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Abstract

We present a new model to decompose total daily return volatility into a filtered

(high-frequency based) open-to-close volatility and a time-varying scaling factor. We

use score-driven dynamics based on fat-tailed distributions to limit the impact of in-

cidental large observations. Applying our new model to 100 stocks of the S&P 500

during the period 2001-2014 and evaluating (in-sample and out-of-sample) in terms of

Value-at-Risk and Expected Shortfall, we find our model outperforms alternatives like

the HEAVY model that uses close-to-close returns and realized variances, and models

treating close-to-open en open-to-close returns as separate processes. Results also in-

dicate that the ratio between total and open-to-close volatility changes substantially

through time, especially for financial stocks.

Keywords: overnight volatility, realized variance; F distribution; score-driven dy-

namics

Classification codes: C32, C58.

1 Introduction

Volatility is a key ingredient for volatility traders, (see for example Sinclair, 2013, w.r.t. volatil-

ity strategies), risk managers, and asset managers. Most of the econometric models in use

are in some way based on the popular GARCH model of Bollerslev (1986) or the Stochastic

∗ Corresponding author : Anne Opschoor, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV,
Amsterdam, The Netherlands. E-mail : a.opschoor@vu.nl. Phone: +31(0)20-5982663.
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Volatility (SV) model of Taylor (2008), including extensions such as the threshold GARCH

model of Glosten et al. (1993), among others.

Due to the availability of High-Frequency (HF) data, volatility measurement, modeling

and forecasting has improved significantly (Andersen et al., 2003). The literature on (daily)

volatility modeling moved from modeling the distribution of daily close-to-close returns

(with volatility treated as latent) to model directly the ex-post realized intraday variance

(Engle and Gallo, 2006; Corsi, 2009) or a hybrid version that uses both returns and realized

variances (Shephard and Sheppard, 2010).

Although HF data improves the measurement and forecasts of volatility, typically this

data is only available for individual stocks during trading hours. The literature has so far

typically overcome this issue by simply discarding overnight volatility and hence consid-

ering realised measures only and/or using open-to-close returns (Engle and Gallo, 2006;

Corsi, 2009; Shephard and Sheppard, 2010; Noureldin et al., 2012, among others). However,

investors also receive relevant information during off-trading hours, including earnings and

merger announcements. Moreover, due to the worldwide connectedness of financial mar-

kets, overnight information in one market may be important for the overall volatility of

stock returns in another market in another time-zone (Taylor, 2007; Todorova and Souček,

2014).

An alternative way of dealing with overnight volatility is to scale up the realized vari-

ance measured during trading hours by a fixed constant (Hansen and Lunde, 2005; Koop-

man et al., 2005; Ahoniemi et al., 2015). Ahoniemi and Lanne (2013) compare several of

these scaled volatilities and conclude that the optimal scaling method differs, depending on

whether one considers individual stocks or stock indices.

This paper develops a new score-driven model for modeling daily close-co-close volatility.

We take into account the availability of high-frequency data during the day. We deviate from

earlier literature by scaling the filtered volatility instead of the realized variance. Moreover,

we allow the scaling factor to vary over time, using a time-varying ratio between the total

and open-to-close volatility as proposed by Hansen and Lunde (2005). Scaling the filtered
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volatility instead of the realized variance can directly result in different total daily volatility

measurements, since realized variances are typically fat-tailed (see for example Opschoor

et al., 2018). Considering a time-varying ratio of volatilities is also in line with the work

of Linton and Wu (2017). They show that daily and overnight volatility are distinct pro-

cesses with their own dynamics. As a result, the ratio between total volatility and daytime

(open-to-close) volatility typically varies through time. For example, during crises periods,

relatively more information might be released outside trading hours than during calm peri-

ods, or vice versa. This implies that assuming a constant ratio between daytime and total

volatility might lead to biased predictions of daily volatility levels and risk measures.

