∈B:ij∈g qij. Production and

shipping products within any pair takes place against constant marginal costs that depend

upon the identity of the suppliers and buyers. Denote cij ≥ 0, ij ∈ gN , as the marginal costs of

both production and transportation from supplier i to buyer j. Suppliers may sell their products

to multiple buyers. Our framework assumes constant marginal costs and that available capacity

is suffi cient. This seems to reflect the current situation in the natural gas market and its

transportation industry, where capacity is built in accordance with contracts that are signed in

advance. Also the postal services market has similar contractual arrangements that remove the

issue of insuffi cient capacity.

Given trades Q|g, we define the endogenous trade network T (Q|g) ∈ g as all links ij ∈ g

with qij > 0, i.e. all links with positive trade. Supplier i’s active customer network consists of

those buyers with whom this supplier trades positive amounts (and with whom he is linked to).6

More specific, for supplier i, Ti (Q|g) ⊆ B denotes supplier i’s set of active buyers j for which

qij > 0 on infrastructure g. By definition, this set may be empty if supplier i has no customers,

a singleton in case he has only one customer or it contains multiple elements in case this supplier

has many customers. Similarly, Tj (Q|g) ⊆ S denotes buyer j’s set of active suppliers i for which

qij > 0 on infrastructure g.

Given trades Q|g, buyer j’s total consumption is qj =
∑

i∈S:ij∈g qij, and this buyer has

the quasi-linear utility function uj (qj) + mj, where the function uj is increasing and strictly

concave in qj and mj is monetary wealth.7 Competition in this market takes place through

relation-specific prices pij ≥ cij and relation-specific fees fij ≥ 0 for all pairs ij ∈ g. Joint

pair-wise welfare within the pair ij ∈ g can be expressed as the sum of i’s producer surplus

6The passive or inactive customer network consists of those buyers that are linked to the supplier, and that
do not purchase the product.

7We consider markets for which the standard demand as a function of the market price satisfies the Law of
Demand, i.e. demand is decreasing in its own price e.g. Mas-Colell, Whinston, and Green (1995). This law holds
whenever the utility function is strictly quasi-concave and, by Crouzeix and Lindberg (1986), this is equivalent
to strict concavity of uj .
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(pij − cij) qij + fij and j’s consumer surplus uj(qij) − pijqij − fij. The maximal joint welfare

for the pair ij ∈ g is given by maxqij≥0 uj(qij) − cijqij. Strict concavity ensures a unique joint

welfare maximum for each possible link. For technical convenience, we assume:

Assumption 1 All cij ≥ 0, ij ∈ gN , are mutually different, and for each buyer j ∈ S, the

function uj is increasing, continuously differentiable and strictly concave in qj, uj (0) = 0, and

u′j (0) > maxi∈S cij.

Continuous differentiability and strict concavity of uj, i.e. u′j decreasing, implies that

u′j (qij) = cij has at most one solution. The assumption on the slope of uj at qj = 0 ensures that,

in case of exclusive trade in the pair ij, such solution exists, buyer j consumes a positive quan-

tity qij and the maximal joint welfare without building costs is positive for each pair ij ∈ gN .

Mutually different cij imply that each buyer can rank welfare maxima over the suppliers in S

without indifferences, which allows to speak of the most-effi cient and the second-effi cient seller

per buyer.

For the initial non-expandable infrastructure g ⊆ gN , the maximal joint welfare associated

with exclusive trade by buyer j with supplier i on link ij ∈ g, denoted wg (ij), is defined as

wg (ij) =

{
maxqij≥0 [uj(qij)− cijqij] , if ij ∈ g,
0, if ij /∈ g.

(1)

Assumption 1 implies that wg (ij) > 0 for all ij ∈ g. Additionally, we assume:

Assumption 2 Given g ⊆ gN , each buyer j ∈ B has at least one link i′j ∈ g such that

wg (i′j) > 0, each supplier i ∈ S has at least one link ij′ ∈ g such that wg (ij′) > 0.

This assumption ensures that each buyer and each seller has an incentive to trade on at least

one link in g ⊆ gN (otherwise we could remove such agent from the model).

Finally, we denote the matrices of all prices and fees on g ⊆ gN as P |g = (pij)ij∈S×B ∈

R|S×B|+ and F |g = (fij)ij∈S×B ∈ R|S×B|, respectively. The latter means we allow that links might

be subsidized. We set pij = u′j (0) > cij and fij = 0 to represent the infeasibility of trade for any

pair ij /∈ g, which makes qij = 0 the optimal trade in ij /∈ g with supplier i’s producer surplus

equal to zero.
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3 Motivating examples

In this section, we discuss competition in both prices and fees. We start with the smallest

market possible on a non-expandable infrastructure, namely the market that consists of a single

supplier that is linked to a single buyer, referred to as supplier 1 and buyer 1. Quantity q11

will be traded against price p11 and fee f11. Additionally, we set the constant marginal costs of

production and transportation to c11 = 1. Buyer 1 has utility function 10
√
q11 − p11q11 − f11.

Maximal joint welfare is 25. It is reached by setting the price p11 equal to marginal costs and

trading q11 equal to 25 units. Such price implies that the producer surplus equals the fee f11,

and the consumer surplus is 25− f11. The fee divides joint maximal welfare within each pair.

Given that both the supplier and the buyer can act strategically in this market, negotiations

will result in marginal-cost pricing p11 = 1 and a fee f11 ∈ [0, 25]. In case of a monopoly, the

theory in Oi (1971) predicts that the supplier will extract the entire consumer surplus by setting

the price p11 = 1 and fee f11 = 25. By reversing roles, in a monopsony the buyer will set the

price p11 = 1 and fee f11 = 0.

Next, we expand the previous situation by introducing supplier 2 who is less effi cient and

has constant marginal costs of production and transportation c21 = 2. Supplier 2’s price and

fee are p21 and f21. The maximal joint welfare supplier 2 and buyer 1 can attain when linked is

12.5. It can be reached by setting the price p21 equal to supplier 2’s marginal costs and trading

q21 equal to 6.25 units. Such price implies that supplier 2’s producer surplus equals his fee f21,

and the consumer surplus is 12.5− f21. Again, the fee redistributes the joint maximal welfare.

Next, we consider the case with both suppliers connected to the buyer. Given that both

suppliers and the buyer can act strategically in this market, supplier 1 must take into account

the presence of supplier 2 in negotiations on prices and fees. By negotiations, we envision some

unmodeled negotiation process that will result in a Core solution. Since supplier 2 and buyer

1 can reach a joint welfare of 12.5 together, supplier 1 cannot extract more welfare from buyer

1 than 25 − 12.5 = 12.5. So, negotiations will result in supplier 1’s price p11 = c11 and fee

f11 ∈ [0, 12.5], and supplier 2’s price p21 = c21 and fee f21 = 0. The theory in Oi (1971)

can be easily extended to competition in prices and fees in this duopoly, if one considers the

following price-fee-setting game: Simultaneously and independently suppliers set their price and
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fee combination, and then the buyer decides how much to demand from each supplier. Then,

the unique equilibrium outcome supports the above prices and fees with f11 = 12.5, and the

buyer purchases twenty-five units from supplier 1 and nothing from supplier 2.8 Hence, this

equilibrium outcome is Pareto effi cient and more favorable for the buyer than the modified

price-fee-setting game in the monopoly situation. This result differs from the standard duopoly

where supplier 1 sets his price equal to supplier 2’s marginal costs to extract consumer surplus

and fees are absent.9 So, the price-fee-setting game on a non-expandable infrastructure also

explains the phenomenon of setting two-part tariffs in practice. By reversing the roles in a

monopsony, the buyer will set p11 = p21 = c11 and f11 = f21 = 0, and supplier 1 will exclusively

trade 25 units with buyer 1. Note that adding a third supplier, called supplier 3, with marginal

costs above c22 = 2 will not change the above market outcomes.