The time-variation in volatility levels and the ratio of daytime to total volatility in

our model is captured by the Generalized Autoregressive Score (GAS) framework of Creal

et al. (2013). Score-driven dynamics have been applied successfully in a number of other

settings, including volatility and location modeling (Harvey, 2013; Harvey and Luati, 2014)

and systemic risk modeling (Lucas et al., 2014; Oh and Patton, 2018). The availability of a

closed-form expression for the likelihood function and the optimality of score-driven steps

(see Blasques et al., 2015) make the GAS framework attractive for modeling time-varying

parameters. Moreover, parameter estimation is straightforward using standard maximum

likelihood. Our score-driven (GAS) model has two key features. First, we account for fat-

tails of the realized variance by assuming an F distribution for the daytime (open-to-close)

volatility. The (matrix) F distribution was recently introduced in financial econometrics by

Opschoor et al. (2018). Score-driven dynamics for the F distribution result in an intuitive

propagation mechanism for the daytime volatility: large values of the realized variance

are downweighted, hence such values do not disrupt the filtered volatility path. Second, we

model the ratio between the total volatility and the filtered daytime volatility using the same

score-driven dynamics and a fat-tailed distribution. The resulting propagation dynamics for

the ratio are again highly intuitive: large ratios of total daily squared returns over filtered

close-to-close volatilities are downweighted.

In our empirical application, we use the new model to describe daily returns and realized

3



variances of 100 equities from the S&P 500 index over the period January 2001 to December

2014. We show in-sample that the ratio of total and daytime volatility indeed varies over

time. This is particularly the case for financial stocks. For financial stocks we find relatively

(small) large ratios (before) during the Global Financial crisis and the sovereign debt crisis.

Hence relatively more information accumulates outside regular trading hours during these

volatile periods, implying a larger total-to-daytime volatility ratio. For many stocks, our

model improves significantly upon the HEAVY model of Shephard and Sheppard (2010) or

a score-driven model with a fixed ratio. We also confirm Linton and Wu (2017) by showing

that modeling the overnight volatility separately leads to very low values of the degrees

of freedom parameter, with subsequent potential problems for the existence of sufficient

moments (see also Berkman et al., 2012). It indicates that overnight returns are considerably

heavy-tailed and exhibit rather different statistical properties than open-to-close returns.

Out-of-sample, we compare one-step-ahead forecasts of the 97.5% and 95% Expected

Shortfall and the 99% and 95% Value-at-Risk for our new model and its competitors.

We apply the recently developed unconditional backtest of Du and Escanciano (2016) to

backtest the Expected Shortfall predictions, while the VaR has been backtested by the

(un)conditional coverage test of Christoffersen (1998). The results indicate that overall our

new proposed model produces the best VaR and ES predictions. Especially the approach

of modeling daily and overnight volatility as separate processes performs rather poor. This

contrasts with the finding of Ahoniemi et al. (2015), although the difference could be ex-

plained by the fact that we use individual stock returns while Ahoniemi et al. (2015) focus

on stock indices.

The rest of this paper is set up as follows. In Section 2, we introduce the new score-

driven (GAS) models for the dynamics of the volatility of daily stock returns. In Section 3,

we briefly review the computation of the Value-at-Risk and Expected Shortfall, as well as

recently developed backtesting procedures. Section 4 provides an overview of the data, our

in-sample, and out-of-sample results for the empirical application to 100 stocks from the

S&P500. Section 5 concludes.
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2 The modeling framework

Let rt ∈ R be the total daily close-to-close (ctc) return of a financial asset on day t, t =

1, . . . , T , and ht = Var(rt|Ft−1) its (unobserved) conditional close-to-close variance where

Ft−1 is the information set containing all information up to and including time t− 1. The

quantities rt and ht can be decomposed into

rt = ro,t + rd,t, (1)

ht = ho,t + hd,t + 2 Cov(ro,t, rd,t) = ho,t + hd,t + 2ρo,d,t
√
ho,t
√
hd,t, (2)

where ro,t (ho,t) and rd,t (hd,t) denote the overnight close-to-open and daytime open-to-close

return (volatility), respectively, and ρo,d,t denotes the correlation between the overnight and

daytime return at time t.

Due to the availability during trading-hours of high-frequency data, we can obtain ac-

curate measurements of the daytime variance hd,t by for example computing the realized

variance RVt (see Andersen and Bollerslev, 1998), defined as the sum of, e.g., 5-minute

intra-day returns over the course of the trading day (9:30 - 16:00). Typically, there are no

high frequency data outside trading hours for individual stocks, such that an equivalent

accurate measure for ho,t is lacking.

Our object of interest in this paper is to model the forecasting distribution of rt (and

hence to model the dynamics of ht) for risk-management purposes, such as predicting the

Value-at-Risk (VaR) or Expected Shortfall (ES). This can be achieved in two ways. First,

one can model ht directly based on a time series model that possibly includes (a scaled

version of) RVt. Second, one can model the daytime and overnight variances (and their

covariance) separately. Ahoniemi et al. (2015) compare both ways in the context of equity

indexes. They scale RVt to a daily close-to-close variance level RV sc,1
t using the method of

Hansen and Lunde (2005). This method minimizes the variance of a weighted sum of the
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overnight squared returns and the realized variances,

RV sc,1
t = ω1r

2
o,t + ω2RVt, (3)

subject to the constraint ω1µ1 + ω2µ2 = µ0, with µ1 = E[r2o,t], µ2 = E[RVt] and µ0 =

E[RVt + r2o,t]. This scaled realized variance RV sc,1
t is then used into a time series model as

a second step.

For the new model put forward in our current paper, it is useful to recall a second scaling

method put forward by Hansen and Lunde (2005):

RV sc,2
t = cRVt =

∑T
t=1 r

2
t∑T

t=1RVt
RVt, (4)

which basically scales the RVt by the ratio of close-to-close volatility to the open-to-close

volatility. Ahoniemi and Lanne (2013) compare the above two scaling methods and several

other methods. They conclude that for individual stocks it is better to drop the overnight

information, while for the index, the scaling method of Hansen and Lunde (2005) based on

optimal weights performs superior.

This paper deviates from previous approaches in two ways. First, we focus on scaling

a filtered volatility instead of RVt, where the filter is based on score-driven dynamics that

account for the heavy-tailed nature of the realized variances. Fat-tailedness can result in

the scaling factor c in (4) becomeing ill-behaved, for instance, if fourth order moments of

overnight returns fail to exist. The latter is a real concern, as overnight returns for individual

stocks are considerably fat-tailed. Our method is robust against such features by assuming

fat-tailed distributions for both the returns and the realized variances. Second, we note

that Linton and Wu (2017), among others, show that the daytime and overnight volatility

processes have their own dynamics and that, hence, the ratio c might not be constant over

time. We accommodate this second point by making the ratio c time-varying using the

score-driven (GAS) dynamics of Creal et al. (2013); see also Harvey (2013).
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Our new model reads

RVt = hd,tud,t, ud,t ∼ F (1, ν1, ν2), (5)

rt = µ+
√
htεt, εt ∼ t(0, 1, ν), ht = ct hd,t, (6)

hd,t+1 = ω1 + α1 sh,t + β1 hd,t, (7)

ct+1 = ω2 + α2 sc,t + β2 ct, (8)

where sh,t and sc,t denote the scaled scores of the predictive conditional distributions of RVt

and rt, respectively, i.e.,

sh,t = Sh,t∇h,t = Sh,t
∂ ln pRV (RVt|hd,t,Ft−1; ν1, ν2)

∂hd,t
=

ν1
ν1 + 1

(
ν1+ν2
ν2−2

RVt

1 + ν1
ν2−2

RVt
hd,t

− hd,t

)
,(9)

sc,t = Sc,t∇c,t =
∂ ln pr(rt|hd,t, ct,Ft−1;µ, ν)

∂ct
= wc,t

ε2t
hd,t
− ct, (10)

wc,t =
ν + 1

ν − 2 +
ε2t
ht

.

The fat-tailed F (ν1, ν2) and Student’s t(ν1) distributions in (5) and (6) accommodate the

possibly fat-tailed nature of realized variances and returns (see also Opschoor et al., 2018).

To account for the curvature of the scores of the predictive density functions, we follow

Opschoor et al. (2018) and Creal et al. (2013) and scale ∇h,t and ∇c,t by 2h2d,t/(ν1 + 1)

and I−1, respectively, where I denotes the Information matrix. We label our model as the

‘GAS tv-c’ model, indicating we have a model with time-varying c. As a special case for

α2 = β2 = 0, we obtain a GAS model with a fixed c, denoted by ‘GAS fix-c’.

Both scores in (9)–(10) have an intuitive interpretation. First, sh,t is the difference

between a weighted RVt and hd,t, where the weight accounts for the fat-tailedness of RVt.

Large values of RVt implies a low weight in (9) such that the impact of an ‘outlying’ value of

RVt on hd,t+1 is mitigated. Similarly, sc,t holds the difference between ct and a weighted ratio

of the squared total (demeaned) return and the high-frequency based volatility estimate.

Again, large values of squared (demeaned) daily returns εt receive a smaller weight via wc,t
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in (10).