The example shows that from buyer 1’s perspective, the presence of the link to supplier 2

is a safeguard against supplier 1’s market power, yet this link will never be utilized for trade.

The link with the third-effi cient supplier 3 is not needed.10 This is a fundamental tension

between the minimal infrastructure that maximizes social welfare from trade and the minimal

infrastructure that minimizes the supply side’s market power. In this paper, we develop a theory

that characterizes both such infrastructures and show that the former is included in the latter.

4 Competition on non-expandable infrastructures

In this section, we analyze oligopolistic competition in prices and fees on a non-expandable

infrastructure. As the equilibrium concept, we modify the concept of a deviating (or blocking)

coalition to the context of a perfectly divisible good and money on an infrastructure. We

characterize the set of stable market outcomes and analyze strategic negotiation models that

yield each side’s most preferred stable market outcome as the unique equilibrium outcome.11

8Since the buyer decides where to buy, existence of an equilibrium follows from Simon and Zame (1990).
9This equilibrium exists for reasons similar as in the previous footnote.
10This also shows that if other suppliers enter the market and more links are made available for a buyer, then

the buyer cannot be made worse off. In particular, if a less effi cient supplier enters, then the buyer’s payoff is
unchanged. If a more effi cient supplier enters, then the buyer will be better off. This relates to comparative
statics results in e.g. Demange and Gale (1985).
11In essence, this section extends well-known properties of two-sided markets with matching, as surveyed

in e.g. Roth and Sotomayor (1990), to oligopolistic markets with a divisible good and money on an initial
non-expandable infrastructure.
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4.1 Competition in prices and fees

Market outcomes consist of prices, fees, and the quantities traded. A market outcome on a

non-expandable infrastructure g ⊆ gN is defined as the triple (P |g, F |g,Q|g). Therefore, each

market outcome generates an endogenous trade network T (Q|g) ∈ g of positive trades. The

Core concept imposes that any market outcome on a non-expandable infrastructure is stable

if no coalition of suppliers and buyers wants to break away and trade on their own. To put it

differently, all coalitions of suppliers and buyers weakly prefer the market outcome to trading

as a subgroup.

Formally, for coalition C ⊆ N on infrastructure g ⊆ gN , we define buyer j’s quantity

purchased from suppliers in coalition C as

qj (C|g) =
∑

i∈Tj(Q|g)∩C

qij.

For C = N , we write qj (N |g). Any stable market outcome (P ∗|g, F ∗|g,Q∗|g) yields each agent

a surplus. For supplier i ∈ S, the surplus consists of the revenues and fees collected from his

active customer network Ti (Q∗|g):

∑
j∈Ti(Q∗|g)

[
(p∗ij − cij)q∗ij + f ∗ij

]
.

For buyer j ∈ B, the consumer surplus consists of the difference between his utility from

purchasing q∗j (N |g) from his active supplier network Tj (Q|g) and the expenditures and fees

paid to his active suppliers:

uj
(
q∗j (N |g)

)
−

∑
i∈Tj(Q∗|g)

[
p∗ijq

∗
ij + f ∗ij

]
.

Any market outcome yields each coalition in total a welfare that is equal to the sum of its

members’surpluses. Let C = CS ∪ CB be the partition of coalition C ⊆ N into suppliers and

buyers. The market outcome (P ∗|g, F ∗|g,Q∗|g) yields coalition C on infrastructure g ⊆ gN the

joint welfare:

∑
i∈CS

 ∑
j∈Ti(Q∗|g)

[
(p∗ij − cij)q∗ij + f ∗ij

]+
∑
j∈CB

uj (q∗j (N |g)
)
−

∑
i∈Tj(Q∗|g)

[
pijq

∗
ij + f ∗ij

] . (2)
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This is coalition C’s joint welfare in case it stays and trades according to market outcome

(P ∗|g, F ∗|g,Q∗|g). Next, suppose coalition C considers to deviate from the above market out-

come through the alternative market outcome (P |g, F |g,Q|g). The surplus for any supplier

in coalition C consists of the revenues and fees collected from his active customer network re-

stricted to the buyers in coalition C, i.e. for supplier i ∈ CS these are all j ∈ Ti (Q|g) ∩ CB.

Similarly, the consumer surplus of buyer j ∈ CB consists of the difference between his utility

from purchasing qj (C|g) from his active suppliers in C, i.e. all i ∈ Tj (Q|g) ∩ CS, and the

revenues and fees paid to these active suppliers in C. Since market outcome (P |g, F |g,Q|g)

yields each coalition a joint welfare that is equal to the sum of its members’surpluses, deviating

coalition C’s joint welfare is given by:

∑
i∈CS

 ∑
j∈Ti(Q|g)∩CB

[(pij − cij)qij + fij]

+
∑
j∈CB

uj (qj (C|g))−
∑

i∈Tj(Q|g)∩CS

[pijqij + fij]

 . (3)
The main difference between (2) and (3) is that if a coalition stays it will trade internally in C

and externally of its coalition in N , and if it deviates as a deviating coalition it will only trade

internally. Deviating is profitable only if such restriction can be compensated by the surpluses

from internal trades within the coalition. The market outcome is stable if every conceivable

deviation is unprofitable. Given the joint welfare of deviating and non-deviating coalitions, we

are ready to define stability of market outcomes.

Definition 3 Market outcome (P ∗|g, F ∗|g,Q∗|g) on a non-expandable infrastructure g ⊆ gN is

stable if the following condition holds:

For all coalitions C ⊆ N and all (P |g, F |g,Q|g) : (2) ≥ (3) . (4)

Condition (4) expresses the idea that deviating coalitions are unprofitable, and it is a reformu-

lation of Core stability for cooperative games in characteristic function form.