We estimate our GAS tv-c model by the method of Maximum Likelihood. Although

the model parameters can be estimated in one step, we opt for a 2-step approach. In a

first step, we estimate the parameters associated with the daily (open-to-close) volatility.

Let θD = {ν1, ν2, ω1, α1, β1} and θtot = {µ, ν, ω2, α2, β2} denote the vector containing all

static parameters of the daily process and the total volatility process, respectively. We first

maximize the log-likelihood associated with the F distribution:

max
θD

LF = max
θD

T∑
t=1

log pRV (RVt|hd,t,Ft−1,θD). (11)

Given θ̂D we calculate the filtered hd,t which is one of the ingredients for the Student’s t

log-likelihood function for the total return rt.

max
θtot

LStud =
T∑
t=1

log pr(rt|ĥd,t, ct,θtot). (12)

The efficiency loss due to two-step estimation procedure is very small.

3 Forecasting Value-at-Risk and Expected Shortfall

We assess the economic value of accounting for a (time-varying) ratio of total over daytime

filtered volatilities by considering Value-at-Risk and Expected Shortfall predictions. The

former has been very popular in the financial industry, while the latter is gaining momentum

due to the reregulations in Basel IV following the 2008 financial crisis.

The 1-step ahead q-level VaR is defined as the quantity VaR(1-q) such that

Pr[rt < V aRt(1− q)|Ft−1] = q; (13)

In line with the Basel accords, we consider q = 0.01 which corresponds to a 99% VaR. In

addition, we set q equal to 0.05. Since all our models assume a conditional Student’s t
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density for the total return rt with time varying variance ht (which differs per model), the

1-step conditional V aR(q) equals

V aRt(1− q) = µ+ t−1(q, ν)
√
ht, (14)

with t−1(q, ν) the q-quantile of a Student’s t distribution with variance 1 and ν degrees of

freedom.

The VaR is the q-quantile of the conditional return distribution but does not consider

any information about the magnitude of the losses beyond this quantile. The latter are

summarized by the Expected Shortfall (ES). The 1-step ahead ES is defined as

ESt(1− q) = E[rt|Ft−1, rt < V aRt(1− q)]. (15)

Put differently, the ES integrates the VaR over a continuum of levels and can also be defined

as

ESt(1− q) =
1

q

∫ q

0

V aRt(q) dq. (16)

Under our Student’s t distributional assumption for rt, we have

ESt(1− q) = µ+
1

q
pr(xq|ν)

(
(ν − 2) + x2q

ν − 1

)√
ht, (17)

where xq is the q-quantile of a standardized Student’s t distribution with unit variance and ν

degrees of freedom. We consider the 97.5% (as prescribed by Basel) and the 95% Expected

Shortfall.

Given the 1-step ahead VaR and ES over the out-of-sample forecasting period, we use

several statistical tests to assess the adequacy of our forecasts. Define the hit-process

ht(q) = 1[rt<V aRt(1−q)], (18)
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where 1[A] denotes the indicator function of event A. We use the unconditional coverage

(UC) and the independence likelihood ratio test of Christoffersen (1998), both having an

asymptotic χ2(1) distribution. The first test corresponds to null H0 : E[ht(q)] = Pr[ht(q) =

1] = q, while the latter tests the null hypothesis H0 : Pr[ht+1(q) = 1|ht(q)] = Pr[ht+1(q)].

Both tests can also be combined in a conditional coverage (CC) test that is asymptotically

χ2(2) distributed.

For Expected Shortfall, we use the recently developed test of Du and Escanciano (2016).

Given (16), consider the cumulative violation process

Ht(q) =
1

q

∫ q

0

ht(u)du (19)

which equals

Ht(q) =
1

q
(q − zt)1zt≤q, (20)

where ut = F (rt;Ft−1) denotes the probability integral transform (PIT), or cdf transform

of the return rt based on past information. Du and Escanciano (2016) show that testing

the correct specification for the ES boils down to testing whether the mean of Ht(q) equals

q/2. This can be tested based on the test-statistic

tES =
H(q)− q/2√
vES(q)/P

, (21)

where H(q) is the out-of-sample mean of Ht(q), vES(q) = Var(Ht(q)) = q(1/3 − q/4), and

P is the number of out-of-sample observations. This test-statistic follows an asymptotic

standard normal distribution.
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Table 1: S&P 500 constituents
This table lists ticker symbols of 100 companies listed at the S&P 500 index during the period January 2,
2001 until December 31, 2014. All Tickers are grouped per industry.

Ind Nr. Industry # Comp. Tickers
1 Capital Goods 10 AA,BA,CAT,HON,F,NOC,UTX,

A,IR,GD
2 Finance 19 AXP,JPM,AIG,BAC,C,KEY,MTB,

COF,USB,BBT,STI,WFC,GS,MS,
MMC,HIG,PNC,XL,MCO

3 Energy 12 GE,XOM,BHI,MUR,SLB,CVX,HAL,
OXY,APC,SU,CNX,PXD

4 Consumer Services 14 HD,MCD,WMT,TGT,BXP,DIS,JCP,
NLY,ANF,EQR,WY,RCL,WSM,TV

5 Consumer Non-Durables 9 KO,MO,SYY,PEP,CL,AVP,GIS,
CPB,EL

6 Health Care 11 PFE,ABT,BAX,JNJ,LLY,THC,MMM,
MRK,BMY,MDT,CI

7 Public Utilities 7 AEP,AEE,DUK,SO,WMB,VZ,EXC
8 Technology 5 IBM,DOV,HPQ,TSM,CSC
9 Basic Industries 9 PG,DD,FLR,DOW,AES,IP,ATI,

LPX,POT
10 Transportation 4 LUV,UPS,NSC,FDX

4 Empirical application

4.1 Data

The data consist of daily open-to-close returns and daily realized variances for 100 S&P

500 constituents. The 100 stocks are randomly chosen from different industries, such as

financials, materials etc. Table 1 provides an overview of the data. The data span the

period January 2, 2001 until December 31, 2014. We have T = 3521 trading days. The

Financial industry covers most companies (i.e. 19), followed by Consumer Services and

Energy, respectively.

We retrieve consolidated trades (transaction prices) from the Trade and Quote (TAQ)

database from 9:30 until 16:00 with a time-stamp precision of one second. After cleaning the

high-frequency data following the guidelines of Barndorff-Nielsen et al. (2009) and Brownlees

and Gallo (2006), we construct realized variances based on 5-minute returns.
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4.2 Competing models

We benchmark our model against two alternatives. The first model is the HEAVY model

of Shephard and Sheppard (2010), which considers the total daily return rt, and which uses

the lagged realized variance as an explanatory variable for the variance ht. This model is

defined as

rt = µt +
√
htεt, εt ∼ t(0, 1, ν),

ht+1 = ωH + αH RVt + βH ht. (22)

The HEAVY model does not take into account the possible difference in the overnight and

daily volatility processes.

Our second benchmark models the three components of (2) separately; compare Ahoniemi

et al. (2015). Similar as in our own score-driven GAS model, the first component hd,t is

modeled by the GAS F model (7). The second term, the overnight volatility ho,t, is modeled

by a ‘GAS t ON’ model, where ON stands for OverNight. This model is defined as:

ro,t = µo +
√
ho,tεo,t εo,t ∼ t(0, 1, ν),

ho,t+1 = ωo + αo so,t + βo ho,t + γo ε
2
D,t, (23)

so,t = So,t∇o,t = wo,tε
2
o,t − ho,t,

wo,t =
ν + 1

ν − 2 + (ε2o,t/ho,t)
,

where εo,t denote the demeaned overnight return at time t. We follow Ahoniemi et al. (2015)

and incorporate the squared daily return ε2D,t into the equation to allow for a spillover effect

of daily volatility on overnight volatility. Finally, we estimate ρD,o,t in (2) by its sample

correlation counterpart and deviate here from Ahoniemi et al. (2015), who estimate the DCC

model of Engle (2002) for the time-varying correlation between the daytime and overnight

return. In our case, where we use individual stocks instead of a stock index, we do not find

any empirical evidence for the value-added of a DCC model during this step. We label this
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second benchmark model as the ‘GAS sep’ model, to indicate that daytime and overnight

volatility are modeled separately.

4.3 In-sample results

We first estimate the GAS tv-c, GAS fix-c, GAS F, GAS t ON, and HEAVY model by

Maximum Likelihood using all observations. Table 2 and Figure 1 present the results.