4.2 Characterization of stable market outcomes

The characterization of stable market outcomes requires the definition of a buyer’s most-effi cient

and second-(most-)effi cient supplier on the infrastructure, which will be defined in terms of the

maximal joint welfare within pairs of suppliers and buyers. For g ⊆ gN , we define buyer j’s
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most-effi cient supplier αj (g) ∈ S on the infrastructure g as the supplier on g with whom j can

attain his largest maximal joint welfare:

wg (αj (g) j) ≥ wg (ij) , for all i ∈ S : ij ∈ g. (5)

Since maximal joint welfare is related to the most-effi cient supplier in terms of marginal costs,

we might alternatively define αj (g) as the supplier for whom cαj(g)j = mini∈S:ij∈g cij, but (5)

captures the key insight needed in Section 5. Buyer j’s most-effi cient supplier αj (g) is uniquely

defined if buyer j is linked through g to one or more suppliers. A buyer’s second-effi cient supplier

is defined similarly. For g ⊆ gN , buyer j’s second-effi cient supplier i ∈ S on the infrastructure

g is the supplier βj (g) on g with whom j attains his second maximal joint welfare:

wg
(
βj (g) j

)
≥ wg (ij) , for all i ∈ S\ {αj (g)} : ij ∈ g. (6)

Buyer j’s second-effi cient supplier βj (g) is uniquely defined if buyer j is linked through g to

two or more suppliers in S. Otherwise, and similar as before, we impose the convention that

βj (g) = 0, marginal cost c0j = u′j (0), and the pair 0j has maximal joint welfare wg (0j) = 0.

By definition, either cβj(g)j = mini∈S\{αj(g)}:ij∈g cij or c0j.

We have the following characterization. All proofs are deferred to the appendix.

Proposition 4 Market outcome (P ∗|g, F ∗|g,Q∗|g) on a non-expandable infrastructure g ⊆ gN

is stable if and only if for all ij ∈ g :

p∗αj(g)j = cαj(g)j, p∗ij ≥ cij, if i 6= αj (g) ,

f ∗αj(g)j ∈
[
0, wg(αj (g) j)− wg(βj (g) j)

]
, f ∗ij ≥ 0, if i 6= αj (g) ,

q∗αj(g)j = arg maxqαj(g)j≥0 uj(qαj(g)j)− cαj(g)jqαj(g)j, q∗ij = 0, if i 6= αj (g) .

(7)

For i ∈ S and j ∈ B, supplier i’s active customers network Ti (Q∗|g) = {j ∈ B|i = αj (g)}, and

buyer j’s active supplier network Tj (Q∗|g) = {αj (g)}.

From the proof it follows that multiple prices and fees can occur in stable market outcomes

on any link ij ∈ g that will not be utilized for trade. Suppliers on those links know that even

at their lowest acceptable prices and fees, i.e. p∗ij = cij and f ∗ij = 0, their products are too

expensive from the perspective of buyer j. Therefore, their prices and fees do not matter.
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Proposition 4 implies a very precise prediction of stable market outcomes. Each buyer

exclusively trades with his most-effi cient supplier on the infrastructure against a price that

equals this supplier’s marginal costs and pays a positive fee. This makes buyer j vulnerable

to market power exercised by his most-effi cient supplier. Such market power is limited by the

buyer’s threat to trade with his second-effi cient supplier βj (g) ∈ S ∪ {0} on infrastructure g.

Since supplier βj (g)’s current profit from zero trades with buyer j is zero, buyer j can seduce

supplier βj (g) to trade and guarantee himself a consumer surplus of wg(βj (g) j). This limits

the market power of the most-effi cient supplier αj (g) in extracting consumer surplus from the

pair αj (g) j ∈ g, because supplier αj (g) must make sure that buyer j enjoys at least a consumer

surplus of wg(βj (g) j) through the link βj (g) j. The most-effi cient supplier’s fee is therefore

bounded from above by the difference between wg(αj (g) j) and wg(βj (g) j).

Under marginal cost of production and transportation, a supplier’s producer surplus is equal

to the sum of profits per individual link. Supplier i’s profit that can be attributed to the link

ij ∈ g for buyer j ∈ Ti (Q∗|g) is equal to (p∗ij − cij)q∗ij + f ∗ij = f ∗ij ≥ 0, with weak inequality if

Ti (Q
∗|g) 6= ∅ and equality otherwise. Supplier i’s aggregate profit is equal to the sum of these

fees, i.e.
∑

j∈Ti(Q∗|g) f
∗
ij, and only suppliers who are some buyer’s most-effi cient supplier trade.

Then, it is impossible that trade in a link is subsidized, because f ∗ij < 0 would be an incentive

for supplier i to refuse trade. Supplier i’s active customer network consists of all buyers for

whom this supplier is the most-effi cient supplier.

We investigate the upper bound on the most-effi cient supplier’s fee for several special cases.

In case j is only linked to a single supplier, then βj (g) = 0 and wg(0j) = 0 imply f ∗αj(g)j ≤

wg(αj (g) j). The absence of a second-effi cient supplier imposes no threat to supplier αj (g)

and hence no limitation to its market power. In case j is linked to two or more suppliers,

the difference in marginal costs between the most-effi cient and the second-effi cient supplier

matters. If this difference is relatively large, then wg(βj (g) j) will be relatively small compared

to wg(αj (g) j), and the limiting effect of the threat to switch suppliers will be relatively small.

On the other hand, if both the marginal costs of the most-effi cient and of the second-effi cient

supplier are relatively close to each other, then wg(βj (g) j) will be close to wg(αj (g) j) and

the presence of the second-effi cient supplier has a substantial dampening effect on the most-
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effi cient supplier’s fee. In case marginal costs coincide, which we exclude for convenience, then

wg(βj (g) j) = wg(αj (g) j) and the most-effi cient supplier’s fee must be zero. This implies that

for industries with almost identical costs structures the equilibrium fees will be small.

The lower bound on all most-effi cient suppliers’fees also has an interesting interpretation.

In that case the fee f ∗ij = 0 for all ij ∈ g. It can be interpreted as the generalization of the

competitive equilibrium for markets on a non-expandable infrastructure in the sense that all

suppliers follow marginal-cost pricing at zero fees. Given different constant marginal costs,

the competitive equilibrium implies relation-specific prices, and zero profits for all suppliers,

whether active or not. Obviously, relation-specific prices are Pareto effi cient and a uniform

price per supplier is not.

Proposition 4 implies that the supply side prefers high fees among the set of stable market

outcomes and the demand side prefers low fees from this set. This links our result to previous

results in assignment games with indivisible goods. The reason is that our model is equivalent

to a many-to-one assignment game, a particular case of the many-to-many assignment game in

Sotomayor (1999, 2002, 2007), for which the set of setwise-stable and Core allocations coincide

and both form non-empty complete lattices.

4.3 Strategic negotiations

Next, we analyze a strategic negotiation model in case the supply side holds all market power.

We characterize the unique equilibrium and relate it to the suppliers’most-preferred stable mar-

ket outcome. We also relate this equilibrium to the Bertrand equilibrium of standard oligopolis-

tic price competition.

As an important benchmark model, we first consider standard Bertrand price competition.

In this model, each supplier sets possibly relation-specific prices to all the buyers he is connected

with. Then, each buyer decides how much to purchase from each supplier against the prices

offered to him.12 Formally, each supplier i ∈ S proposes prices (pij)j∈B:ij∈g, and then each buyer

j ∈ B chooses his purchases qij ≥ 0. This model is a well defined game in extensive form

12Endogenous buyers’ purchases can be seen as an endogenous tie-breaking rule. As shown in Simon and
Zame (1990), such an endogenous rule guarantees existence of Bertrand equilibria. For similar reasons, all our
negotiation models have endogenous buyers’purchases.
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for which subgame perfect equilibrium is the appropriate concept, which we call the Bertrand

equilibrium. Dependent upon the infrastructure, buyer j may face none, one or several suppliers.

In case buyer j is connected to a single supplier, then this supplier can exercise monopoly power

on his link with buyer j. To capture this case on a non-expandable infrastructure g ⊆ gN , we

denote buyer j’s set of connected suppliers on g as Sj (g). In case |Sj (g)| = 1, denote pMαj(g)j

as the standard monopoly price that buyer j’s single supplier would charge. We establish the

following equilibrium paths, the supporting strategy profile can be found in the proof.

Proposition 5 Consider the Bertrand price competition model on a non-expandable infrastruc-

ture g ⊆ gN . In any Bertrand equilibrium, the suppliers propose

p̂αj(g)j = pMαj(g)j, if |Sj (g)| = 1,

p̂αj(g)j = pMαj(g)j, p̂βj(g)j ≥ cβj(g)j, p̂ij ≥ cij otherwise, if |Sj (g)| ≥ 2 and pMαj(g)j < cβj(g)j,

p̂αj(g)j = cβj(g)j, p̂βj(g)j = cβj(g)j, p̂ij ≥ cij otherwise, if |Sj (g)| ≥ 2 and pMαj(g)j ≥ cβj(g)j,

and, on the equilibrium path, the buyers purchase

q̂αj(g)j = arg maxqαj(g)j≥0 uj(qαj(g)j)− p̂αj(g)jqαj(g)j, q̂ij = 0 otherwise.

This result is an extension of the standard monopoly model and standard Bertrand oligopoly

with mutually different marginal costs. The multiplicity of Bertrand equilibria is nonessential in

the sense that the multiple equilibrium prices for the third-effi cient supplier, the fourth-effi cient

supplier and so on all result in a unique Bertrand equilibrium outcome: Buyer j ∈ B exclusively

trades an amount of q̂αj(g)j with his most-effi cient supplier αj (g) ∈ S∪{0} against the Bertrand

equilibrium price p̂αj(g)j. In a monopoly or in case the cost advantage of the most-effi cient

supplier is suffi ciently large compared with the second-effi cient supplier, then the most-effi cient

supplier can exercise monopoly power over buyer j and set the classic monopoly price pMαj(g)j.

Otherwise, the presence of at least one competing supplier limits the most-effi cient supplier’s

price to cβj(g)j. In the last case, buyer j’s consumer surplus is equal to wg(βj (g) j), and the

profit for buyer j’s most-effi cient supplier on their link is given by (cβj(g)j − cαj(g)j)q̂αj(g)j. Of

course, the Bertrand equilibrium is ineffi cient.

We now address competition in both prices and fees. Recall our reinterpretation of fees as

the price for a contract that allows buyer j ∈ B to purchase unlimited amounts of the good from
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supplier i ∈ S against price pij. In the negotiation model, we let each supplier propose such

contracts to all the buyers he is connected with. So, each supplier sets possibly relation-specific

prices and fees to all such buyers. Formally, each supplier i ∈ S proposes prices (pij)j∈B:ij∈g

and fees (fij)j∈B:ij∈g, and then each buyer j ∈ B decides how much to trade with whom, where

we interpret qij > 0 as buyer j’s acceptance of supplier i’s contract and qij = 0 as rejectance.

Also this negotiation model is a well defined game in extensive form, and by equilibrium we

mean subgame perfect equilibrium. We establish the following equilibrium paths, the supporting

strategy profile can be found in the proof.

Proposition 6 Let g ⊆ gN be a non-expandable infrastructure. For the unique equilibrium in

the negotiation model where the supply side proposes, and the demand side decides how much to

trade with whom, it holds that suppliers propose

p∗αj(g)j = cαj(g)j, p∗βj(g)j = cβj(g)j, p∗ij ≥ cij, if i 6= αj (g) , βj (g) ,

f ∗αj(g)j = wg(αj (g) j)− wg(βj (g) j), f ∗βj(g)j = 0, f ∗ij ≥ 0, if i 6= αj (g) , βj (g) ,

and, on the equilibrium path, the buyers purchase

q∗αj(g)j = arg maxqαj(g)j≥0 uj(qαj(g)j)− cαj(g)jqαj(g)j, q∗βj(g)j = 0, q∗ij = 0, if i 6= αj (g) .

Again, the multiplicity in prices and fees is inessential. In equilibrium, f ∗βj(N |g)j > 0 cannot hold

under competition, because supplier αj (N |g) is then tempted to charge a fee slightly above

the upper bound wg (αj (N |g) j)− wg
(
βj (N |g) j

)
knowing that buyer j will not switch. Also,

p∗βj(N |g)j > cβj(N |g)j allows additional out-of-equilibrium extraction of consumer surplus.

Proposition 6 implies that competition in prices and fees must emerge endogenously if suppli-

ers have the possibility to set fees. To see this, consider a buyer with several competing suppliers

that limit the most-effi cient supplier’s Bertrand equilibrium price of Proposition 5 to cβj(g)j. Re-

call that buyer j’s consumer surplus is wg(βj (g) j), and most-effi cient supplier αj (g)’s profit of

this link is (cβj(g)j−cαj(g)j)q̂αj(g)j. The sum of this profit plus the positive deadweight loss is equal

to wg(αj (g) j)−wg(βj (g) j), which implies the upper bound on the most-effi cient supplier’s fee

has a nice graphical interpretation. By adopting marginal-cost pricing and setting a positive

fee, the most-effi cient supplier extracts the Bertrand equilibrium profit plus the deadweight loss

through the fee. Hence, each most-effi cient supplier will choose the latter and competition in
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prices and fees must emerge endogenously. Only in case wg(αj (g) j) = wg(βj (g) j), which would

imply equal marginal costs, fees will be zero. It is also possible to show that consumers are

weakly worse off under competition in prices and fees than under Bertrand price competition.13

This generalizes insights of Oi (1971).

Also, Proposition 6 shows that oligopolistic competition in prices and fees is Pareto effi cient,

because all suppliers adopt marginal-cost pricing. Our intuition is that suppliers offer marginal-

cost-pricing contracts with unrestricted supply. Then contract prices equal fees while buyers only

need a single contract, i.e. an "indivisible" item. This interpretation immediately translates into

many-to-one assignment games. A similar result is also obtained in other papers of matching

with competition for contracts modeled as an assignment game. For example, Dam and Perez-

Castrillo (2006) analyze high-effort contracts with endogenous investments between principals

and agents. They also show that stable market outcomes are Pareto effi cient.

Our results differ from the literature on two-part pricing in oligopolistic markets that all have

a complete infrastructure in our terminology. Harrison and Kline (2001) assume homogenous

agents on both sides, constant marginal costs and competition in quantities and fees. They

report marginal-cost pricing and positive homogeneous fees. We attribute their result of positive

fees to quantity competition as opposed to the zero fees under price competition in our setting.