Table 2 shows three interesting findings. First, the average degrees of freedom parameter

ν of the Student’s t distribution across all 100 assests considered is around 7, indicating that

the conditional returns are fat-tailed. This becomes extreme for the overnight returns, as

indicated by an average value of around 3 for the GAS t ON model. This result confirms for

example Linton and Wu (2017) and shows that overnight returns are considerably fat-tailed

and fourth order moments may not exist. Second, the average persistence parameter β of

the GAS tv-c model is rather low (0.565). This seems due, however, to some stocks that

do not exhibit a time-varying ratio ct of total to daily volatility. For instance, if we only

consider the 19 financial stocks, the average β jumps upward to 0.862, suggesting that for

financial stocks there is persistent time-variation in the ratio ct.

Figure 1 shows the difference in maximized log-likelihood between the GAS tv-c and the

HEAVY t model (upper panels), and between the GAS tv-c and GAS fix-c model (lower

panels). A positive value means that the GAS tv-c model has a higher log-likelihood.

The likelihood of the GAS tv-c model is higher for quite a number of stocks compared to

the HEAVY t model. This is true in particular for the financial stocks, as indicated in the

upper right panel. In addition, the lower panel show that modeling ct as time-varying rather

than static also improves the likelihood. In particular, for most financial stocks, twice the

difference in the log-likelihood is substantial, indicating that a likelihood ratio test for the

null of a static c will be strongly rejected.

Figure 2 shows the fitted process ct of the GAS tv-c model for four financials, AIG,

BAC, C, and WFC, along with the estimated c of the GAS fix-c model. The figure shows

that indeed the ratio varies through time, with huge peaks in the heat of the Global Fi-
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Table 2: Full sample average parameter estimates of all stocks
This table reports maximum likelihood parameter estimates of the HEAVY t, GAS F, GAS t ON, GAS
tv-c and GAS fix-c models, applied to daily equity returns, realized variances or overnight returns of 100
assets listed at the S&P 500 index. We list the mean of the estimated parameters over all 100 stocks, with
the standard deviation (SD) in parentheses. In case of the GAS tv-c model, we list the mean and standard
deviation for all stocks, as well as for the 19 Financial companies. The sample covers January 2, 2001 until
December 31, 2014 (3521 observations).

µ ω α β ν ν1 ν2
GAS t tv-c All stocks mean 0.033 0.560 0.038 0.565 7.022

sd (0.02) (0.50) (0.04) (0.38) (1.75)

Financials mean 0.023 0.180 0.024 0.862 7.156
sd (0.02) (0.31) (0.03) (0.25) (1.38)

GAS t fix-c All stocks mean 0.031 1.306 6.862
sd (0.02) (0.16) (1.71)

GAS t ON All stocks mean 0.030 0.011 0.116 0.992 3.214
sd (0.04) (0.01) (0.02) (0.01) (0.67)

GAS F All stocks mean 0.053 0.877 0.983 21.832 14.711
sd (0.03) (0.10) (0.01) (3.61) (2.59)

HEAVY t All stocks mean 0.031 0.082 0.489 0.597 7.017
sd (0.02) (0.09) (0.15) (0.14) (1.76)

nancial Crisis (2008/2009) and the Sovereign Debt crisis of 2012. Interestingly, the value

of c become lower than one during the years 2005/2006, hence correcting the fitted daily

volatility downwards. Hence the total information outside trading hours with respect to the

information during the day varies heavily through time. We conclude that statistically, it

pays off for a large number of stocks to model open-to-close and close-to-close volatility by

two processes using a time-varying scaling factor.

Comparing the GAS sep model with the GAS tv-c model in terms of likelihoods is not

straightforward: the GAS tv-c model describes daily returns and daytime realized volatili-

ties, while the GAS sep model also models the overnight returns separately and thus has an

incomparable likelihood. To compare the two models, Figure 3 plots the difference of the

filtered log-volatilities for the same four financial companies shown earlier. The figure shows

an interesting pattern that is common among all four financial assets: during the tranquil

years 2003-2006 (except 2005 for AIG), the difference in (log) volatility is negative, while

during more turmoil period such as 2008/2009 and 2011, the difference is positive. Hence
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Fixed vs. time-varying c
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Figure 2: Time-varying volatility ratios
This figure shows the fitted ratio of the total daily volatility and the open-to-close volatility from the GAS
tv-c model for AIG, BAC, WFC and C. In addition, the horizontal lines represents the estimated ĉ from
the GAS fix-c model for four financial companies, which equals 1.39, 1.47, 1.34 and 1.20 respectively. The
sample covers January 2, 2001 until December 31, 2014 (3521 observations).

modeling overnight and daily returns separately results in a somewhat higher volatility dur-

ing calm periods, while during turmoil periods the volatility seems lower. This suggests

that modeling the two components separately smooths out some of the time-variation found

with our new time-varying ratio ct model. In the next section we investigate whether these

differences matter when forecasting a 1-step ahead VaR and ES.