Calem and Spulber (1984) assume two groups of buyers and two suppliers of close, but not

necessarily perfect, substitutes, say pasta and rice. They implicitly impose that consumers from

both buyer groups pay the same price and fee, i.e., uniform prices and fees. Under all these

assumptions, uniform prices exceed marginal costs and the maximal uniform fees are set by the

threat of exclusive trade with the other supplier.14

In some markets, it is the demand side that has most or all market power. For example,

in the airline industry buyers such as Boeing and Airbus appear to be more powerful than

their suppliers of particular parts of the aircraft. Obviously, such markets can be captured by

reversing the roles of the agents in the previous negotiation model.

13We refer to Funaki et al. (2012) for a detailed analysis of consumer surplus.
14Kanemoto (2000) studies the first-order conditions for profit maximization of interior Nash equilibria in

a general model of competition in prices and fees. Translated to our model, he reports marginal-cost pricing
and fees that are related to the buyers’Hicksian expenditure functions. Because the maximal stable fees of
Proposition 6 are boundary solutions, his analysis of interior Nash equilibria does not apply.
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4.4 Buyer protection

In this section, we compare different non-expandable infrastructures and we pose the ques-

tion which of these infrastructures provide maximal consumer protection. Recall that non-

expandable infrastructures have sunk building costs, and we therefore compare different in-

frastructures by their effects on the set of stable market outcomes on wg.

The complete infrastructure g = gN is a special case in which each supplier is connected

to each buyer. It represents the standard notion of competition in a market in which everyone

can trade with everyone else. Under sunk building costs, the complete infrastructure enables the

highest joint welfare from trade, which ismaxg⊆gN
∑

j∈B wg(αj (g) j) = maxg⊆gN
∑

j∈B maxi∈S wg (ij).

So, the entire market achieves a level of maximal joint welfare of
∑

j∈B wg(αj (gN) j). Note that

the minimal non-expandable infrastructure that achieves the same level of welfare only consists of

the links between each buyer and his most-effi cient supplier. We define the latter infrastructure

as the non-expandable infrastructure gE ⊆ gN given by gE = { αj (gN) j | j ∈ B,αj (gN) ∈ S }.

The issue is that on the non-expandable infrastructure gE, buyers are unprotected against

market power, because it lacks any of the links between each buyer and his second-effi cient

supplier. The question to be answered is what non-expandable infrastructure serves buyers best

in protecting their interests? As a criterion, we propose to maximize the worst-case for the buy-

ers’s consumer surpluses over all non-expandable infrastructures, which would be their consumer

surplus with the second-effi cient supplier on such infrastructure. Formally, in non-expandable in-

frastructure g ⊆ gN the buyers can guarantee themselves
∑

j∈B wg(βj (g) j). It is this criterion

that should be maximized to optimally protect buyers. Obviously, the complete infrastruc-

ture guarantees the highest consumer surplus from trade, because maxg⊆gN
∑

j∈B wg(βj (g) j) =∑
j∈B maxi∈S wg

(
βj (gN) j

)
. Note that the minimal non-expandable infrastructure g ⊆ gN that

achieves maximal protection links buyer j to his most-effi cient supplier αj (gN) ∈ S and his

second-effi cient supplier βj (gN) ∈ B. Without the link between αj (gN) and j, both buyer

j’s most-effi cient supplier and his second-effi cient supplier would change, destroying some joint

welfare and some guaranteed consumer surplus. We define the minimal non-expandable in-

frastructure gM ⊆ gN that achieves maximal buyer protection under sunk building costs as

gM =
{
αj (gN) j, βj (gN) j

∣∣ j ∈ B,αj (gN) , βj (gN) ∈ S
}
.
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The set of stable market outcomes under non-expandable infrastructure gM , or any non-

expandable infrastructure g ⊆ gN containing gM , is equal to the set of stable outcomes under

the complete infrastructure gN . This minimal infrastructure is rather sparse. Without any

of the links βj (gN) j, the set of stable market outcomes would enlarge for all non-expandable

infrastructures g ⊆ gN containing gE. Formally, every infrastructure g ⊆ gN such that g ⊇ gE

and g + gM has a larger set of stable market outcomes than the complete infrastructure gN .

The reason is that some of the upper bounds on the most-effi cient suppliers’ fees increase.

Removing any of the links αj (gN) j has two negative effect: both the maximal joint welfare

on the infrastructure and the maximal attainable consumer surplus drop. To summarize this

discussion, we have established:

Proposition 7 Non-expandable infrastructure gM is the minimal non-expandable infrastructure

g ⊆ gN that achieves maximal consumer protection. Moreover, all non-expandable infrastruc-

tures g ⊆ gN that contain gM also achieve this, which includes g = gN .

This result also implies that the set of stable market outcomes for all non-expandable in-

frastructures g ⊆ gN that contain gM is the smallest set of stable market outcomes over all

infrastructures that contain gE, which includes the complete infrastructure gN . For all in-

frastructures that contain gE but only partly overlap with gM , the set of stable market outcomes

is larger.

4.5 Example

In this subsection, we discuss the extension of the motivating example of Section 3 by adding

a second buyer.15 Consider a market with two suppliers of e.g. natural gas, supplier 1 being

effi cient and supplier 2 ineffi cient, and two heterogeneous buyers, buyer 1 having a higher mar-

ginal willingness to pay (say high-income country Germany) than buyer 2 (say middle-income

country Spain). Supplier 1’s constant joint marginal costs of production and transportation

are c11 = c12 = 1, and those for supplier 2 are c21 = c22 = 2. Buyer 1 has utility function

10
√
q11 + q21−p11q11−f11−p21q21−f21, and buyer 2 has 8

√
q12 + q22−p12q12−f12−p22q22−f22.

15For an example of two geographically differentiated markets, which extends the spatial competition model
in Hotelling (1929) to competition in prices and fees, we refer to Appendix.
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Then, wg (11) = 25, wg (21) = 12.5, wg (12) = 16 and wg (22) = 8. In infrastructure A of Figure

1, which is gE, both buyers are only connected to their most-effi cient suppliers on the complete

infrastructure gN , which is supplier 1. Then, 0 ≤ f11 ≤ wg (11) = 25 and 0 ≤ f12 ≤ wg (12) = 16,

and the maximal fees correspond to monopoly market power. In contrast, in infrastructure D

of Figure 1, which is gM , both buyers are connected to their most-effi cient supplier, i.e. 1, and

second-most-effi cient supplier, i.e. 2, on the complete infrastructure gN . Note that for this exam-

ple gM = gN . Then, under D the range of fees is smaller 0 ≤ f11 ≤ wg (11)−wg (21) = 12.5 and

0 ≤ f12 ≤ wg (12)−wg (22) = 8, and the maximal fees are limited due to increased competition.
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Figure 1: The single supplier infrastructure in Case A is gE, Case B and C represent duopoly
markets, and the complete infrastructure of Case D coincides with gM .