4.4 Out-of-sample results

To assess the short-term forecasting performance of the different models, we consider 1-

step ahead 99% and 95% Value-at-Risk and 97.5% and 95% Expected Shortfall predictions.

We use a moving-window of 1000 observations, starting 2001–2004, such that the Global

Financial Crisis and the European sovereign debt crisis are part of the out-of-sample period.

We re-estimate our model every 50 observations, or about every two months.

Panels A.1 and A.2 of Table 3 list the results for the 1-step ahead VaR forecasts based
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Figure 3: Fitted total daily log-volatilities
This figure shows the differences in fitted log-volatilities of AIG, BAC, C and WFC according to the GAS
tv-c model and the GAS sep model. A negative number means that the fitted volatilities of the former
model is lower than the volatilities of the latter model. The sample covers January 2, 2001 until December
31, 2014 (3521 observations).

17



T
a
b
le

3
:

1
-s

te
p

a
h
e
a
d

V
a
R

a
n
d

E
S

p
re

d
ic

ti
o
n
s

T
h

is
ta

b
le

re
p

or
ts

re
su

lt
s

on
1-

st
ep

ah
ea

d
99

%
an

d
95

%
V

al
u

e-
a
t-

R
is

k
(V

a
R

)
a
n

d
9
7
.5

%
a
n

d
9
5
%

E
x
p

ec
te

d
-S

h
o
rt

fa
ll

(E
S

)
p

re
d

ic
ti

o
n

s,
u

si
n

g
th

e
G

A
S

tv
-c

,
G

A
S

fi
x
-c

,
G

as
se

p
an

d
H

E
A

V
Y
t

m
o
d

el
s,

ap
p

li
ed

to
d

a
il

y
eq

u
it

y
re

tu
rn

s
o
f

1
0
0

a
ss

et
s

li
st

ed
a
t

th
e

S
&

P
5
0
0

in
d

ex
.

W
e

u
se

a
n

m
ov

in
g

w
in

d
ow

o
f

10
00

ob
se

rv
at

io
n

s.
P

an
el

A
li

st
s

re
su

lt
s

on
b

ac
k
te

st
in

g
th

e
V

a
R

.
M

o
re

sp
ec

ifi
ca

ll
y,

P
a
n

el
A

.1
a
n

d
A

.2
sh

ow
re

su
lt

s
o
f

th
e

u
n

co
n

d
it

io
n

a
l

a
n

d
co

n
d

it
io

n
a
l

co
v
er

ag
e

te
st

s
of

C
h

ri
st

off
er

se
n

(1
99

8)
.

P
an

el
B

sh
ow

s
re

su
lt

s
o
f

th
e

u
n

co
n

d
it

io
n

a
l

b
a
ck

te
st

o
f

D
u

a
n

d
E

sc
a
n

ci
a
n

o
(2

0
1
6
).

F
o
r

a
ll

te
st

s
w

e
li

st
th

e
n
u

m
b

er
of

ca
se

s
th

e
p
-v

al
u

e
fa

ll
s

b
el

ow
10

,
5

or
1

%
.

T
h

e
ou

t-
of

-s
am

p
le

co
ve

rs
D

ec
em

b
er

2
0
,

2
0
0
4

u
n
ti

l
D

ec
em

b
er

3
1

2
0
1
4

a
n

d
co

n
ta

in
s

2
5
2
1

o
b

se
rv

a
ti

o
n

s.

G
A

S
tv

-c
G

A
S

fi
x
-c

G
A

S
se

p
H

E
A

V
Y

G
A

S
tv

-c
G

A
S

fi
x
-c

G
A

S
se

p
H

E
A

V
Y

99
%

V
a
R

9
5
%

V
a
R

P
an

el
A

.1
:

U
n

co
n

d
it

io
n

al
C

ov
er

ag
e

te
st

]
p
-v

al
<

0.
10

15
14

2
7

2
6

1
7

1
9

4
7

2
7

]
p
-v

al
<

0.
05

9
7

1
9

1
8

1
2

1
3

3
8

2
0

]
p
-v

al
<

0.
01

5
1

5
7

2
5

2
4

9

P
an

el
A

.2
:

C
on

d
it

io
n

al
C

ov
er

ag
e

te
st

]
p
-v

al
<

0.
10

16
15

2
1

2
3

1
7

2
8

4
8

2
5

]
p
-v

al
<

0.
05

11
9

1
4

1
6

9
1
8

3
5

1
7

]
p
-v

al
<

0.
01

3
3

5
7

2
4

2
1

6

97
.5

%
E

S
9
5
%

E
S

P
an

el
B

:
D

u
&

E
sc

an
ci

an
o

b
ac

k
te

st
(U

n
co

n
d

it
io

n
a
l)

]
p
-v

al
<

0.
10

15
16

3
6

2
5

1
7

1
6

4
7

2
1

]
p
-v

al
<

0.
05

9
7

2
6

1
7

9
1
0

3
8

1
9

]
p
-v

al
<

0.
01

4
2

1
0

7
2

3
2
7

7

18



on the unconditional (UC) and conditional coverage (CC) test of Christoffersen (1998). For

each test, we report the number rejections (across all 100 stocks) of the null-hypothesis

using a 10%, 5%, or 1% level. The main result is that our new model with time-varying

ct clearly outperforms both the HEAVY t model (which ignores the differences between

daytime and overnight volatility), and the GAS sep model (which models daytime and

overnight returns as separate processes). The number of violations for the UC and CC test

are considerably lower in case for the GAS tv-c and fix-c models than for the HEAVY t

and GAS sep models. The performance of the GAS sep model is particularly dramatic for

the 95% VaR predictions: in 47, 38 and 21 cases out of 100 the null hypothesis is rejected

using different significance levels. This finding contrasts with the findings of Ahoniemi et al.

(2015). A possible explanation is that we consider individual stocks, while Ahoniemi et al.

(2015) use index return only.1 Overnight index returns may be less prone to he substantial

fat-tailedness we find for individual stocks.

The performance of the 99% VaR is similar for both the static and time-varying ct

specification. However, there is a striking difference between the two models in terms of

the conditional coverage (CC) test for the 95% VaR predictions. The null-hypothesis of a

correct conditional coverage is rejected 17, 9 and 2 times when allowing for a time-varying

ratio ct. For a static c, these numbers are substantially higher at 28, 18 and 4 rejections.

Hence the GAS fix-c model fails with respect to the independence of the violations, while

the GAS tv-c model does not.

Panel B confirms our results on the VaR predictions for the expected shortfall measures.

The GAS models with a fixed or time-varying total-over-daytime volatility ratio are superior

to the HEAVY t and GAS sep models. Again, modeling the overnight and daytime volatility

separately results in very bad ES predictions. The fixed and time-varying ct specifications

behave quite similarly. However, recall that the ‘fixed’ ĉ is updated every 50 observations,

and therefore is effectively much less fixed than the name suggests. Effectively, the rolling-

1We also apply our models on the S&P 500 index (overnight) returns (and realized variance) and find
that backtests on the VaR and ES forecasts do not provide a clear winner. This confirms Ahoniemi et al.
(2015), as their result is in particular strong for the Russell 2000 index while for the S&P 500 index their
main result is less convincing (see Table 3 and 4 of Ahoniemi et al. (2015)).

19



window estimation of the fixed c specification turns it into a time-varying (per 50 days) ct

specification. Overall, we conclude from the table that the GAS tv-c model produces the

best VaR and ES predictions.

5 Conclusions

We introduced a new dynamic score driven model for the ratio of total close-to-close volatility

and daytime volatility, where the latter depends on the realized variance. The model differs

from the existing literature by considering a time-varying ratio instead of a fixed ratio, as

suggested by Hansen and Lunde (2005) and Ahoniemi et al. (2015). In addition, we scale

the filtered volatility, taking into account the fat-tailedness of the realized variance using the

(univariate analogue of the) GAS F model of Opschoor et al. (2018), instead of the realized

variance itself.

Using daily returns and realized variances of 100 U.S. stocks over 2001–2014, the new

model improves in-sample upon the alternatives, particularly for financial stocks. We showed

that the ratio of total to daytime volatility varies through time. Out-of-sample, 1-step ahead

VaR and ES predictions improve as well using the specification with a time-varying volatility

ratio. Finally, we found that our model dramatically improves upon a model that models

the daytime and overnight volatility separately.
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