For a graphical illustration of fees and consumer surpluses in relation to non-expandable

infrastructures, we can consider all possible infrastructures with two suppliers and two buyers

that contain infrastructure gE. The most relevant infrastructures are given in Figure 1, the

infrastructures gE (Case A) and gM (Case D), and both intermediate infrastructures (B and

C). The graphical representation of the set of stable market outcomes for these non-expandable

infrastructures is given in Figure 2. The largest diamond-shaped area represents the set of

stable market outcomes in case of the single supplier infrastructure gE. The effect of having

access to second-effi cient suppliers, i.e. infrastructure gE augmented with one of the links 21 or

22 or both, are illustrated by the two lines that run through the largest diamond-shape area.

Link 21 is associated with the line whose sum is 12.5, and link 22 with 8. In case both these

links are present, we are in infrastructure gM (Case D) and the smallest diamond-shaped area

corresponds to the smallest set of stable market outcomes on infrastructures that contain gE.

Although the links with supplier 2 (Qatar or Nigeria) will not be utilized, their presence reduces
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the maximal fee f11 charged by supplier 1 (Russia or Algeria) to buyer 1 from 25 to 12.5 and

the maximal fee f12 charged to buyer 2 from 16 to 8.
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Comp.Eq.

f12 + CS2 = 16

f21 + CS1 = 12.5

f22 + CS2 = 8

f11 + CS1 = 25

For all stable market outcomes: supplier 2’s producer surplus is 0
Figure 2: Different areas represent several sets of stable market outcomes of Example, where
buyer i’s consumer surplus is denoted CSi, i = 1, 2. The line f21 + CS1 = 12.5 illustrates the
effect of the link 21, and f22 + CS2 = 8 the link 22.

5 Concluding Remarks

We consider price-fee competition in bilateral oligopolies with perfectly-divisible goods, con-

centrated heterogeneous agents on both sides, non-expandable infrastructures, and constant

marginal costs. We study stable market outcomes that reflect that both sides possess market

power. For every non-expandable infrastructure, stable market outcomes are both bilaterally

and Pareto effi cient because suppliers set unit prices equal to the relation-specific marginal costs.

Relation-specific fees split bilateral joint welfare and fees implicitly reflect the suppliers’market

power. Each buyer exclusively trades with his most-effi cient supplier on the infrastructure and

the maximal relation-specific fee is limited by the buyer’s threat to switch to his second-effi cient

supplier on the infrastructure. Competition in prices and fees necessarily emerges from differ-

entiated Bertrand price competition, as do marginal-cost pricing and maximal fees. Although
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welfare improves compared to Bertrand price competition, the buyers will not be better off.

Our results quantify the countervailing power hypothesis in Galbraith (1952): Buyers have

countervailing power that can restrain the suppliers’market power. In our study, buyers’bar-

gaining position improves if the threat to switch from one supplier to another yields a larger

maximal-attainable consumer surplus. We quantify this insight for any non-expandable in-

frastructure and show that the supply side’s market power is decreasing in the number of

arbitrary links a buyer has. We also characterize the minimal infrastructure that protects buy-

ers the most and identify for each buyer two links that are crucial in protecting him from the

supply side’s market power.

Future research could relax several assumptions made in this study. First of all, every

supplier can produce any quantity demanded and each link can accommodate any demand.

Capacity constraints can be easily included, but as each buyer may need to trade with more

than one supplier, a many-to-many assignment game arises. Another important direction is to

further investigate the application of assignment games to market competition for "indivisible"

contracts , e.g. marginal-cost-pricing contracts with unlimited supply analyzed in this study or

the high-effort contracts between principals and agents in Dam and Perez-Castrillo (2006).
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6 Appendix:

Proof of Proposition 4.

For any coalition C, cancelling common terms in (2)-(4) implies

∑
j∈CB

uj (q∗j (N |g)
)
−

∑
i∈Tj(Q|g)

cijq
∗
ij

 ≥ max
Q|g

∑
j∈CB

uj (qj (C|g))−
∑

i∈Tj(Q|g)∩C

cijqij

 , (8)

i.e. for coalition C the sum of joint welfare in the stable market outcome is at least the maximal

sum of joint welfare in the coalition C. Since all cij are mutually different, the maximum is

achieved only if each buyer j ∈ CB exclusively deals with his most-effi cient supplier i ∈ CS on

g, which we denote αj (C|g) in this proof including C = N for which we already defined αj (g).

Combined with (1) for ij ∈ g, the right-hand side of (8) is equal to

max
Q|g

∑
j∈CB

[
uj(qαj(C|g)j)− cαj(C|g)jqαj(C|g)j

]
=
∑
j∈CB

wg (αj (C|g) j) .

So, for each coalition C ⊆ N , (8) is equivalent to

∑
j∈CB

uj (q∗j (N |g)
)
−

∑
i∈Tj(Q|g)

cijq
∗
ij

 ≥ ∑
j∈CB

wg (αj (C|g) j) ,

and for C = N , (8) is equivalent to

∑
j∈B

uj (q∗j (N |g)
)
−

∑
i∈Tj(Q|g)

cijq
∗
ij

 =
∑
j∈B

wg (αj (N |g) j) .
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The previous arguments also imply that the latter equality holds at C = N if and only if

∑
j∈B

uj (q∗j (N |g)
)
−

∑
i∈Tj(Q|g)

cijq
∗
ij

 = max
Q|g

∑
j∈B

uj (qj (N |g))−
∑

i∈Tj(Q|g)

cijqij

 .
Hence, for every buyer j ∈ B it must hold that q∗αj(N |g)j maximizes uj(qαj(g)j)−cαj(g)jqαj(g)j, and

q∗ij = 0 for all i ∈ S\ {αj (N |g)}. By assumption 1, q∗αj(N |g)j > 0. Then also, q∗j (N |g) = q∗αj(N |g)j,

buyer i’s set of active suppliers is Tj (Q|g) = {αj (N |g)}, and uj
(
q∗j (N |g)

)
−

∑
i∈Tj(Q|g)

cijq
∗
ij =

wg (αj (N |g) j). This establishes Q∗|g.

Next, since trade takes place against prices P ∗|g, Q∗|g can be attained through such trade

if and only if p∗αj(N |g)j = cαj(N |g)j and p
∗
ij ≥ cij for all i ∈ S\ {αj (N |g)}. The last condition in

Definition 3 sets p∗ij = cij for every link with q∗ij = 0, and this is the case for every i 6= αj (N |g).

Since all cij are mutually different, p∗ij > cαj(N |g)j for all i ∈ S\ {αj (N |g)}.

Finally, we derive F ∗|g. Given Q∗|g, consider supplier i and his active customer network

Ti (Q
∗|g), that is {i} ∪ Ti (Q∗|g). Suppose for ̂ ∈ Ti (Q

∗|g), that supplier i and part of his

trade network want to break away by excluding trade with buyer ̂, that is consider coalition

C = {i}∪Ti (Q∗|g) \ {̂}. Given P ∗|g, supplier i’s producer surplus is equal to f ∗î+
∑

j∈Ti(Q∗|g)\{̂}
f ∗ij.

This implies that (2) is equivalent to

f ∗î +
∑

j∈Ti(Q∗|g)\{̂}

[
uj
(
q∗ij
)
− cijq∗ij

]
= f ∗î +

∑
j∈Ti(Q∗|g)\{̂}

wg (ij) .

Hence, (4) imposes

f ∗î +
∑

j∈Ti(Q∗|g)\{̂}

wg (ij) ≥
∑

j∈Ti(Q∗|g)\{̂}

wg (ij) ⇐⇒ f ∗î ≥ 0.

Given Q∗|g, consider buyer ̂ ∈ B, his second-effi cient supplier β ̂ (N |g), and this supplier’s

active customer network Tβ̂(N |g) (Q∗|g), that is C =
{
̂, β ̂ (N |g)

}
∪ Tβ̂(N |g) (Q∗|g). Then, (4)

imposes

û(q
∗
α̂(N |g)̂)− cα̂(N |g)̂q

∗
î − f ∗α̂(N |g)̂ +

∑
j∈Tβ̂(N|g)(Q

∗|g)

wg (ij)

≥ wg
(
β ̂ (N |g) ̂

)
+

∑
j∈Tβ̂(N|g)(Q

∗|g)

wg (ij) ,

Since û(q∗α̂(N |g)̂)− cα̂(N |g)̂q
∗
î = wg (α̂ (N |g) ̂), this condition is equivalent to

f ∗α̂(N |g)̂ ≤ wg (α̂ (N |g) ̂)− wg
(
β ̂ (N |g) ̂

)
≤ wg (α̂ (N |g) ̂) .
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The prices p∗ij ≥ cij and the fees f ∗ij ≥ 0 for every link with q∗ij = 0 are unrestricted, and this is

the case for every i 6= αj (N |g).

Proof of Proposition 5.

Given the history of proposed prices P |g, we define for each connected buyer j ∈ B the lowest

proposed price as p̄ı̂j (P |g) = mini∈S:ij∈g {pij}, where ı̂ denotes an arbitrary supplier who set

such lowest price (which might be αj (g)). Given history P |g, buyer j ∈ B purchases

qαj(g)j (P |g) =

{
arg maxqαj(g)j≥0 uj(qαj(g)j)− pαj(g)jqαj(g)j, if pαj(g)j ≤ p̄ı̂j (P |g) ,

0, otherwise,

qı̂j (P |g) =

{
arg maxqı̂j≥0 uj(qı̂j)− pı̂jqı̂j, if pαj(g)j > p̄ı̂j (P |g) ,
0, otherwise,

qij (P |g) = 0, i 6= αj (g) , ı̂.

On the equilibrium path, ı̂ = αj (g) or βj (g), buyer j purchases qαj(g)j(P̂ |g) = q̂αj(g)j > 0

and qβj(g)j (P |g) = 0, which is in accordance to the endogenous tie-breaking rule in Simon

and Zame (1990). Verification that the suppliers’strategies and the buyers’strategies form a

subgame perfect equilibrium strategy profile goes as follows: On and off the equilibrium path,

buyer j always purchases the optimal quantity from a supplier that offers the lowest price, so

his strategy is optimal for every history. If p̂αj(g)j = pMαj(g)j, then supplier αj (g)’s producer

surplus is maximal and this supplier does not want to deviate. If p̂αj(g)j = cβj(g)j, then the

deviation pαj(g)j > cβj(g)j implies that buyer j will exclusively trade with βj (g) against the price

p̂βj(g)j = cβj(g)j, and supplier αj (g) looses buyer j as his customer which reduces his positive

equilibrium profits on the link αj (g) j to zero. Also, the lower deviating price pαj(g)j < p̂αj(g)j

reduces supplier αj (g)’s profits. Hence, p̂αj(g)j is optimal given the other strategies. Since the

other suppliers do not trade whether or not they deviate by setting other prices, they do not

have any profitable deviating price. This establishes equilibrium.

There do not exist other Bertrand equilibrium outcomes. To see this, in any Bertrand

equilibrium buyers always purchase from suppliers who set the lowest price. For |Sj (g)| = 1,

αj (g) = 1 and standard monopoly pricing implies p̂1j = pM1j is the unique price. Next, consider

|Sj (g)| = 2. Renumber the suppliers in S such that Sj (g) = {1, 2}, αj (g) = 1 and βj (g) = 2.

If pM1j < c2j, it is optimal for supplier 1 to act as a standard monopolist, and supplier 2 would

make negative profits by undercutting this price. Then, only p̂1j = pM1j and any p̂2j ≥ c2j can
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be equilibrium prices. Next, pM1j ≥ c2j. Then, modification of the arguments for the first-price

auction with mutually different valuations in Simon and Zame (1990), establishes that in any

Bertrand equilibrium we must have p̂1j = p̂2j = c2j and buyer j exclusively trades with supplier

1, i.e. q1j(P̂ |g) = q̂1j and q2j(P̂ |g) = 0. Finally, for |Sj (g)| ≥ 3, it is straightforward to show

that both p̂αj(g)j = p̂βj(g)j ≤ mini∈S\{αj(g),βj(g)}:ij∈g cij, and then the arguments for |Sj (g)| = 2

apply to suppliers αj (g) and βj (g). The other pij ≥ cij are unrestricted.

Proof of Proposition 6.

Given history h of proposed prices P |g and fees F |g, for each connected buyer j ∈ B define the

proposed pair of price and fee from which this buyer can achieve the largest consumer surplus as

p̄ı̂j (P |g) and f̄ı̂j (P |g), where ı̂ denotes an arbitrary supplier who sets such combination (which

might be αj (g)). Given history h, buyer j ∈ B exclusively trades with supplier αj (g) the

quantity qαj(g)j (h) = arg maxqαj(g)j≥0 uj(qαj(g)j)− pαj(g)jqαj(g)j − fαj(g)j if

max
qαj(g)j≥0

uj(qαj(g)j)− pαj(g)jqαj(g)j − fαj(g)j ≥ max
i∈S:ij∈g

max
qij≥0

[uj(qij)− pijqij − fij] ,

and qαj(g)j (P |g) = 0 otherwise. Buyer j exclusively purchases from supplier ı̂ the quantity

qı̂j (h) = arg maxqı̂j≥0 uj(qı̂j)− pı̂jqı̂j if

max
qαj(g)j≥0

uj(qαj(g)j)− pαj(g)jqαj(g)j − fαj(g)j < max
i∈S:ij∈g

max
qij≥0

[uj(qij)− pijqij − fij] ,

and qı̂j (P |g) = 0 otherwise. Buyer j always purchase qij (P |g) = 0 from the other suppliers.

On the equilibrium path, buyer j purchases q∗αj(g)j ≡ qαj(g)j(h
∗), where history h∗ denotes the

proposed P ∗|g and F ∗|g. This is in accordance to the endogenous tie-breaking rule in Simon

and Zame (1990). Verification that the suppliers’strategies and the buyers’strategies form a

subgame perfect equilibrium strategy profile is as follows: For any history h on and off the

equilibrium path, buyer j always purchases the optimal quantity from one of the suppliers from

which he achieves the maximal consumer surplus dependent upon the history h, so his strategy

is optimal. Since p∗αj(g)j = cαj(g)j and f
∗
αj(g)j

= wg(αj (g) j) − wg(βj (g) j), then any deviation

pαj(g)j ≥ cαj(g)j and fαj(g)j ≥ f ∗αj(g)j with at least one strict inequality implies that buyer j will

exclusively trade with βj (g) against p∗βj(g)j = cβj(g)j and f
∗
βj(g)j

= 0, and supplier αj (g) looses

buyer j as his customer which reduces his equilibrium profit on the link αj (g) j from f ∗αj(g)j > 0
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to zero. Also, the lower deviating fee fαj(g)j < f ∗αj(g)j reduces supplier αj (g)’s profits. Hence,

p∗αj(g)j and f
∗
αj(g)j

are optimal given the other strategies. Since the other suppliers do not trade

independent of the prices and fees they set, there does not exist any profitable deviating price

and fee combination for any of them. This establishes equilibrium.

There do not exist other equilibrium outcomes. To see this, in any equilibrium buyers always

purchase from suppliers who set a price and fee combination from which buyers can achieve a

maximal consumer surplus. For |Sj (g)| = 1, we renumber such that Sj (g) = {1}. Since

βj (g) = 0 and wg (0j) = 0, we have that p∗1j = c1j and f ∗1j = wg (1j) are optimal by the results

in Oi (1971). Next, consider |Sj (g)| = 2. Renumber the suppliers in S such that Sj (g) = {1, 2},

αj (g) = 1 and βj (g) = 2. There cannot exist an equilibrium in which buyer j exclusively trades

with supplier 1 against p∗1j > c1j and

f ∗1j = max
q1j≥0

[
uj(q1j)− p∗1jq1j

]
− wg (2j) < wg (1j)− wg (2j) ,

because then supplier 1 can increase his profits arbitrarily close to wg (1j) − wg (2j) by the

deviation p1j = c1j and f1j = wg (1j) − wg (2j) − ε, for suffi ciently small ε > 0. So, in any

equilibrium, supplier 1 can secure wg (1j) − wg (2j). Also, an equilibrium with p∗1j > c1j and

f ∗1j > maxq1j≥0
[
uj(q1j)− p∗1jq1j

]
−wg (2j) is impossible. So, p∗1j = c1j in any equilibrium. Next,

there cannot exist an equilibrium with p∗2j > c2j and f ∗2j = 0 either. To see this, first note that

then buyer j would exclusively trade with supplier 1 against p∗1j = c1j and

f ∗1j = wg (1j)−max
q2j≥0

[
uj(q2j)− p∗2jq2j

]
> wg (1j)− wg (2j) .

Exclusive trade is dictated by the insights in Simon and Zame (1990). Supplier 2 will have a

profit of zero, and could obtain a positive profit by setting p2j = c2j and f2j = 1
2

(
f ∗1j − [wg (1j)− wg (2j)]

)
>

0, a contradiction. Finally, there cannot exist an equilibrium with p∗2j = c2j and f ∗2j > 0, because

then buyer j would exclusively trade with supplier 1 at the fee f ∗1j = wg (1j) − wg (2j) + f ∗2j

(exclusive trade again by Simon and Zame (1990)). Supplier 2 will have a profit of zero, and

could obtain a positive profit by decreasing his fee to fβj(g)j = 1
2
f ∗βj(g)j > 0. So, in any equi-

librium p∗2j = c2j and f ∗2j = 0. Since also p∗1j = c1j is necessary, and supplier 1 can secure a

profit of wg (1j)−wg (2j), the unique equilibrium fee must be f ∗1j = wg (1j)−wg (2j). By Simon

and Zame (1990), this can only be supported by exclusive trade between buyer j and supplier
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1. Finally, for |Sj (g)| ≥ 3, only suppliers αj (g) and βj (g) matter in the argument, the other

suppliers’pij ≥ cij and fij ≥ 0 are unrestricted.

Example of Two Geographically Differentiated Markets.

In this example, we consider two geographically differentiated markets, such as Russia or Algeria

supplying gas and oil to the EU; and countries in the Middle East or Brunei supplying Asian

countries. Supplier 1 and buyer 1 are situated close to each other, i.e. belong to the same

geographical market, while supplier 2 and buyer 2 are located in the second market, which is

distant from the market 1. For each supplier, the marginal cost of production and transportation

for the home market is 1 and for the distant market equal to 2, i.e. c11 = c22 = 1 and

c21 = c12 = 2. Buyers’utility functions are the same as in Example of Section 4.5. In this

setting we have wg (11) = 25, wg (21) = 12.5, wg (12) = 8 and wg (22) = 16. In infrastructure

E of Figure 3, which is gE, both buyers are only connected to their most-effi cient suppliers on

the complete infrastructure gN , which is supplier i = j for buyer j = 1, 2. In contrast, for

infrastructure D of Figure 3, which is gM , both buyers are connected to their most-effi cient

supplier, i.e. i = j, and second-most-effi cient supplier, i.e. i 6= j, on the complete infrastructure

gN . Again, gM = gN . We might reinterpret this market as a discrete version of the spatial

competition model in Hotelling (1929) with two buyers (where buyer 1 lives in the proximity

of supplier 1 and buyer 2 lives in the proximity of supplier 2) and the differences in marginal

costs, i.e., c21− c11 and c12− c22, represent buyers travel costs to visit the supplier outside their

proximity.

Each supplier has a home market and may compete on his competitor’s home market as well.

Now, each buyer’s most-effi cient and second-effi cient suppliers switch when compared to Exam-

ple in Section 4.5. As a consequence, both suppliers are active only in their regional markets and

relation-specific marginal-cost pricing with fees prevails. In particular, in infrastructure E of

Figure 3 both buyers are connected only to their most-effi cient suppliers, which are the suppliers

on the home market. In that case, maximal fees are the highest on all infrastructures containing

gE and the ranges of fees are given by 0 ≤ f11 ≤ wg (11) = 25 and 0 ≤ f22 ≤ wg (22) = 16.

On the contrary, in infrastructure D, where both buyers are connected to their most-effi cient

and second-effi cient supplier, maximal fees are limited to 0 ≤ f11 ≤ wg (11) − wg (21) = 12.5
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Figure 3: For two geographically differentiated markets, the single supplier infrastructure in
Case E is gE, and the complete infrastructure of Case D coincides with gM .

and 0 ≤ f22 ≤ wg (22)−wg (12) = 8. Again, buyer j’s best protection against excessive fees set

by his home (most-effi cient) supplier i = j is to have also access to his second-effi cient supplier

i 6= i, who is situated in a different geographical market. The conclusion of our model is similar

to Hotelling (1929), where an increase in travel costs allows local suppliers to charge higher

prices and, hence, extract a higher fraction of consumer surplus from local buyers. A similar

conclusion holds in our modified price-fee-setting game: a larger difference in marginal costs

would imply lower maximal joint welfare wg (12) and wg (21) and, hence, a smaller reduction in

fees. Finally, not all the links of infrastructure D are utilized for trade, i.e. links 12 and 21 are

not utilized, but their presence prevents suppliers from abuse of market power through setting

excessive fees.
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